Tab 1

— metadata —

Project Lead: Deep Patel

CNAI WG (Tag-Runtime) Representative: Adel Zaalouk

STAG Representative: Eddie Knight

Project Phase: First complete draft ready for wider review
Meeting Notes: CNAI Security Whitepaper Meeting Notes
Working Notes: CNAI Security Whitepaper Research & Resources

— /metadata —

Table of Contents

Executive Summary
Introduction
Scope
Target Audience
Assumptions
Al rity Lan nd Threat nari
Traditional Cloud Native Security Issues
Data Science and Data Management Security Issues
Al Model and MLOps Security Issues

Al Induced Threat Landscape
Consequences of Security Breaches

Exampl f Real World Al rity Inciden
CVE-2023-43654 (TorchServe - Tool for serving PyTorch models)
Child Sexual Abuse Material Taints Image Generators8
Samsung Data Leak via ChatGPT
Chevrolet Dealer Chatbot underselling the vehicle

The Journey towards CNAI Security

Platform Security
Container and Orchestration Platform Security
Identity and Access
Safekeeping of Secrets
Network Security
. ity Monitori || .

Gaps and Opportunities

Data Security

Data at Rest
Data in Transit

Data in Use
Veracity of Telemetry Data

https://docs.google.com/document/u/0/d/1uggG2_hI7FgJMbsBEuOkbFla-E4pwTufYQbtGhSlWTM/edit
https://docs.google.com/document/u/0/d/1T7w9feE0IxonD9SmcvJ9PVIgH4jHFOnzSQJgXveA4C4/edit

Model Security
Model Integrity

Model Format, Serialization, and Common Vulnerability
LLM Model Guardrail
Deployment and Operational Security
Threat Detection
Vulnerability Management in a CI/CD Pipeline
Cloud Native Application Protection Platforms
Encryption and Confidential Computing
Confidential Computing
Confidential Containers
Benefit of enabling confidential computing
Challenges
Unikernels
Homomorphic Encryption
Challenges
Al Deployments and Post-quantum Cryptography
Quantum Resistant Cryptography
PQC in a Cloud Native Al Deployment
Example of SSL and P
Al Agents
Agent Architectures
MCP Architecture
A2A Architecture
Securing Agent Communication
Security of Classified Data accessed by Agents
Containerized Agents
Constrained Access
Securing Agent Localisation and Registries
Global Registration of Agents and Agent Systems
N Tt C . | Mitigati
Threat Detection using Al
Threat Mitigation using Al
Challenges
Regulatory Compliance and Explainability
Government imposed regulations
Explainability through Observability
Security Framework and Best Practices
Future trends and challenges
Appendix
Glossary

References & Citations
Resources

Authors

Reviewers
Acknowledgments

[WHITEPAPER] WG Al- Cloud Native
Security & Al

-1 CLOUD NATIVE

L=l COMPUTING FOUNDATION

Executive Summary

Artificial Intelligence (Al) is rapidly transforming industries, and its deployment within cloud
native environments is becoming standard practice. This transformation introduces a new class
of security challenges that extend beyond traditional cloud native concerns.

This document provides a strategic overview of securing Al in modern, containerized, and
orchestrated environments. It outlines the broad landscape of risks, including threats to data,
models, and infrastructure, and Al's emerging role in defending and attacking systems. It also
examines how emerging technologies such as confidential computing and post-quantum
cryptography impact the security posture of Al applications.

Key themes include platform and infrastructure security, data protection strategies, model
integrity, and the secure deployment of intelligent agents. The document highlights security
gaps, emerging threats, and practical opportunities to strengthen defenses across the Al
lifecycle.

Organizations can better safeguard against workloads and maintain trust in Al-driven outcomes
by aligning operational practices with upcoming regulatory expectations and leveraging
Al-driven security tools.

