
On Design Systems
Theory, analysis and practice

1

Introduction
In recent years large scale, multiplatform, highly interactive applications changed the design and
development landscape. Design systems are part of this technological and cultural1 paradigm
shift and they are here to stay in the foreseeable future.

While new design systems and component libraries pop up every week this discipline is still
young enough to lack comprehensive literature. Practice is ahead of theory in this particular
field.

At the moment of writing this guide Amazon lists four books on design systems. None of them
aims for a big picture built on software development theory and on thorough competitive
analysis.

To fill this gap, On Design Systems presents a theoretical foundation based on existing software
design patterns, programming paradigms and principles. It analyses current implementations to
reveal common knowledge then puts theory and analysis in practice by implementing an
example design system.

The findings should empower non-technical audiences with a framework to rely on when
managing the creation of design systems.

For tech leads and project managers it offers more: a complete theory, an analytical framework
for further exploration, and a working example with source code open for betternment and
customisation.

About the author
Csongor Bartus has a degree in Computer Science. By interest, he is a self-taught designer
having works featured in online galleries2. He created his first design system in 2015. Since then
he works at the intersection of design and code.

Version
v1.0.0 - January 2021

Copyright
© 2021 Bartus Csongor. All rights reserved.

2 Metamn
1 Design systems are a cultural challenge — Beat

2

http://metamn.io
http://metamn.io/beat/design-systems-are-a-cultural-challenge/

Introduction 2
About the author 2
Version 2
Copyright 2

History and context 5
Prior art 5
The component model 5
Design systems vs. component libraries 6
A big picture 6

Theory 8
Minimal API Surface Area 8
Functional Composition 9
Tokens 10

Single Source of Truth 10
Theme Specification 10
Type System 11

Components 11
The Base / Variant Pattern 12
Single-responsibility Principle 13
Rule of Three 13

Props 14
The Open / Closed Principle 14
The Deno Style Guide 15

A big picture 16

Analysis 17
Workflow 17

Purpose and audience 17
Features 18

Deliverables 19
Code 19
Documentation 20
Design guidelines 21
Live playground 21
Example applications 22
Tests 22
Packaging 22

A big picture 24

Practice 25

3

Edo—An example design system for marketing websites 25

Glossary 26

Resources 28

Feedback 28

4

History and context
Design systems have been around since 2013-2014.

Everything started with Lonely Planet's Rizzo in 2013 then followed by Google's Material Design
in 2014 when the concept hit the mainstream.

2020 was the year when design systems popped up every week. Adele3 UXPin lists over a
hundred systems and libraries—yet the list is incomplete.

Prior art
Before design systems and component libraries, templates and CSS frameworks were the
standard ways creating web sites and applications.

This prior art lets developers prepare styles and animations and assign them to HTML elements
via a primitive mechanism: using class names, ids or data attributes.

Coupling structure (HTML), presentation (CSS) and behaviour (Javascript) with such a fragile
construct never scaled4 well. Deliverables become large affecting page performance.

Aside performance problems, template-based UI frameworks—of of Rails, Wordpress, Laravel
fame—and CSS frameworks—utility / atomic / functional CSS libraries like Tailwind, Bootstrap,
Bulma, Tachyons and dozens more—led to unmanageable5 source code in the long run.

A characteristic of this prior methodology is to let developers add an arbitrary number of styles
to any HTML element. When styling is such a way open-ended consistency and design
uniformity is lost, or hard to maintain over time. As the number of styles added to class names
increases the maintainability of the source code decreases.

The component model
Google and Facebook, by their scale, seized first the need for a paradigm shift. Their response
was Polymer, Angular, Material Design, and React—respectively.

Component-based UI frameworks represented by React, Vue, Svelte merge HTML, CSS and
Javascript into standalone units—components—and find ways to scale them up.

This novel separation of concerns shifts focus from individual building blocks—structure,
presentation, behaviour—to a single component encapsulating them all. Scaling now has a
single focus versus three.

