How to Add a Property to a Component

Originally created by Kate Feeney

This document describes how to add a new property to an existing App Inventor component.

1. Adding a Property to the Properties Panel

1.1 PropertyEditors
1.2 Creating a New PropertyEditor
1.2.1 Creating the new PropertyEditor class
1.2.2 Adding the New PropertyEditor to the Properties Panel
1.3. Associate the Property with the Component
2. Changing the Designer View When a Property Changes
2.1 Change Component’s Attributes
2.2 Update the onPropertyChange Method
2.3 Update Any Other Necessary Methods
3. Changing the Android Representation of the Component
1. Button Shape Example

4. Update Version Numbers
4.1 YaVersion

4.2 YoungAndroidFormUpgrader
4.3 BlockSaveFile

5. Deprecating methods and events and properties
6. Internationalization

As an example, we will show how the Shape property was added to the ButtonBase component.
ButtonBase is an abstract superclass of the Button and the Picker components (ContactPicker,
ImagePicker and ListPicker); therefore, all properties defined for ButtonBase are also defined
for Button and Picker. Originally the ButtonBase component had no Shape property; it simply
used the default shape, which uses the system’s defaults and varies from device to device.
When the Shape property was added, four choices (default, rounded, rectangular and oval)
were included. All examples in this document show the Button component but would be the
same for any of the Picker components.

The user will first see the new property in the Button component's Properties panel in the
Designer. Because the choices should be restricted to the four legal values, we will create a
PropertyEditor that limits the choices to these values and maps them to integers for the internal
representation of the property. When the user changes the value of the Shape property, the
visual representation of the Button component in the Designer must change so that the user can
preview the interface. To do this we will create a method that will change the attributes of the
GWT button widget that represents the Button component in the Designer. Finally, since the

http://javadoc.app-inventor-releases.googlecode.com/hg//com/google/appinventor/components/runtime/ButtonBase.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/components/runtime/Button.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/components/runtime/Picker.html
http://javadoc.app-inventor-releases.googlecode.com/hg//com/google/appinventor/components/runtime/ContactPicker.html
http://javadoc.app-inventor-releases.googlecode.com/hg//com/google/appinventor/components/runtime/ImagePicker.html
http://javadoc.app-inventor-releases.googlecode.com/hg//com/google/appinventor/components/runtime/ListPicker.html

user ultimately wants the property changed on their Android device we will add code that
changes the Button view’s BackgroundDrawable depending on which Shape value is selected.

1. Adding a Property to the Properties Panel

The first step is to add the property so that it appears in the Properties panel when a Button is
selected. This change is shown in the image below. Every property is associated with a
PropertyEditor to allow the user to choose among legal values. Often, an existing
PropertyEditor can be used, but in some cases, such as the Shape property, it will be necessary
to create a new one. Finally, we will associate the property with the component so that the
property will appear in the Properties panel when the component is selected.

Properties Properties

BackgroundColor BackgroundColor

. Default . Defautt

Enabled Enabled

v T

FontBold T“”B”‘“‘
Fontltalc

Fonthalic

= FontSize

FontSize 14.0

14.0
FomTypetace

Pailjpshes Shape
default i
—_— mage
'y

Al + | default v | None....

None... Shape

n
Text I [default 0
Text for Buttonl _T-'_-xl
Text for Button2
TextAlignment
center » TextAlignment
TextColor
TaxtColor
Default

[| B oefaut
Visible
g 'M"?Gka:‘
Width Width
Automatic... Automatic..
Height Height
Automatic... Automatic..

Figure 1: Button Property Panel

1.1 PropertyEditors

Each property has a PropertyEditor that controls what values can be specified in the Designer.
Some existing PropertyEditors include the BooleanPropertyEditor (used by
ButtonBase.Enabled), NonNegativeFloatPropertyEditor (used by ButtonBase.FontSize) and

http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/PropertyEditor.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/BooleanPropertyEditor.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/NonNegativeFloatPropertyEditor.html

TextPropertyEditor (used by ButtonBase.Text). If a suitable PropertyEditor already exists (Check
if an existing property will meet your needs.), then simply note its name and skip to Section 1.3.
Otherwise a new PropertyEditor needs to be created as described in Section 1.2.

The PropertyEditor associated with the Shape property must offer a drop-down menu with the
four legal shape values: default, rounded, rectangular and oval (as shown below). Since this
does not already exist, a new PropertyEditor must be created.

