Filecoin component architecture

@anorth
October 2019
Status: Proposal, seeking feedback

Background

Goals
Design ideas
Modules and processes
Storage mining module
Storage & retrieval market modules
Data transfer module
Storage component & client
Open questions
Background

The go-filecoin application is built as a monolithic binary, encapsulating core blockchain
capabilities along with storage mining and market application functionality. It includes the Rust
sectorbuilder module as a static-linked library, called via FFI. The sectorbuilder controls the
sector layout, packing, and proof scheduling routines.

The new (Oct. 2019) specification identifies some clear component boundaries, separating the
core blockchain consensus functionality from the storage mining, storage market and piece data
transfer subsystems. While not strict requirements for a compliant Filecoin implementation, at a
high level these component boundaries provide sound architectural guidance, and a common
language for talking about Filecoin implementation internals.

We expect large-scale miner operators to customize their storage architecture to achieve
economies of scale. This requires configuration or customisation of the storage mining and
market software, but not so much the blockchain node software. Such customisation is currently
difficult, due to the monolithic and poorly-componentized internal architecture of Go-filecoin.

Some parts of a Filecoin node are more critical to the security of the network than others. These
tend to be the core blockchain components rather than the miner-customized components. We
intend and expect there to be multiple Filecoin implementation, and are aware of some in early
stages of development. The network security benefits of implementation diversity derive from
the core blockchain components more than of the storage mining components. Indeed, a fully
validating node needs no storage mining capability at all.


https://filecoin-project.github.io/specs/

Goals

Separating an implementation into a blockchain component and one or more mining and market
components presents an opportunity to encourage implementation diversity while re-using
non-security-critical components, and also greatly ease miner-operator customisations, even
while blockchain node implementation is ongoing.

Goals of this effort include:

e Enhance network security by supporting the development of multiple blockchain node
implementations, while re-using application-level storage mining, market, and data
transfer functionality.

e Support significant operator customization by decoupling the components embodying
most miner-operator architecture and policy decisions from the core blockchain
implementation.

e Support numerous combinations of node and module implementations to be
combined into a full system by defining clear boundaries and APls between modules.

e Segregation of core blockchain network endpoints from storage-client deal, upload and
retrieval endpoints.

e Flexibility for implementations to link shared modules directly into a monolith, or
compose a system of interacting processes.

e Provide an out-of-the-box monolithic go-filecoin build for simple small-scale operations.

Non-goals
e Direct support for highly scalable and configurable systems.
e Shared modules written in any language other than Go.
e Re-writing the Rust sectorbuilder in Go.
e Transparent invocation of RPC vs linked modules (though this would be nice)

Design ideas

Modules and processes

A module means a code library that may be compiled and linked against. A component means
a distinct process presenting or consuming RPC API.

Informed by the spec, we identify the following modules, which may be linked into node binary
or other component:

e Storage mining (sector sealing, commitments, storage, and proofs)

e Storage market (storage deal exchange, retrieval negotiation)

e Data transfer (ingestion, retrieval)



These modules may be extracted into one or more shared repositories. In order to be usable by
multiple implementations, these modules may not depend on go-filecoin (or any other node
implementation). The types used by these modules must live with the module, and be depended
on in turn by node implementations; it may be necessary for some common structures to be
duplicated. Modules should be suitable for directly linking in to a Go application. Module APls
must also be suitable for bridging via RPC (no shared client/server resources). Modules may
contain state, run threads, and require filesystem access.

The Filecoin specification breaks some of these modules down even further. Reflecting this
internal architecture is left to the discretion of implementers.

These modules may then be combined into one or more components, interacting via RPC. For
operational simplicity, this document proposes a single component containing the storage
mining, storage market, and data transfer modules, but a system could further break these
components down into smaller ones. A filecoin node implementation may then interact with
these modules via the component RPC, rather than direct linking. This permits the component
to run on distinct hardware, for multiple components to interact with a single node binary, and
similar architectural options.

Storage Retrieval D
ata

Market Market

Provider Provider

File
Transfer & FileStore

Storage Minin
9 9 Storage Sector Storage

A Miner Index Provin
\ g

rust-sector-builder rust-fil-proofs

Blockchain ) - Storage
State Tree Virtual Message Blockchain Power

’ Machine Pool Components
Consensus

An engineering team may combine these modules into components in other configurations. For
example, go-filecoin will probably link all the modules directly into the node binary in order to
provide an “it just works” experience. Another componentization may separate the
network-exposed components (storage/retrieval market, data transfer) from the storage mining
component.