5 jxnblk.com Two Steps Forward, One Step Back
4 The problems of CSS at scale
3 Adele – Design Systems and Pattern Libraries Repository

5

https://jxnblk.com/blog/two-steps-forward/
https://ecss.io/chapter2.html
https://adele.uxpin.com/

To assure the source code is maintainable on long term the new methodology promotes a
constraints-based approach when styling HTML elements. It limits the possibilities for adding
new styles to a well defined level, the token layer.

Design systems vs. component libraries
Design systems and component libraries represent the component model. While similar in most
aspects they differ in developer experience.

The distinction is well articulated by Mark Dalgleish, creator of the Braid design system.

The difference between a component library and a design system is
whether or not your components have ‘className’ and ‘style’ props —
Mark Dalgleish6

Or, to use the terms coined by Brent Jackson7, a pioneer in the field, design systems embrace
the constraints-based approach while component libraries are open-ended.

Design systems are strict. They form a complete, closed system. They don't allow on-the-fly
customisation. They are more expensive to create, and easier to use later.

Component libraries are loose. They offer the basics and let customisation happen at any point,
any time.

A big picture
The prior art and the new paradigm both fit on a simple map. After all, they represent solutions
for the same problem—performance and scalability—from different angles.

Time hasn't yet decided which approach works better. The latter, in contrast, has enterprise
support unseen before on this scene.

7 Jxnblk
6 Mark Dalgleish

6

https://jxnblk.com/
https://twitter.com/markdalgleish/status/1308330959973027846?s=20

7

Theory
It's good to build long-lasting software on theory. It drives design decisions and makes the result
scalable and interoperable.

Design systems are long-lasting software and young enough to have no theoretical model
defined yet. A single attempt8 exists to standardize tokens and there is a consensus, a common
practice on workflow and deliverables. Nothing more.

To create a complete theory, existing software design patterns and the pioneering groundwork
done in the field is to rely on.

The current work of Tae Kim, Maja Wichrowska9, Mark Dalgleish and Brent Jackson define a
theoretical foundation for design systems. They identify the building blocks—tokens,
components and props—and pinpoint where standardization is missing: in naming, structuring
(scope and hierarchy) and composing.

To render existing software design patterns useful, design systems first have to find their place
on the software development map. When defined as software with a public interface (API) they
do become part of this family.

APIs are well known artifacts where standard practice—design patterns, programming
paradigms and principles—apply.

Tokens, components and their attributes—props—together are enough to define an API for a
design system. Leaving theory making to apply general API theory to this new context.

Minimal API Surface Area
The API Design Patterns10 book defines the main characteristics of an API as operational,
expressive, simple and predictable.

Facebook, the creator of React gives hints on how to achieve them when building APIs.

React is moving towards a minimal API surface area. Instead of providing
many framework features, React is trying to utilize patterns, paradigms and
JavaScript language features to accomplish the same tasks that other
frameworks have dedicated APIs for — Sebastian Markbage: Minimal API
Surface Area | JSConf EU 201411

11 Sebastian Markbage: Minimal API Surface Area | JSConf EU 2014
10 Manning | API Design Patterns
9 Building (and Re-Building) the Airbnb Design System Maja Wichrowska
8 System UI

8

https://www.youtube.com/watch?v=4anAwXYqLG8
https://www.manning.com/books/api-design-patterns
https://www.slideshare.net/MajaWichrowska/building-and-rebuilding-the-airbnb-design-system
https://system-ui.com/

The strategy to reach simplicity and predictability is to rely on existing work instead of adding
new abstractions. No abstraction is better than wrong abstraction.

History shows this approach is right. The attempt to organize web-specific code around abstract
concepts following a set of rigid rules failed spectacularly. OOCSS, SMACSS, Atomic CSS and
co, once a silver bullet, are all gone now12.

Forcing external concepts—from biology, promoted by Atomic CSS—on web development
doesn't scale. In web development the abstraction is already present and it's natural.

Typography, colors, navigation, layout, form, card, hero are common, well understood concepts.
They don't require further abstraction. UI Guideline's component standardization attempt13 lead
to the same results as the simple, common sense, natural naming conventions put together by
CSS Layout14.