Shape

-default a

rectangular
oval

Figure 2: Shape PropertyEditor in the Designer

1.2 Creating a New PropertyEditor

1.2.1 Creating the new PropertyEditor class

The new PropertyEditor class must extend the PropertyEditor class and restrict the user inputs
to only legal values. This class will also define how the PropertyEditor is displayed to the user
(drop-down menu, text box, etc.).

For our example the new class will be called YoungAndroidButtonShapeChoicePropertyEditor
and it will extend the ChoicePropertyEditor class, which itself extends PropertyEditor. This new
class must define an array of Choice objects and pass the array to the ChoicePropertyEditor
constructor, which will create the drop-down choice widget. A Choice is a static class defined in
the ChoicePropertyEditor class and its constructor takes in two strings: caption and value.
The caption string is text to be shown in the drop-down choice widget. The value string is
the value assigned to the property if the choice is selected. The new class is defined in Figure 4.

The first step is to define the four descriptive strings (caption strings), which are displayed to
the user and will be placed in the array passed to the ChoicePropertyEditor. This is done by
adding the following code to the OdeMessages interface. The reason the strings are defined in
a separate file rather than hard-coded is to support abstraction and internationalization.

//Used in
editor/youngandroid/properties/YoungAndroidButtonShapeChoicePropertyEditor.java

@DefaultMessage ("default") < —thisiswhat wil be displayed to the user

@Description ("Text for button shape choice 'default'") ‘HithSUMQisnﬂD”ﬂaﬂDn

String defaultButtonShape () ; ~__ the name of the descriptive for a transiator

string is made up at this point
@DefaultMessage ("rounded")

http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/TextPropertyEditor.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/package-summary.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/package-summary.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/PropertyEditor.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/editor/youngandroid/properties/YoungAndroidButtonShapeChoicePropertyEditor.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/ChoicePropertyEditor.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/widgets/properties/ChoicePropertyEditor.Choice.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/OdeMessages.html

@Description ("Text for button shape choice 'rounded'")
String roundedButtonShape () ;

@DefaultMessage ("rectangular")
@Description ("Text for button shape choice 'rectangular'")
String rectButtonShape () ;

@DefaultMessage ("oval")
@Description ("Text for button shape choice 'oval'")
String ovalButtonShape () ;
Figure 3: Define Strings in OdeMessages class

Now that the strings are defined, the YoungAndroidButtonShapeEditor class can be created as
shown in Figure 4.

package com.google.appinventor.client.editor.youngandroid.properties;

import static com.google.appinventor.client.Ode.MESSAGES;
import com.google.appinventor.client.widgets.properties.ChoicePropertyEditor;

/**

* Property editor for button style.
*

* @author feeney.katel@gmail.com (Kate Feeney)

*/
public class YoungAndroidButtonShapeChoicePropertyEditor extends ChoicePropertyEditor
{

// Button shape choices

private static final Choice[] shapes = new Choicel[] { extend ChoicePropertyEditor
new Choice (MESSAGES.defaultButtonShape (), "0"),
new Choice (MESSAGES.roundedButtonShape(), "1")
new Choice (MESSAGES.rectButtonShape(), "2"), ‘Edeﬂnearlanay
new Choice (MESSAGES.ovalButtonShape (), "3") ofthe choices

b

public YoungAndroidButtonShapeChoicePropertyEditor () {

~_hass array to the super (shapes) ;
} ChoicePropertyEditor constructar

Figure 4: YoungAndroidButtonShapeEditor class

The value strings (e.g., “0”, “17, “2”, “3” in Figure 4) will be assigned to the property and can be
accessed via the component’s getters and setters. When the string is retrieved by the
component’s getter it will be retrieved as an int for which constants should be defined in the
Component class. We will define the constants in the Component class since all components
inherit from it. Therefore the following code (Figure 5) is to be added.

http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/components/runtime/Component.html

* Button Styles.

x /
static final int BUTTON SHAPE DEFAULT = 0;
static final int BUTTON SHAPE ROUNDED = 1;
static final int BUTTON SHAPE RECT = 2;
static final int BUTTON SHAPE OVAL 3;

Figure 5: Define value Strings in the Component class

1.2.2 Adding the New PropertyEditor to the Properties Panel

The YoungAndroidPalettePanel class creates the component palette on the left side of the
Designer and instantiates the components’ PropertyEditors. We need to add the logic to do this
in the createPropertyEditor() method, which is in the propertiesUtil class. First, we need to
define a constant for the property in the propertyTypeContants class. Add the following code.