Introduction

The increasing adoption of Artificial Intelligence (Al) in Cloud Native (CN) environments
underscores the urgent need to prioritize Al security. As Al systems become integral to
decision-making and automation, the potential impact of security breaches becomes a critical
concern. Compromised Al models can lead to incorrect predictions, manipulated outcomes, and
even the theft of sensitive intellectual property. Furthermore, ensuring regulatory compliance
and maintaining customer trust are at stake when Al systems are not adequately secured. In its
simplest form, a CNAI system is essentially an application, or an Al workload, running on a
cloud native platform. This means the numerous challenges of Cloud Native Al (CNAI)
deployments are similar to those of any application running in a CN environment. However, Al

presents security challenges related to consuming vast datasets, workloads with increased
processing requirements, and the potential for tampering with Al models.

This paper addresses these concerns by providing a comprehensive guide to securing Al in
cloud native environments. It offers practical solutions and strategies to mitigate risks and
ensure the integrity of Al-powered applications.

Scope

The focus of this paper is on the technical aspects of CNAI deployment security, such as:
e Threat vectors
e Threat mitigations
e Emerging trends in CNAI

It does not intend to discuss Al's impact on society, ethics, or business-related consequences. It
does not recommend a particular model, large Language Model (LLM), Small Language Model
(SLM), or provider. For Al safety and security issues, readers are encouraged to refer to the
Building Trust' whitepaper instead.

Target Audience

This paper can be helpful to anyone involved in activities related to a CNAI system, as security
challenges affect all parties, regardless of their role or level of exposure to an Al system.

CNAI Personas are defined in Cloud Native Al Personas?. From a CNAI Security perspective,
we can categorize these personas into fewer buckets, as security responsibilities and impacts
are common to multiple sets of actors. Note that these personas may be combined or not exist
based on company size, needs, and deployments.

1. Al Development and Integration

Al Engineers: Handle model selection, fine-tuning, and system integration.
Al Application Developers (Coders): Develop and enhance Al applications.
Al Researchers: Explore new Al techniques.

Prompt Engineers: Craft effective prompts for generative models.

MLOps Engineers: Focus on operationalization of machine learning models.

2. Data Science and Data Management
e Data Scientists: Solve business problems through data analysis.
e Data Engineers: Handle data collection, preprocessing, and storage.

3. Platform and Infrastructure
e Platform Engineers: Create and maintain internal developer platforms.
e Site Reliability Engineers: Ensure system reliability and performance.

! https://arxiv.org/pdf/2411.12275
2 https://tag-runtime.cncf.io/wgs/cnaiwg/glossary/#personas-in-the-cloud native-ai-landscape

e Hardware Architects: Design hardware for computational efficiency.

4. Security, Compliance, and Ethics
e Security Architect/Engineer: Protecting Al Systems from Threats.
e Al Ethics: Ensure Responsible Al Practices. [Al Ethics are not covered in this paper]
e Compliance Officers: Ensure regulatory compliance. [Al Compliance issues are not
covered in this paper]
e Al Safety Researchers: Focus on Safety and Ethical Implications. [Al Safety issues are
not covered in this paper]

5. Product and Project Management
e Al Product Managers: Oversee Al product development.

Assumptions

This paper focuses explicitly on CNAI security challenges. To become familiar with the CNAI
and CN security challenges, one can read the CNAI whitepaper® and the CN Security
whitepaper®. To get the best out of this paper, the audience is expected to be familiar with the
following:

What do Cloud Native environments look like?

How are Al systems built, deployed, managed, and used?

What common attack vectors are there, and what security challenges do they pose to
systems and users?

Al Security Landscape and Threat Scenario

3 https://tag-runtime.cncf.io/wgs/cnaiwg/whitepapers/cloudnativeai/
4 https://www.cncf.io/reports/cloud native-security-whitepaper/

Cloud Native AT

Math & Statisties
Exploratory Data

§ Analaysis EDA)

Visualization

Predictive Generative
Workloods (Classifeation Objeet Detection RAGs LLMs w‘ (\
)
Models, applications,... clustering Rescming Vector DBs Ly -) Data-Scientist/
— Developer
CI @ ¢D