Summing up, naming and structuring in design systems should follow the Minimal API Surface
Area principle promoting re-use of existing practices and avoiding further abstractions.

Functional Composition
Composition again should follow a pattern. When the pattern comes from the same theoretical
line as naming and structuring a consistent theory forms.

According to Facebook and React15, composing a system from smaller parts is best possible
when the underlying components behave predictably. They provide clear and stable
interfaces—input parameters and return values.

This approach is specific to functional programming, a paradigm replacing imperative
programming as the component model replaces templates and CSS frameworks.

Both paradigms solve the same problem—to build modular, interactive applications—in different
ways. The imperative way implements modularity through tight-coupling and interaction
synchronously. The functional way implements modularity with loose-coupling and interaction
asynchronously.

Applying functional composition to design systems completes the theoretical framework. The
result is consistent and backed by a large company and today's most popular component-based
UI framework.

15 The reactive, functional nature of React
14 CSS Layout
13 UI Guideline - Component Standardization
12 Google Trends on CSS methodologies

9

http://metamn.io/react/the-reactive-fuctional-nature-of-react/
https://csslayout.io/
https://www.uiguideline.com/components
https://trends.google.com/trends/explore/TIMESERIES/1612177200?hl=en-US&tz=-120&date=all&q=%2Fm%2F01028j2g,%2Fg%2F11hz29l4pg,Atomic+CSS,SMACSS&sni=3

While a general theoretical framework exists, a good practice is to apply the theory on every
specific building block. Beside validating the theory—new, block-level design patterns might
emerge.

Tokens
What we know about tokens is that they represent the layer where all settings of a
component-based UI framework go. And there is a standardization attempt for making them
interoperable.

Tokens are the first approach collecting settings into a common place. Prior art spread them
across the parts of the system requiring a single modification to involve multiple places and files.
This took a cognitive toll on developer attention and led to reduced experience.

Single Source of Truth
In information systems design and theory, single source of truth (SSOT) is
the practice of structuring information models and associated data schema
such that every data element is mastered (or edited) in only one place —
Wikipedia16

By definition tokens follow this pattern. They structure settings into a separate layer. Change
takes place in this single location and spreads automatically across the other parts of the
system.

In design systems this layer is well-guarded, accessible through constraints. Component
libraries, in contrast, allow a more liberal usage of tokens following the open-ended principle.

Theme Specification
Theme Specification17, an open source organization and initiative, is the attempt to standardize
tokens to enable interoperable UI components.

Github, Artsy, Gatsby and others embrace this theory and build their design systems upon.

The specification is not yet complete—it lacks full documentation. It doesn't fully follow existing
API naming and structuring conventions—The Minimal API Surface Area principle. And it's
highly opinionated. Its purpose is tied to a specific company's specific needs.

For naming and structuring Theme Specification can serve as inspiration not as a recipe to
follow.

17 Theme Spec – Theme UI
16 Single source of truth

10

https://theme-ui.com/theme-spec/
https://en.wikipedia.org/wiki/Single_source_of_truth

Further, it turns out the specification doesn't fully support arbitrary responsive styles. Fonts are
responsive, headings sizes are not. This is due to the recursive composition pattern they use to
compose tokens.

Functional composition turns out to be a better choice. By nature it is open to changes and
variations while recursion requires updates to the algorithm when edge cases occur.

Type System
What Theme Specification lacks most is a type system.

The main purpose of a type system is to reduce possibilities for bugs in
computer programs by defining interfaces between different parts of a
computer program, and then checking that the parts have been connected
in a consistent way — Wikipedia18

The root of the problem is their language of choice, Javascript, a dynamically typed language
without type system support. This leads to bugs—otherwise discoverable during development
time with a statically typed language—to slip into production.

If Typescript, a similar language to Javascript with type system support, were the language of
choice, Theme Specification could be enhanced—the naming and composition bugs fixed—to
serve as a standard for tokens.

Components
Components, the basic artifacts of the component model, merge structure (HTML), presentation
(CSS) and behaviour (Javascript) into a standalone unit. This novel separation of concerns
reduces the scalability issues to a single item, raising the possibility of a better performance.