/**

* Button shapes. * (@see com.google.appinventor.client.editor.youngandroid.properties.

* YoungAndroidButtonShapeChoicePropertyEditor
*/
public static final String PROPERTY TYPE BUTTON SHAPE = "button shape";

Then add the following case to the createPropertyEditor() method inside the same class.

} else if (editorType.equals (PropertyTypeConstants.PROPERTY TYPE BUTTON SHAPE)) {
return new YoungAndroidButtonShapeChoicePropertyEditor();

Figure 6: Addition to YoungAndroidPalettePanel.createPropertyEditor()

1.3. Associate the Property with the Component

Create a setter and a getter method for the new property in the component’s class. Both the
setter and the getter methods must be marked with the SimpleProperty annotation. The
SimpleProperty annotation consists of a description, the property’s category and whether or not
the property is visible (visible in the BlocksEditor). The setter method must also be marked with
the DesignerProperty annotation. This annotation consists of the property’s editor type, which is
defined in the DesignerProperty annotation, and the default value of the property.

For this example the following code needs to be added to the ButionBase class.

This is the getter:
/x*
* Returns the style of the button.
*
* @return one of {@link Component#BUTTON SHAPE DEFAULT},
* {€@link Component#BUTTON SHAPE ROUNDED},
* {@link Component#BUTTON SHAPE RECT} or

https://code.google.com/p/app-inventor/source/browse/appinventor/appengine/src/com/google/appinventor/client/editor/youngandroid/palette/YoungAndroidPalettePanel.java
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/components/common/ComponentConstants.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/components/annotations/SimpleProperty.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/components/runtime/ButtonBase.html

* {@link Component#BUTTON SHAPE OVAL}

*/
@SimpleProperty (+~—the descriptinn can be left
_ blank, defaultis" "
category =
PropertyCategory.APPEARANCE,
userVisible = false) false since user can
public int Shape() f{ not editin Blocks
return shape; Editor

the name of the method
will be displayed in the
FProperties panel

Figure 7: Shape Getter

This is the setter:
/**
* Specifies the style the button. This does not check that the argument is a legal
* value.

*

* @param shape one of {€@link Component#BUTTON SHAPE DEFAULT},

* {@link Component#BUTTON SHAPE ROUNDED},
* {@link Component#BUTTON SHAPE RECT} or
* {@link Component#BUTTON SHAPE OVAL}

*
* @throws IllegalArgumentException if shape is not a legal value.
*/
@DesignerProperty (editorType = PropertyTypeConstants.PROPERTY TYPE BUTTON SHAPE,
defaultValue = Component.BUTTON SHAPE DEFAULT + "")

@SimpleProperty (description = "Specifies the button's shape (default, rounded," +
" rectangular, oval). The shape will not be visible if an Image is being +
displayed.", userVisible = false)

public void Shape (int shape) { the category only needsto be specified

this.shape = shape; inthe etther the setter or the getter
updateAppearance () ;

Figure 8: Shape Setter
Then define the variable shape inside the same file with the following code.

// Backing for button shape

private int shape;
And add the following line to the ButtonBase constructor.
Shape (Component .BUTTON SHAPE DEFAULT) ;

After implementing the code in this section, the Shape property will appear in the Properties
panel when a Button is selected in the designer view; however, changing the property does not

yet affect the appearance of the Button.

Don’t use hard-coded strings for these names. Instead, add variables in OdeMessages.java.
Similarly for component descriptions.

Add an entry for each new property/event/method into OdeMessages.java iff a property with that
name doesn't already exist (so if you are adding a property that has the same name as another
property in a different component, (even in a different language) you don't do it a second time).
For example, to add the "Foo" property you would add:

@defaultMessage("Foo")
@description("This the name of the wonderful Foo property")
String FooProperties();

2. Changing the Designer View When a Property Changes

The app’s user interface can be viewed in two locations. The first location is in the Designer
and the second is on the Android device (i.e. phone, tablet or emulator). The Designer is the
view shown in the browser window and is what will be changed in this section.