L Lifecyel ﬁ

ML Livecycle [Core) (odrer) (o) (Fovse) (S)] _
AL/ML/LLM Ops) Dota/ML/AL
Q @ p Engineer

Platf T
ety @ Q@B Q)

7 Plotform Engineer

Infrastructure]
Cloud or On-prem L_aw.sﬂ B
. SRE/Operations
Hordwore é
[cPU &GPU NPU TPU DPU J - Hardware
Accelerators

Architect

intel) <Invioia. arm G AMDOUT

Traditional Cloud Native Security Issues

Al systems can be hosted on various cloud native platforms, as they require running multiple
containers to facilitate Al workload processing in its most basic form. However, Kubernetes is
the leading platform for Al deployments, offering the necessary compute bandwidth, data
storage, scalability, and resilient infrastructure required by Al workloads. Below are some
traditional security issues related to infrastructure, platform, and nuts-and-bolts aspects of
access, trust, storage, misconfigurations, CI/CD pipelines, and supply chain management.

~ ’
\

T

r- Compute Misconfigurations

[CI/CD Pipeline Vulnerabilities (“A
Code Insertion ~1:

Security Bypass -~ '~ Storage Misconfigurations

[AuthN and AuthZ Issues @ (\ ﬁ[g& Database Access and Storage J

: | Issues
Untrusted Access - - "~ 15 - ; .
N ! Traditional r - Data Encryption
Privileged Resource Access -~ loud 4 !
Cloud Native ~- Insecure APls
Security
Issues

—

[Platform Misconfiguration %} g B {f’& Supply Chain Security Issues]

T

Container Breakout - - Backdoor Access
]

1

Data Isolation - -’ '~- Malicious Code

e AuthN and AuthZ issues - untrusted/forged access, privileged resource access,
undesired write access

e Database access, storage issues - Data encryption at-rest, in-transit, data leak,
undesired data access, read/write mixing, insecure APls

e Platform misconfiguration and/or missing security policy/enforcements - container
breakout, host access, lack of data isolation, confidential data access, privilege violation

e Supply-chain security issues - backdoor, malicious code access, DoS, data/secret
stealing
CI/CD pipeline - code insertion, backdoor, security bypass
Dynamic scaling of compute and storage - misconfigurations

Data Science and Data Management Security Issues

Data is the backbone of Al systems, encompassing learning data, vector data, inference data,
and final output. Even in Al systems, such as Al agents, where the data size may be relatively
small, they still interface with models that handle vast datasets. These datasets may contain
disparate datasets and be subjected to security challenges during collection, storage, and
processing.

e Data poisoning - mixing, insertion, deletion
e Data miscategorization/labeling

Training data sourcing - Malicious, intellectual property, sovereignty
Exposing sensitive/confidential data - inference, model leak

Data overflow/leak - coordination/synchronization among storage units
Data collision - Read/Write

Enlarged data storage/transportation attack surface

Al Model and MLOps Security Issues

Al models are computational algorithms designed to perform specific tasks by learning patterns
from data. These patterns and/or the conclusion may face the following security challenges:

Adversarial attacks - Manipulation of Al models with crafted inputs.

Supply chain - 3rd party models, private or open source

Al model theft - Unauthorized access or extraction of Al models

Model Jacking Attack - Steal, manipulate, or misuse the underlying model in some way.
MLOps issues - Weaknesses in machine learning operations affecting model integrity
Al prompt-based attacks - Manipulation of Al prompts affecting outputs

Improper Output - Introduction of harmful, misleading output

Al Induced Threat Landscape

While Al systems face the aforementioned security challenges tied to the platform, data, and
models, they can also be used to undermine another traditional or Al-based system. This
complicates the situation further, as these attacks may expose new vulnerabilities or render
traditional attacks more effective. Below are a few possible attacks in this regard. This list is not
exhaustive, as Al's threat landscape and creative usage continually evolve.

Al-powered automated attacks.

Sophisticated Al-based phishing attacks.

Algorithmic Jailbreaking using Al to bypass model protections.
Al-powered exploitation of known vulnerabilities.