In design systems components define the layer above tokens. It contains visual and functional
elements like navigation, buttons, forms, articles, carousels and more.

While the number of tokens is finite, the number of components is ever expanding. A design
system may contain hundreds of components and their variations. This leads to difficulties in
naming, structuring and composing them.

On large scale locating, finding components in the source code, extending them takes a toll on
developer attention. To reduce cognitive load, lift developer experience, and make or break an
API—good naming conventions are to rely on.

18 Type system

11

https://en.wikipedia.org/wiki/Type_system

The Base / Variant Pattern
Naming high level components—header, button, menu, list—is easy. Consensus is always
possible.

Over time high level components tend to decompose into smaller parts and different states.

A header decomposes into logo, title, subtitle and description. A button might be simple or filled
and should reflect states like green—primary, blue—secondary or grey—disabled. A button can
or cannot have an icon associated.

Button Default Disabled Primary Secondary

Simple
Button Disabled Primary Secondary

Filled
Filled Disabled Primary Secondary

As link Link Disabled Primary Secondary

With icon
🖤 Button 🤍 Disabled 💓 Primary 💙 Secondary

Just icon 🖤 🤍 💓 💙

In this context difficulties arise and an easy-to-use naming convention is necessary.

Finding such a naming convention took four years for AirBnb19. Their solution is the Base /
Variant pattern (B/V)20 which resembles a similar methodology used in CSS frameworks called
Block-Element-Modifier (BEM)21. The common root of these patterns is the Template method
pattern22, one of the classic design patterns in software development.

22 Template method pattern
21 CSS / BEM / Methodology
20 Design Systems: React Buttons with the Base + Variant Pattern
19 Building (and Re-Building) the Airbnb Design System Maja Wichrowska

12

https://en.wikipedia.org/wiki/Template_method_pattern
https://en.bem.info/methodology/css/
https://blog.bitsrc.io/design-systems-react-buttons-with-the-base-variant-pattern-c56a3b394aaf
https://www.slideshare.net/MajaWichrowska/building-and-rebuilding-the-airbnb-design-system

The AirBnb example underlines the necessity of a complete design systems theory.

Single-responsibility Principle
Applying the Base / Variant pattern for buttons yields the following structure:

Base (in B/V)

- Block (in BEM)

Button

Variants (in B/V)

- Modifiers (in BEM)

ButtonFilled

ButtonPrimary

ButtonSecondary

ButtonDisabled

- Elements (in BEM)

/Icon

/Text

The pattern advocates a small base and simple rules for expansion. Defines a scalable naming
convention encouraging splitting components into small parts.

In a system where decomposition results in independent, self-contained components each with
a unique responsibility the Single-responsibility Principle23 kicks in.

Part of SOLID24—a set of well-known design principles—the Single-responsibility Principle is a
necessary and sufficient condition for good code.

It makes sure code is extensible, maintainable, scalable and composable while offering an
enjoyable developer experience.

When code segments are unique, self-contained modifications and extensions happen in a
singular well defined place—nowhere else—reducing developer cognitive load and speeding up
application development time.

Independent, atomic components display a modest interface. The less their inner workings, the
less arguments and props to influence these workings, the better they compose up.
Composition scaling is about simple, predictable interfaces.

24 SOLID
23 Single-responsibility principle

13

https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/Single-responsibility_principle

Rule of Three
As a downside, the Single-responsibility Principle tends to increase the number of components
which leads to increased cost of maintenance.

To the rescue, the Rule of Three25 pattern balances this act. It allows refactoring—applying the
Single-responsibility Principle—at the third strike, ignoring the first two attempts, needs to create
sub-components and folders.

After all patterns applied, the button structure becomes:

Base

- Includes Icon and Text according to the Rule of Three

Button

Variants

- Variations go into independent components according to the Rule of

Three

ButtonFilled

ButtonPrimary

ButtonSecondary

ButtonDisabled

Props
Props represent the attributes of a design system. Red for colors, Helvetica for fonts, centered
for layout.

They span tokens and components without defining another layer. Every token and component
has props and when they sum up they lead to naming, structuring and composing problems.