Every Component has a corresponding mock class in the appengine project. The mock class is
the visual representation of the component in the Designer, and the mock classes generally
follow the same hierarchy as the Component classes. If your property changes visual aspects
of the component (such as color), then the mock class of that component must adjust the
Designer to show these visual changes.

2.1 Change Component’s Attributes

There are already a number of methods written to change a component’s attributes in
MockComponent, MockComponentsUtil and MockVisibleComponent; most component mock
classes inherit from at least one of these classes.

To change the appearance in the Designer, find the mock class that corresponds to the
component to which the property was added. Determine if the class inherits a method that
changes the appropriate attribute. If such a method exists, then simply write a method that calls
that method with the appropriate arguments, as done in the setEnabledProperty() method in the
MockButtonBase class. If a method doesn’t exist then follow this Shape property example.

For this example the mock class associated with the ButtonBase component is
MockButtonBase. Figure 9 shows the appearances for each value of the Shape property.

http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/editor/simple/components/MockComponent.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/editor/simple/components/MockComponentsUtil.html
http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/editor/simple/components/MockVisibleComponent.html
https://code.google.com/p/app-inventor/source/browse/appinventor/appengine/src/com/google/appinventor/client/editor/simple/components/MockButtonBase.java

Shape Image

default

default |

rounded

rounded)

L.

rectangular

rectangular |

oval

oval

Figure 9: Mock Buttons

Mock components are built on top of GWT widgets. The MockButtonBase creates a button
widget which uses the system’s defaults and in order to make the above shapes the button’s
corner radii needs to be changed. There does not already exist a method in MockButtonBase
or any of its superclasses that could change a button’s corner radii, so the following method
(Figure 10) needs to be added to MockButtonBase.

// Legal values for shape are defined in
// com.google.appinventor.components.runtime.Component.java.

private int shape;

/*
* Sets the button's Shape property to a new value.
*/
private void setShapeProperty (String text) {
shape = Integer.parselnt (text);
// Android Buttons with images take the shape of the image and do not
// use one of the defined Shapes.
if (hasImage) {
return;
}
switch (shape) {
case O:
// Default Button
DOM.setStyleAttribute (buttonWidget.getElement (), "border-radius", "Opx");
break;
case 1:
// Rounded Button.
// The corners of the Button are rounded by 10 px.

// The value 10 px was chosen strictly for style.
// 10 px is the same as ROUNDED CORNERS RADIUS defined in
// com.google.appinventor.components.runtime.ButtonBase.java.
DOM.setStyleAttribute (buttonWidget.getElement (), "border-radius", "10px");
break;

case 2:
// Rectangular Button
DOM.setStyleAttribute (buttonWidget.getElement (), "border-radius", "Opx");
break;

case 3:
// Oval Button
String height = DOM.getStyleAttribute (buttonWidget.getElement (), "height");
DOM.setStyleAttribute (buttonWidget.getElement (), "border-radius", height);
break;

default:
// This should never happen
throw new IllegalArgumentException ("shape:" + shape);

Figure 10: Addition to MockButtonBase Class

2.2 Update the onPropertyChange Method

Mock component classes contain an onPropertyChange() method which is called by GWT when
any of the component’s properties are changed and it determines how to change the view in the
Designer. The onPropertyChange() method has two string parameters, the propertyName
and the newvalue. The propertyName is a string representation of the name of the method
defined in the property’s getter (also the string displayed in the Properties Panel). The
newValue is the value of the property and is passed to the method that was just created. For
this example the propertyName would be “Shape” and the newvalue could be “0”, “17, “2” or
“3".

There is a list of all the possible propertyName values in the MockVisibleComponent class.
The new property needs to be added to the list. For this example add the following line.

protected static final String PROPERTY NAME BUTTONSHAPE= "Shape";

Now back in the mock component’s class add logic so that if the new property is changed it will
call the method that was just created.

For this example add the following statement to the onPropertyChange() method of the
MockButtonBase class

} else if +—this isthe string just
(propertyName.equals (PROPERTY NAME BUTTONSHAPE)) { defined in this section

setShapeProperty (newValue) ; +~——thisisthe method
defined in Section 2.1

Figure 11: Additon to onPropertyChange()

2.3 Update Any Other Necessary Methods

If changing the new property doesn’t affect any other properties then this section is complete. It
might be a good idea to review the methods in the mock component class to confirm this. If the
new property does affect other properties then update the methods called on those property
changes as needed.