Real World Example

In 2020, a deepfake audio attack targeted a UK-based energy company, showcasing the
dangers of the evolving Al-induced threat landscape. Cybercriminals used Al-generated voice
cloning to impersonate the company’s CEO, tricking an employee into transferring €220,000
(approximately $243,000) to a fraudulent account.

Consequences of Security Breaches

All software systems face negative consequences when a security breach occurs. These risks
are heightened in a cloud native setup due to the expanded attack surface inherent in such
systems' design, development, packaging, deployment, and maintenance. When Al systems are
deployed in a cloud native environment, the attack surface expands further due to the added
complexity of models and data and the scale of hosting platforms.

One intriguing aspect of Al technologies is their unpredictable output, which often lacks
standardized benchmarks for evaluation and assessment. This unpredictability can lead to
subtle security issues with potentially significant impacts that may remain unnoticed by users
relying on the output. Additionally, training data sources, quality, and categorizations can be
manipulated to influence results, whether slightly or significantly. Moreover, the models
themselves can be compromised, and merely examining the results may not reveal whether a
model has been tampered with. Security breaches of these types may lead to:

e Flawed decision-making, operational disruptions, and undermining the reliability and
credibility of Al systems.

e Data loss, data misuse, unauthorized access, and potential exploitation by malicious

actors

Significant financial and reputational impacts

Competitive disadvantages

Threat to privacy

Physical safety and security

Examples of Real World Al Security Incidents

CVE-2023-43654 (TorchServe - Tool for serving PyTorch models)®

This chain of vulnerabilities in TorchServe, a tool for serving PyTorch models, exposed a critical
weakness in Al infrastructure. Attackers could exploit these vulnerabilities to achieve remote
code execution, steal valuable models, and even poison them with malicious data,
compromising the integrity and reliability of Al systems.

Child Sexual Abuse Material Taints Image Generators®

Researchers found that the LAION-5B dataset (a commonly used dataset with more than 5
billion image-description pairs) contains child sexual abuse material (CSAM), which increases
the likelihood that downstream models will produce CSAM imagery. The discovery taints models
built with the LAION dataset, requiring many organizations to retrain those models. Additionally,
LAION must now scrub the dataset of the imagery.

® https://nvd.nist.gov/vuln/detail/cve-2023-43654

Samsung Data Leak via ChatGPT®

Samsung engineers inadvertently leaked sensitive company data, including source code and
internal meeting notes, sometime in March 2023, using ChatGPT to assist with tasks. The Al
retained the input data, leading to a breach of confidentiality.

Chevrolet Dealer Chatbot underselling the vehicle’

A Chevrolet dealer's Al chatbot, powered by ChatGPT, agreed to sell a 2024 Chevy Tahoe for
just $1, following a user's crafted prompt. The chatbot's response, "That's a deal, and that's a
legally binding offer—no takesies backsies," resulted from the user manipulating the chatbot's
objective to agree with any statement. The incident highlights the susceptibility of Al
technologies to manipulation and the importance of human oversight.

The Journey towards CNAI Security

The following section of this white paper explores key security topics, including Platform
Security, Data Security, Model Security, Business Security, Encryption, and an overview of Al
Agent practices in a secure cloud native deployment.

Platform Security

Container and Orchestration Platform Security

Kubernetes and similar orchestration platforms form the backbone of cloud native Al workloads.
Securing these platforms is crucial for mitigating risks at the infrastructure and orchestration
layers and ensuring the safe deployment of Al workloads. CNCF’s previous Cloud Native
Security Whitepaper describes best practices for securing any workload at the platform layer.

Kubernetes offers built-in isolation, policy enforcement, and runtime security capabilities.
Combined with CNCF ecosystem tools, these features enable organizations to implement the
principle of least privilege (PoLP) at the infrastructure level. This section explores how
Kubernetes can be leveraged to establish a secure environment for Al models, thereby ensuring
operational resilience and upholding stringent security standards.