For naming props there is no standard design pattern. Applying the Minimal API Surface Area
principle helps by forcing prop names to match existing API (HTML, CSS, JavaScript) naming
conventions.

When CSS provides the `font-family` prop design tokens should adapt it versus coming up with
a new term like `font-name`. The same is true for Javascript, which provides an `onclick` event
handler to drive components to adopt it.

25 Rule of three (computer programming)

14

https://en.wikipedia.org/wiki/Rule_of_three_(computer_programming)

The Open / Closed Principle
Structuring props makes or breaks component and token composition. Short list of props scales
better than a long list—as seen in the open-ended versus constraints-based API approach, or at
the Single-responsibility Principle.

Fewer props represent fewer coupling points when parts compose up. When a part changes
fewer props update faster. Known as loose coupling26, this principle makes code extensible, and
extensibility leads to maintainability.

This concept of being able to extend the application without modifying
existing code is called the Open/Closed Principle. It is impossible to get to
a situation where 100% of your code will always be open for extensibility,
but closed for modification. Still, with loose coupling we get closer, and it
gets easier to add new features and requirements to our system —
Wikipedia27

The problem of structuring props doesn't stop here.

The Deno Style Guide
In this particular context—how to structure props—software development theory offers no exact
recipe on implementation. It took until recent days to surface quantitative rules for the Open /
Closed principle.

Deno, in the same way a cornerstone in web technology as Facebook's React, in its Style
Guide28 promotes the idea of functions (tokens and components) to have max two props. The
rest, if any, should go into an options object.

Reducing the number of props to max three offers a promise for composition scalability.

28 The Deno Manual
27 Open–closed principle
26 Writing Maintainable, Loosely-Coupled Code - Manning

15

https://deno.land/manual@v1.6.3/contributing/style_guide
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://freecontent.manning.com/dependency-injection-writing-maintainable-loosely-coupled-code/

A big picture
When perceived as software with a public interface, design systems become equipped with a
complete theory.

The API aspect defines the general guidelines—Minimal API Surface Area, Functional
compositions—and sticks each layer to it. Later layers, individually, can define their own design
patterns.

Naming Structuring Composing

API Minimal API Surface Area Functional
Composition

Tokens Single Source of Truth

Type System

Components Base / Variant Pattern

Single-responsibility Principle

Rule of Three

Props The Open / Closed
Principle

Deno Style Guide

16

Analysis
While theory shows how to write and organize code it tells nothing about the workflow, the
deliverables, the usability, the technology stack of a design system, and the common practices
behind.

Analysing existing systems, studying, understanding, classifying and comparing them reveals
this knowledge. Exploring the ways how others roll their own shows the limits and possibilities of
this new software medium and the surrounding ecosystem.

The analytical framework29 underpinning this guide employs over 50 aspects and criterias to
understand the big picture. It's open ended, ready to accept new, interesting libraries anytime
they pop up.

The framework includes design systems and component libraries built on React. The filter is
necessary to reduce the large number of available systems to manageable dozens. This bound
to a specific technology narrows down the findings on the tech stack but leaves the other
aspects—workflow, deliverables, usability, common practices—intact.

Workflow
The process of creating similar systems defines a workflow. A procedure with steps and
outcomes often following a standard.

Analysis shows in design systems the workflow is standard. Creating a new system always
starts with defining purpose and audience then features.

Purpose and audience
Purpose and audience define why a company builds a design system. Reasons vary but
resemble a pattern:

● Internal: To build apps for their brand.
● External: To build general purpose apps.
● Foundational: To help build other design systems and component libraries.

Majority builds internal systems—no wonder—design systems shine when used to create
uniform looking products across a portfolio.

29 Design Systems Analytical Framework

17

https://docs.google.com/spreadsheets/d/1Yn-fzRIfXcpFilQwjv62MC4yRCTQFaS2qhhtbnfohhg/edit?usp=sharing

A handful of companies create general purpose systems. More precisely they create an internal
system and share it with the public. This generosity links to the company size: Google30, IBM31,
Ant32, Adobe33 can afford to open source code worth millions:

This represents millions of dollars of investment for each company to
duplicate work that many other companies are also doing. — Adobe
Spectrum34

Foundational systems represent a new business model. Modulz35 helps teams create design
systems without writing code. Institutions36 share their work for the common good.