The filecoin implementation teams intend to create only the simplest reasonable
implementation of the shared modules. Where multiple policy choices are available, only a
single simple one will be implemented. We expect sophisticated miner operators to fork or
re-implement these modules to support more scalable, distributed architectures. By providing
clear and stable APIs between these components, we expect that such customized modules
may be integrated into a complete system without much friction.

Storage mining module

The storage mining module (spec) encapsulates everything about sealing and proving storage
sectors. It allocates pieces to sectors, seals them, and maintains the physical storage of sectors
on disk and associated metadata. The module also schedules PoSt computation, in response to
information provided to it about the blockchain state.

A storage mining module instance corresponds to a single StorageMinerActor. The storage
mining module owns the miner actor’s worker’s private key. This means it also encapsulates a
few small of logic associated with that key: drawing an election ticket, and signing messages
and blocks with that key. While logically distinct from the work of proving sector storage, these
worker key operations are packaged in this module reflecting the 1:1 relationship with on-chain
actors. With this architecture, a single blockchain node may service multiple storage mining
modules each servicing different miner actors.

The storage mining module will encapsulate the sectorbuilder, which need no longer be linked
into the node implementation (nodes will still link rust-fil-proofs for verification calls).

Design doc: Storage mining module

Storage & retrieval market modules

The storage and retrieval market modules encapsulate order and deal exchange for storage and
retrieval deals. In collaboration with the data transfer module, they arrange for piece data to be
obtained from storage clients and provided to the storage miner (via a filesystem abstraction),
and subsequently made available for retrieval.

Design doc: Storage and retrieval market module

Data transfer module

The data transfer module encapsulates exchange protocols for the exchange of piece data
between storage clients and miners, both when consummating a storage deal and when
retrieving the piece later.

Design doc: Eilecoin data transfer module


https://filecoin-project.github.io/specs/#systems__filecoin_mining
https://docs.google.com/document/d/13eGLs2byCx_MfwnyCok7xSkwhOIqCB-zefLliGTyzow/edit#heading=h.xr9zm6bxt6nr
https://docs.google.com/document/d/1FfMUpW8vanR9FrXsybxBBbba7DzeyuCIN2uAXgE7J8U/edit
https://docs.google.com/document/d/1XWcTp2MEOVtKLpcpiFeeDvc_gTwQ0Bc6yABCTzDmeP0/edit#heading=h.1oxn84bcd1n1

Storage component

The storage component bundles the storage mining, market, and data transfer modules into a
single binary. This component wires the modules together and contains basic workflow,
configuration and policy logic for customising the behaviour of those modules. Component
separation is optional: a system may instead link all the modules into a single binary (as
go-filecoin will likely do).

In a multi-process architecture, the storage component would form the miner operator’s entry
point for all mining and market operations (but not basic node operations) pertaining to a single
storage miner actor. It depends on a node to mediate blockchain interactions. The storage
component drives these interactions. If viewed as a system of services, the storage
component is the consumer of a service provided by a node. Thus, the storage component
will depend on an RPC API be provided by a node. This APl is likely to include streaming
operations in order to provide continually changing blockchain state to the component. The
mimblewimble/grin project is another example of this multi-process node/miner architecture.

The storage component is likely to need its own CLI (or Ul) for operator interaction.
Storage client component

A storage client component bundles the storage market, retrieval market, and data transfer
components into an application for a storage client, i.e. a user/process acting as the client of a
storage deal.

Open questions

RPC system

Componentization requires a shared RPC facility for interacting components. Depending on
detailed component design, this facility will likely require uni- or bi-directional streaming
capability.

Systems may use any convenient RPC facility providing the necessary features. Module APIs
and RPC need not necessarily be coupled.

REST API
A monolithic system, linking the above modules with the node into a single binary, can present a
single REST API for all node and storage operations. Go-filecoin will probably do this.

A multi-process system must do a little more work to present a single API endpoint. Options
Include:


https://github.com/mimblewimble
https://docs.google.com/document/d/1ANnTHOU-8612ayvvS7Ru4B1L4voojLE0R0TQ8zF1x5s/edit#

e an API service acting as a reverse proxy to a node plus one or more storage
components, which routes calls to the node or mining component’s “internal” APIs;
e presenting the REST API from the mining component, routing blockchain calls through to

the blockchain node to which the mining component is connected.

Repository layout

At one extreme, we could build the shared modules and the storage component in a single
repository. This could ease dependency-wrangling and the sharing of code between
components.

We could separate any or all of the component and modules into additional repositories. This
would draw more clear boundaries and dependencies, but may add friction propagating
changes.



	Filecoin component architecture 
	Background 
	Goals 
	Design ideas 
	Modules and processes 
	Storage mining module 
	Storage & retrieval market modules 
	Data transfer module 
	Storage component 
	Storage client component 
	Open questions 