Isolation and Runtime Security

Kubernetes’s RBAC (Role-Based Access Control) and ABAC (Attribute-Based Access Control)
are two distinct models for managing authorization, determining who can perform specific
actions on resources within the cluster. RBAC is a built-in authorization mechanism in
Kubernetes that assigns permissions to users, groups, or service accounts based on predefined

® https://incidentdatabase.ai/cite/768/
" hitps://incidentdatabase.ai/cite/622/
8 https://incidentdatabase.ai/cite/624/

https://incidentdatabase.ai/cite/622/

roles. ABAC is a more generic authorization mechanism in Kubernetes that defines policies
based on attributes associated with a user, resource, or action. Additional open source tools
help enforce security policies, such as Open Policy Agent (OPA)® with Gatekeeper®, which
enables fine-grained, declarative policy enforcement tailored to Kubernetes environments. Tools
like Kyverno'™ and Kubewarden'" also support granular policy enforcement within containerized
workloads, providing flexibility and adaptability to various operational needs.

Kubernetes Namespaces'? provide limited isolation by logically segmenting resources, allowing
different functionalities or applications to operate independently. With network policies restricting
pod-to-pod or pod-to-external connectivity, Namespaces are essential for minimizing the attack
surface within a shared cluster. These guardrails ensure that one service cannot freely access
another if compromised. Note that RBAC and Namespaces can be combined to achieve more
granular isolation.

Isolation alone is insufficient. Runtime security measures must also be enforced to detect and
contain suspicious activity. Adhering to the principle of least privilege within Kubernetes means
configuring each container to run with minimal permissions, restricting privileges at the pod
level, and preventing unauthorized elevation of rights. Pod Security Standards™ (PSS) provide
guidelines for acceptable security profiles, helping administrators define permissible actions for
containers. Runtime monitoring solutions, such as Falco#, continuously monitor system calls
and container behavior for anomalies, facilitating the immediate detection of potential threats.
Runtime security and isolation are also provided through confidential computing and unikernels,
which are explained in later sections.

Additionally, service meshes, such as Istio™ and Linkerd", enhance security by encrypting
service-to-service communication and enforcing fine-grained network traffic policies within Al
workflows. These meshes offer advanced features, including mutual TLS, traffic observability,
and resilience mechanisms, which are crucial for ensuring secure and reliable inter-service
communication in complex Al systems.

Gaps and Opportunities

While current cloud native security tooling provides a strong foundation for securing platforms,
several gaps remain in addressing the unique security requirements of Al workloads. Examples
of these types of issues include:

8 https://www.openpolicyagent.org/

® https://github.com/open-policy-agent/gatekeeper

10 hitps://kyverno.io/

" https://www.kubewarden.io/

12 https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
'3 https://kubernetes.io/docs/concepts/security/pod-security-standards/

4 hittps://istio.io/

'® https://linkerd.io/

https://linkerd.io/
https://istio.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://www.kubewarden.io/
https://kyverno.io/
https://github.com/open-policy-agent/gatekeeper
https://www.openpolicyagent.org/

- Existing tools often overlook GPU workloads integral to Al training, leaving critical
performance and security aspects unprotected.

- Policies tailored specifically for Al use cases, such as ensuring model integrity during
continuous integration and deployment processes or safeguarding sensitive datasets,
are largely absent.

- The limited integration of Al-specific workflows into container security platforms and the
balance between security and performance remain ongoing challenges. Filling these
gaps will require a concerted effort to develop Al-specific security enhancements that
integrate seamlessly with existing Kubernetes and container security ecosystems.

|ldentity and Access

Identity and Access Management (IAM) is a framework of policies and technologies ensuring
that the right individuals and services have appropriate access to resources. It involves
identifying and authenticating users or services, then authorizing them to perform specific
actions based on defined roles and permissions. Effective Identity and Access Management
(IAM) is crucial for maintaining security, meeting compliance requirements, and streamlining
access management in complex environments. By implementing IAM best practices,'®
organizations can minimize the risk of unauthorized access, data breaches, and other security
incidents while improving operational efficiency and user experience. Implementing multifactor
authentication (MFA), cryptographic identities, and, where required, a federated identity is also a
good idea. Keycloak'’, a CNCF open source tool, can provide a holistic IAM solution for CN
deployments.