Defining purpose and audience is free-form thinking. No rules apply here. The result is a
sentence, or two, capturing the essence of a new endeavour.

Features
Features define the main characteristics of the system: composable, accessible, beautiful,
performant, adaptive, natural.

Analysis shows the best practice is to choose measurable features instead of pursuing
subjective goals. Accessibility is verifiable, beautiful is not. The measurable aspect gives
credibility to a design system. It shows its creators’ ability to execute a plan from start to finish.

Certain systems go for a full set of features while others cherry-pick parts of it. Some systems
share a common set of features while others come up with a unique set.

Material Design goes full circle. From top-bottom connects designers and their tools with
developers of all platforms and technologies. From Figma to web and native apps everything is
in a system.

Radix from Modulz is bare bones to that level of not offering any styling.

Spectrum from Adobe offers server side rendering, virtual lists, state management and
accessibility support for anybody building design systems.

36 Bold Design System
35 Modulz
34 Why React Aria? – React Aria
33 Spectrum
32 Ant Design - The world's second most popular React UI framework
31 Carbon Design System
30 Homepage - Material Design

18

https://bold.bridge.ufsc.br/en/
https://www.modulz.app/
https://react-spectrum.adobe.com/react-aria/why.html
https://spectrum.adobe.com/
https://ant.design/
https://www.carbondesignsystem.com/
https://material.io/

Shopify Polaris37, IBM Carbon shares a common set of characteristics. Workday's Canvas38 and
University of Santa Catarina's Bold39 do share, but another set of common features.

It might happen to the purpose and audience, the features of a new system to match an existing
implementation.

A complete match renders the new system unjustifiable to build. A partial match enables code
reuse: instead of creating from scratch, certain parts of the new system should borrow
ready-made solutions from other systems.

Deliverables
A set of products define the deliverables of a system. Their quantity and quality defines user
and developer experience, and the learning curve. All aspects combined drive or reject the
adoption, the success of the system.

Unlike the workflow, analysis shows deliverables aren't uniform. Some systems deliver less,
others deliver at a better quality.

Among deliverables code and documentation is mandatory. Without code there is no design
system, without documentation nobody will understand and use it. The rest—design guidelines,
live playground, example applications, tests and packaging—are optional.

The amount and quality of deliverables depends on company size and resources. State-of-the
art comes from big brands, innovation constrained by resources is specific for small companies.

The analytical framework underpinning this research tries to cover all ends. Identifies a
minimum viable set of features with minimum viable quality requirements, then shows the
high-end of the spectrum—how an ideal design system looks like.

Comparing different systems and approaches helps to better understand the problem domain.
Scoring and classifying them is subjective and often wrong. It only serves to spot the viable
requirements and the nice-to-have extremes.

Code
Code forms the base of all deliverables—everything else builds around—making it the most
important delivery.

Code can or can not follow theory. But in all cases it should stay usable. Theory and usability
don’t necessarily overlap, but when do they reveal a perfect execution.

39 Bold Design System
38 Workday Canvas Design System
37 Shopify Polaris

19

https://bold.bridge.ufsc.br/en/
https://design.workday.com/
https://polaris.shopify.com/

When a theoretical framework built on design patterns is in place, analysing code quality
reduces to checking if the patterns apply.

The analysis shows a binary picture. Systems use either all, or the majority of design patterns,
or none of them. Half of the analysed systems belong to the first group.

The extent of how patterns interconnect to form a whole defines the developer experience, the
usability of the source code. The picture is more nuanced here. All analysed systems try to
come up with an integrated experience to moderate the binary picture..

Leaders in implementing all design patterns do not necessarily lead in integration. Bold alone
stands out in both categories. They've managed to combine design patterns in an uniform,
complete, pleasant way.

Leaders who didn't score well in integration don't deserve blame. Their purpose and goals might
not require to cover all aspects of code usability.