For this example, since the button shape only changes if there is no background image, the
Shape property and the Image property affect each other. Therefore, since the
setShapeProperty() method was created (or updated), the setimageProperty() method needs to
be updated.

The following two gray lines need to be added to the setimageProperty() method.

/*
* Sets the button's Image property to a new value.
*/
private void setImageProperty (String text) {

imagePropValue = text;

String url = convertImagePropertyValueToUrl (text);

if (url == null) {
hasImage = false;
url = "";
setBackgroundColorProperty (backgroundColor) ;
setShapeProperty (Integer.toString (shape)) ;

} else {
hasImage = true;
// Android Buttons do not show a background color if they have an image.
// The container's background color shows through any transparent
// portions of the Image, an effect we can get in the browser by
// setting the widget's background color to COLOR_NONE.
MockComponentsUtil.setWidgetBackgroundColor (buttonWidget,

"§H" + COLOR NONE) ;

DOM.setStyleAttribute (buttonWidget.getElement (), "border-radius", "Opx");

}

MockComponentsUtil.setWidgetBackgroundImage (buttonWidget, url);

image.setUrl (url);

Figure 12: Addition to setimageProperty()

Now when the Shape property is changed the button shown in the designer view will also
change to reflect the user’s preference. There will still be no change to the button on the
Android device.

3. Changing the Android Representation of the Component

Next decide how you would like to change the visual representation of the component on the
Android device. Then implement the necessary code inside the class where you defined the
property’s getter and setters.

For the Shape property the component’s BackgroundDrawable needs to be changed to change
the shape. The table below describes how the ButtonBase component is changed for each
Shape.

Shape Image Drawable
default defaultButtonDrawable or no
il drawable and set the
background color
rounded —— RoundRectShape(CornerArray,
null, null)

where CornerArray is and Array
of 8 floats each with the value

10f.

rectangular RectShape() drawable
g rectangaler pe()

oval iy OvalShape() drawable

Figure 13: Shape Drawables

The process of changing the component on the Android device is very specific to both the
component being changed and the property being added. Review the methods currently
available to the component and components with similar properties to determine what code
needs to be added or changed.

The next section details the process followed when implementing the Shape property.

3.1. Button Shape Example

In the ButtonBase class add the following constants.
// Constant for shape
// 10px is the radius of the rounded corners.
// 10px was chosen for esthetic reasons.
private static final float ROUNDED CORNERS RADIUS = 10f;
private static final float[] ROUNDED CORNERS ARRAY = new float[] {
ROUNDED CORNERS RADIUS,ROUNDED CORNERS RADIUS, ROUNDED CORNERS RADIUS,

ROUNDED CORNERS RADIUS, ROUNDED CORNERS RADIUS, ROUNDED CORNERS RADIUS,
ROUNDED CORNERS RADIUS, ROUNDED CORNERS RADIUS };

// Constant background color for buttons with a Shape other than default
private static final int SHAPED DEFAULT BACKGROUND COLOR = Color.LTGRAY;

Replace the updateAppearance() method with the following.
// Update appearance based on values of backgroundImageDrawable, backgroundColor and
// shape.
// Images take precedence over background colors.
private void updateAppearance () {
// If there is no background image,
// the appearance depends solely on the background color and shape.

if (backgroundImageDrawable == null) {
if (shape == Component.BUTTON SHAPE DEFAULT) {
if (backgroundColor == Component.COLOR DEFAULT) {

// If there is no background image and color is default,
// restore original 3D bevel appearance.
ViewUtil.setBackgroundDrawable (view, defaultButtonDrawable) ;
} else {
// Clear the background image.
ViewUtil.setBackgroundDrawable (view, null);
// Set to the specified color (possibly COLOR NONE for transparent).
TextViewUtil.setBackgroundColor (view, backgroundColor) ;
}
} else {
// If there is no background image and the shape is something other than
default,
// create a drawable with the appropriate shape and color.
setShape () ;
}
} else {
// If there is a background image
ViewUtil.setBackgroundImage (view, backgroundImageDrawable);

Figure 14: Addition to updateAppearance()

Add the setShape() method with the following.

// Throw IllegalArgumentException if shape has illegal value.
private void setShape() {

ShapeDrawable drawable = new ShapeDrawable () ;

// Set color of drawable.

drawable.getPaint () .setColor ((backgroundColor == Component.COLOR DEFAULT)

? shapedDefaultBackgroundColor : backgroundColor);
// Set shape of drawable.
switch (shape) {
case Component.BUTTON_ SHAPE ROUNDED:
drawable.setShape (new RoundRectShape (ROUNDED CORNERS ARRAY, null, null));

break;

case Component.BUTTON SHAPE RECT:
drawable.setShape (new RectShape());
break;

case Component.BUTTON SHAPE OVAL:
drawable.setShape (new OvalShape());
break;

default:
throw new IllegalArgumentException();

}
// Set drawable to the background of the button.
view.setBackgroundDrawable (drawable) ;

view.invalidate();

Figure 15: Addition to setShape()

Now when the Shape of a Button is changed both the Mock button and the Button on the
Android device should change.

4. Update Version Numbers

4.1 YaVersion

The YaVersion class (in com.google.appinventor.components.common) defines the Young
Android System version number, Blocks Language version number and Component version
numbers. If the Blocks Language or any of the Components were updated in the previous
sections then their version numbers and the Young Android System version number needs to be
increased. There are also instructions, in the class, describing updating each of these values.

For the Button Shape example the ButtonBase component was updated, therefore the
ButtonBase component version number needs to be increased along with the version numbers
of components that are subclassed of ButtonBase and the Young Android System version
number. Add the following gray code to the YaVersion class.

2 Young Android System Version Number

// YOUNG ANDROID VERSION must be incremented when either the blocks language or a \
// component changes.
// TODO(lizlooney) - should this version number be generated so that it is

// automatically incremented when the blocks language or a component changes?

// For YOUNG ANDROID VERSION 2:

// - The Logger component was removed. The Notifier component should be used
instead.

// - TINYWEBDB COMPONENT VERSION was incremented to 2.

http://javadoc.app-inventor-releases.googlecode.com/hg//com/google/appinventor/components/common/YaVersion.html

public static final int YOUNG ANDROID VERSION = 54;

// For BUTTON COMPONENT VERSION 2:
// - The Alignment property was renamed to TextAlignment.
// For BUTTON COMPONENT VERSION 3:
// - The LongClick event was added.

public static final int BUTTON COMPONENT VERSION = I;

// For CONTACTPICKER COMPONENT VERSION 2:

// - The Alignment property was renamed to TextAlignment.
// For CONTACTPICKER COMPONENT VERSION 3:

// - The method Open was added.

public static final int CONTACTPICKER COMPONENT VERSION = I;

// For IMAGEPICKER COMPONENT VERSION 2:

// - The Alignment property was renamed to TextAlignment.
// For IMAGEPICKER COMPONENT VERSION 3:

// - The method Open was added.

public static final int IMAGEPICKER COMPONENT VERSION = I;

// For LISTPICKER COMPONENT VERSION 2:

// - The Alignment property was renamed to TextAlignment.
// For LISTPICKER COMPONENT VERSION 3:

// — The SelectionIndex read-write property was added.

// For LISTPICKER COMPONENT VERSION 4:

// - The method Open was added.

public static final int LISTPICKER COMPONENT VERSION = I;

// For PHONENUMBERPICKER COMPONENT VERSION 2:

// - The Alignment property was renamed to TextAlignment.
// For PHONENUMBERPICKER COMPONENT VERSION 3:

// - The method Open was added.

// - The Shape property was added.
public static final int PHONENUMBERPICKER COMPONENT VERSION = 4;
Figure 16: Addition to YaVersion Class

4.2 YoungAndroidFormUpgrader

As stated in the instructions in YaVersion, if a component version is updated code must be
added to the YoungAndroidFormUpgrade (in com.google.appinventor.client.youngandroid). For
the Button Shape example the following gray code needs to be added to the
YoungAndroidFormUpgrader class.

private static int upgradeButtonProperties (Map<String, JSONValue> componentProperties,

int srcCompVersion) {

if (srcCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentProperties, "Alignment", "TextAlignment");
// Properties related to this component have now been upgraded to version 2.
srcCompVersion = 2;

}

if (srcCompVersion < 3) {
// The LongClick event was added.
// No properties need to be modified to upgrade to version 3.
srcCompVersion = 3;

}

if (srcCompVersion < 4) {
// The Shape property was added.
// No properties need to be modified to upgrade to version 4.
srcCompVersion = 4;