Documentation
The documentation site must present all building blocks of a design system—tokens and
components together with their props—with an enjoyable experience.

The list of tokens and components reveal the structuring and naming practices and whether or
not a theory is in place.

Concise and clear prop descriptions are of paramount importance. They define the bulk of the
user experience of a design system. Easy to understand props, and their combinations
showcased with live, editable examples result in faster application development. Poor props
documentation might lead devs to abandon the system.

Shopify Polaris, Material UI, IBM Carbon stand out in presenting props. The other
end—Canvas—is discouraging, even when it shines in other aspects like code quality and
usability.

Integrated experience—when there are no separate apps to drive parts of the
documentation—reduces cognitive load. When a feature takes the visitor to a visually different
new site it takes a toll on developer attention.

IBM's Carbon offers the live playground via third party services lowering the user experience.
The rest of the analysed systems offer their services integrated.

Search, another documentation feature, is necessary on systems showcasing a large number of
tokens and components. Easy finds enhance user experience, no search breaks it. More than
half of the systems offer this capability.

20

Generated documentation is an important but undervalued aspect where the majority of
analysed systems fail.

Hand-written documentation might not represent the complete truth. It might go outdated,
irrelevant, or missing. This approach requires manual replication of code changes in
documentation. The process involves people, tools, time and might run out of sync.

When documentation is generated from code it always represents the code—sticks to the single
source of truth. As code changes the documentation changes automatically. A practice a few of
the analysed systems embrace in spite technology exists for automation.

Design guidelines
Design guidelines40 capture design decisions during development. No matter the team and the
project—there are always decisions to make.

A well-documented collection of such decisions is priceless when developers meet a new
system. Later it can serve as a reference point.

Clear directions encapsulated in design guidelines reduce the learning curve—the time to
understand the motivations of the creators and to grasp the big picture and reduce application
development time.

Every analysed system implements design guidelines, the majority with success.

Live playground
As seen at props—live, editable examples are great help.

Live playgrounds go further. They offer a build-on-the-fly feature without requiring developers to
leave the documentation site. Devs can test the capabilities of the system outside of an
integrated development environment.

This aspect is important. First it makes sure the design system works as advertised. Bugs might
appear in the development environment then disappear in the live playground. This gives
precious hints for developers where to look for the fix. And confidence the original system
works.

Second, when done well, live playgrounds can replace programming environments and enable
non-developers to build apps without coding knowledge.

40 Human interface guidelines

21

https://en.wikipedia.org/wiki/Human_interface_guidelines

Around half of the examined systems provide a live playground. Braid goes far with its Playroom
by “empowering designers and developers to iterate together in the same medium using the
same components, reducing the need for high fidelity mockups before development starts.”

We want to allow you to spend less time polishing mockups and more time
polishing the product — Playroom41

Example applications
After tweakable props and live playground the next step to showcase the features of a design
system is best possible via example applications.

Example applications cover complete use cases thus offering the big picture. They often reveal
subtle information impossible to find in the docs. And they show the way—this is how apps built
with this design system will look like; this is how theory looks in practice.

Around two thirds of the analysed systems come with at least one example app. The majority
manages to offer it at an enjoyable quality.

Tests
While non-mandatory deliverables, test suites assure code quality, scalability and performance.
They guarantee the source code works and is extendable in the future.

Testing is hard. Tells all about the team and the company behind—if they are in for the long run;
if their product is worth building on.

Analysis shows—again, like in theory—a binary picture. Either all tests—unit, integration—are in
place or none of them. Young systems come without tests, stable implementations come with a
complete suite.

The quality and coverage of these tests is questionable. No analysed system stands out and
worth following.

Testing works when theory works. The example application accompanying this guide manages
a 100% code coverage. This is possible by design—complete theory, best-in-class
technology—and the relative low number of building blocks.

Packaging
Packaging makes the elements of a design system reusable. The source code splits into
standalone modules and goes published into public repositories from where other projects and
apps import and reuse them according to their needs.

41 Braid Design System with Playroom

22

https://seek-oss.github.io/braid-design-system/

Packaging and publishing to the NPM repository42 is mandatory. Analysis shows all systems
provide this feature.

Systems designed for individual use should skip this step. Packaging is still a technical
challenge in component-based UI frameworks. They also enforce a rigid folder structure
reducing developer experience.

Monorepos43 are a complementary technology to packaging. They support building applications
with modular architecture—such as design systems and component libraries.

Less than half of the analysed systems use this feature. The reasons are the
familiar—monorepos represent a technical challenge and often reduce developer experience.

43 Monorepo
42 npm (software)

23

https://en.wikipedia.org/wiki/Monorepo
https://en.wikipedia.org/wiki/Npm_(software)

A big picture
Great exercise; no standalone best implementation; big brands lead; small shops innovate.

Common practices

Workflow

Purpose and audience A single sentence or paragraph

Features A list of measurable characteristics

Deliverables

Code Theory

Developer experience

Documentation Tokens, components and props

Searchable

User experience

Design guidelines Reduces learning curve

Live playground Integrated

Example apps Worth more than thousands of words

Tests Both unit and integration tests

High coverage is possible

Packaging Publish to NPM

Monorepo

24

Practice

Edo—An example design system for marketing websites

25

Glossary
A list of terms and definitions specific to this domain. Both non-technical audience and tech
leads, project managers might find it useful.

API

The programmable interface a design system is publishing for developers.

Component

See Component-based UI framework.

Component library

A component-based UI framework using an open-ended API.

Component-based UI framework

A web development methodology treating structure (HTML), presentation (CSS) and behaviour
(Javascript) as a single concern.

Constraints-based API

Restricts the possibility to attach arbitrary numbers of styles to a HTML element.

CSS framework

A library allowing for easier, more standards-compliant web design using the Cascading Style
Sheets language.

Design system

A template-based UI framework using a constraints-based API.

Developer experience

The experience developers perceive when extending a design system.

Interoperable

A part of a system is reusable across other implementations.

Open-ended API

26

Allows attaching arbitrary numbers of styles to a HTML element.

Principle
See Software design pattern.

Programming paradigm

A way to classify programming languages based on their features.

Scaling

Either refers to source code and site performance, or source code maintainability.

Software design pattern

A general, reusable solution to a commonly occurring problem within a given context in software
design.

Software development theory

A collection of programming paradigms, software design patterns and principles.

Template

See Template-based UI framework.

Template-based UI framework

A web development methodology separating structure (HTML), presentation (CSS) and
behaviour (Javascript) as different concerns.

Theory
See Software development theory.

User experience

The experience developers perceive when using a design system.

27

Resources
A selection of important resources this guide builds upon.

● Adele – Design Systems and Pattern Libraries Repository
● The problems of CSS at scale
● jxnblk.com Two Steps Forward, One Step Back
● Building (and Re-Building) the Airbnb Design System Maja Wichrowska
● Sebastian Markbage: Minimal API Surface Area | JSConf EU 2014
● The reactive, functional nature of React
● Design Systems: React Buttons with the Base + Variant Pattern
● Writing Maintainable, Loosely-Coupled Code - Manning
● The Deno Manual
● Design Systems Analytical Framework
● Why React Aria? – React Aria

Feedback
hi@osequi.com

28

https://adele.uxpin.com/
https://ecss.io/chapter2.html
https://jxnblk.com/blog/two-steps-forward/
https://www.slideshare.net/MajaWichrowska/building-and-rebuilding-the-airbnb-design-system
https://www.youtube.com/watch?v=4anAwXYqLG8
http://metamn.io/react/the-reactive-fuctional-nature-of-react/
https://blog.bitsrc.io/design-systems-react-buttons-with-the-base-variant-pattern-c56a3b394aaf
https://freecontent.manning.com/dependency-injection-writing-maintainable-loosely-coupled-code/
https://deno.land/manual@v1.6.3/contributing/style_guide
https://docs.google.com/spreadsheets/d/1Yn-fzRIfXcpFilQwjv62MC4yRCTQFaS2qhhtbnfohhg/edit?usp=sharing
https://react-spectrum.adobe.com/react-aria/why.html
mailto:hi@osequi.com