}

return srcCompVersion;

private static int upgradeContactPickerProperties (Map<String, JSONValue>

componentProperties, int srcCompVersion) {

if (srcCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentProperties, "Alignment", "TextAlignment"):;
// Properties related to this component have now been upgraded to version 2.
srcCompVersion = 2;

}

if (srcCompVersion < 3) {
// The Open method was added. No changes are needed.
srcCompVersion = 3;

}

if (srcCompVersion < 4) {
// The Shape property was added.
// No properties need to be modified to upgrade to version 4.
srcCompVersion = 4;

}

return srcCompVersion;

http://javadoc.app-inventor-releases.googlecode.com/hg/com/google/appinventor/client/youngandroid/YoungAndroidFormUpgrader.html

private static int upgradeImagePickerProperties (Map<String, JSONValue>

componentProperties, int srcCompVersion) {

if (srcCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentProperties, "Alignment", "TextAlignment");
// Properties related to this component have now been upgraded to version 2.
srcCompVersion = 2;

}

if (srcCompVersion < 3) {
// The Open method was added. No changes are needed.
srcCompVersion = 3;

}

if (srcCompVersion < 4) {
// The Shape property was added.
// No properties need to be modified to upgrade to version 4.
srcCompVersion = 4;

}

return srcCompVersion;

private static int upgradelistPickerProperties (Map<String, JSONValue>

componentProperties, int srcCompVersion) {

if (srcCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentProperties, "Alignment", "TextAlignment");
// Properties related to this component have now been upgraded to version 2.
srcCompVersion = 2;

}

if (srcCompVersion < 3) {
// The SelectionIndex property was added. No changes are needed.
srcCompVersion = 3;

}

if (srcCompVersion < 4) {
// The Open method was added. No changes are needed.
srcCompVersion = 4;

}

if (srcCompVersion < 5) {
// The Shape property was added.
// No properties need to be modified to upgrade to version 5.
srcCompVersion = 5;

}

return srcCompVersion;

private static int upgradePhoneNumberPickerProperties (Map<String, JSONValue>
componentProperties, int srcCompVersion) {
if (srcCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.

handlePropertyRename (componentProperties, "Alignment", "TextAlignment");
// Properties related to this component have now been upgraded to version 2.
srcCompVersion = 2;

}

if (srcCompVersion < 3) {
// The Open method was added. ©No changes are needed.
srcCompVersion = 3;

}

if (srcCompVersion < 4) {
// The Shape property was added.
// No properties need to be modified to upgrade to version 4.
srcCompVersion = 4;

}

return srcCompVersion;

Figure 17: Addition to YoungAndroidFormUpgrader Class

4.3 BlockSaveFile

The BlockSaveFile class (in openblocks.yacodeblocks) must also be updated. If any
component version numbers were increased then add code to upgradeComponentBlocks().

Add the following gray code to upgradeComponentBlocks() for the Button Shape example.

private int upgradeButtonBlocks (int blkCompVersion, String componentName) {

if (blkCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentName, "Alignment", "TextAlignment");
// Blocks related to this component have now been upgraded to version 2.
blkCompVersion = 2;

}

if (blkCompVersion < 3) {
// The LongClick event was added.
// No blocks need to be modified to upgrade to version 3.
blkCompVersion = 3;

}

if (blkCompVersion < 4) {
// The Shape property was added.
// No blocks need to be modified to upgrade to version 4.
blkCompVersion = 4;

}

return blkCompVersion;

private int upgradeContactPickerBlocks (int blkCompVersion, String componentName) {
if (blkCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentName, "Alignment", "TextAlignment");

http://javadoc.app-inventor-releases.googlecode.com/hg/openblocks/yacodeblocks/BlockSaveFile.html

// Blocks related to this component have now been upgraded to version 2.
blkCompVersion = 2;

}

if (blkCompVersion < 3) {
// The Open method was added, which does not require changes.
blkCompVersion = 3;

}

if (blkCompVersion < 4) {
// The Shape property was added.
// No blocks need to be modified to upgrade to version 4.
blkCompVersion = 4;

}

return blkCompVersion;

private int upgradeImagePickerBlocks (int blkCompVersion, String componentName) {

if (blkCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentName, "Alignment", "TextAlignment");
// Blocks related to this component have now been upgraded to version 2.
blkCompVersion = 2;

}

if (blkCompVersion < 3) {
// The Open method was added, which does not require changes.
blkCompVersion = 3;

}

if (blkCompVersion < 4) {
// The Shape property was added.
// No blocks need to be modified to upgrade to version 4.
blkCompVersion = 4;

}

return blkCompVersion;

private int upgradelistPickerBlocks (int blkCompVersion, String componentName) {

if (blkCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentName, "Alignment", "TextAlignment");
// Blocks related to this component have now been upgraded to version 2.
blkCompVersion = 2;

}

if (blkCompVersion < 3) {
// The SelectionIndex property was added, which does not require changes.
blkCompVersion = 3;

}

if (blkCompVersion < 4) {
// The Open method was added, which does not require changes.
blkCompVersion = 4;

}
if (blkCompVersion < 5) ({

// The Shape property was added.
// No blocks need to be modified to upgrade to version 5.
blkCompVersion = 5;

}

return blkCompVersion;

private int upgradePhoneNumberPickerBlocks (int blkCompVersion, String componentName) {

if (blkCompVersion < 2) {
// The Alignment property was renamed to TextAlignment.
handlePropertyRename (componentName, "Alignment", "TextAlignment");
// Blocks related to this component have now been upgraded to version 2.
blkCompVersion = 2;

}

if (blkCompVersion < 3) {
// The Open method was added, which does not require changes.
blkCompVersion = 3;

}

if (blkCompVersion < 4) {
// The Shape property was added.
// No blocks need to be modified to upgrade to version 4.
blkCompVersion = 4;

}

return blkCompVersion;

Figure 18: Addition to BlockSaveFile Class

5. Deprecating methods and events and properties

Sometimes, in ongoing development, it's necessary to deprecate an existing event, method or
property. This removes the element from the blocks palette and drawer. If an existing project
that contains the block is read in, the block will be outlined in red and made inactive, indicating
that the user should remove it.

To deprecate a block add the @Deprecated annotation to the component java file. In addition,
if this is a designer property, comment out the @Designerproperty annotation. For example,
here’s how we deprecated the Camera.useFront property (both the getter and the setter):

/‘k*

* Returns true if the front-facing camera is to be used (when available)

*

* @return {@code true} indicates front-facing to be used, {@code false} by default

*/

@Deprecated

@SimpleProperty (category = PropertyCategory.BEHAVIOR)

public boolean UseFront () {

return useFront;

* Specifies whether the front-facing camera should be used (when available)

* @param front
* {@code true} for front-facing camera, {Q@code false} for default
*/
@Deprecated
// Hide the deprecated property from the Designer
// @DesignerProperty(editorType = PropertyTypeConstants.PROPERTY TYPE BOOLEAN,
defaultValue = "False")
@SimpleProperty(description = "Specifies whether the front-facing camera should be
used (when available). "
+ "If the device does not have a front-facing camera, this option will be
ignored "
+ "and the camera will open normally.")
public void UseFront (boolean front) {
useFront = front;

Also update versioning.js to record that the deprecation was done -- although “no upgrade was
necessary”. Here’s how that was done in for Camera.useFront for version 3 of the Camera
component.

"Camera": {

/I Al2: The UseFront property was removed
3: "noUpgrade"

}, // End Camera upgraders

6. Internationalization

Names of methods and events and properties need to internationalized so that they can appear

in several languages.

The localized strings for the different languages are in the
/appengine/src/com/google/appinventor/client. OdeMessages<language>.properties files. The
system is designed so that if there is no translation, then English will be used. So you don’t

need to supply translations when you implement the properties; these can be added later.

If you edit the description of a component (but not yet a
property,method or event of that component) you must also find and
update the description in OdeMessages.java

	1. Adding a Property to the Properties Panel
	1.1 PropertyEditors
	1.2 Creating a New PropertyEditor
	1.2.1 Creating the new PropertyEditor class
	1.2.2 Adding the New PropertyEditor to the Properties Panel

	1.3. Associate the Property with the Component

	2. Changing the Designer View When a Property Changes
	2.1 Change Component’s Attributes
	2.2 Update the onPropertyChange Method
	2.3 Update Any Other Necessary Methods

	3. Changing the Android Representation of the Component
	3.1. Button Shape Example

	4. Update Version Numbers
	4.1 YaVersion
	4.2 YoungAndroidFormUpgrader
	4.3 BlockSaveFile​

	5. Deprecating methods and events and properties
	6. Internationalization