OAuth (Open Authorization) is an open standard protocol that enables secure, delegated
access to resources without exposing user credentials. It allows a user or application to grant
limited access to their resources on a server to another application, using access tokens instead
of passwords. OAuth (Open Authorization) is used to authenticate securely and authorize API
interactions with the agents or subsystems. MCP uses OAuth to grant limited access to its APIs
and resources while maintaining security and control.

Organizations may also consider integrating workload identity solutions such as Secure
Production Identity Framework For Everyone (SPIFFE') and its reference implementation,
SPIRE"™ (SPIFFE Runtime Environment). SPIRE establishes a standardized approach for
issuing and managing cryptographic identities to individual workloads. By assigning each
container a unique, verifiable identity, SPIFFE/SPIRE enables mutual TLS authentication
between services, ensuring that only authenticated and authorized components can
communicate. This layer of identity-based security complements Kubernetes’ native isolation

16

https://media.defense.gov/2024/Mar/07/2003407866/-1/-1/0/CSI-CloudTop10-Identity-Access-Manageme
nt.PDF

7 https://www.cncf.io/projects/keycloak/

'8 https://www.cncf.io/projects/spiffe/

19 https://www.cncf.io/projects/spire/

mechanisms and network policies, further mitigating the risk of lateral movement in case of a
compromise. A tool like cert-manager? can issue and manage TLS certificates on Kubernetes.

Finally, restricting access to model repositories, registries, and deployment endpoints is
paramount. In a cloud native environment, a multi-layered approach to authentication and
authorization is essential. This defense-in-depth strategy ensures that multiple security controls
work together to protect against various threats. Closer to the application layer, OpenlID Connect
(OIDC) and Web Identity solutions provide secure user authentication, integrated with
Role-Based Access Control (RBAC) to manage who can upload, approve, or retire a model.
Moving to workloads, OIDC-based Workload Identity allows Kubernetes pods, serverless
functions, or other workloads to obtain ephemeral credentials dynamically, reinforcing the
principle of least privilege (PoLP) by limiting each component to a narrowly defined scope.
Combined with zero-trust principles, these layers ensure that only verified and authorized
entities—even within the same internal network—can trigger updates and access in production
Al services, thereby reducing the risk of malicious alterations and preserving an auditable
compliance trail.

Safekeeping of Secrets

A CNAI deployment handles a variety of secrets, specifically those tied to the system's
functioning, including access (passwords, API keys, certificates, and tokens), cryptographic
transport (certificates, keys, and digital signatures), federation, and data processed by the
application. This section addresses secrets related to system access, while application data
management is explained in a later section. Note that hosting platforms, such as Kubernetes,
have built-in support for handling secrets within the cluster, including operational secrets
required by Kubernetes. For guidance on platform secret management, refer to Secret
Management on Kubernetes.

All secrets, such as password hashes, API keys, Access Tokens, and private keys tied to
certificates, require a strict storage regime where only authorized entities have access. This
storage is also immune to tampering and offline data decoding. Secrets management tools like
HashiCorp Vault can handle sensitive data. OpenBao?', an OSl-approved open-source license, is
another tool for managing, storing, and distributing sensitive data, including secrets, certificates,
and keys. Vaults keep data encrypted; operations can be accomplished without revealing the
private keys or secrets. Often, these vaults are deployed externally to the system to ensure its
integrity, in case the infrastructure or an application utilizing the vault is compromised.

Network Security

Modern Al applications are distributed and span multiple containers and nodes, making network
security crucial to prevent unauthorized access, data leaks, and adversarial threats. Al handles
sensitive data, so securing network traffic is a top priority.

20 https://www.cncf.io/projects/cert-manager/

21 https://openbao.org/

https://openbao.org/

Protecting cloud native Al workloads requires securing Kubernetes network traffic within and
across clusters. Al applications constantly exchange data, like training sets, inference requests,
and system logs, which could compromise data integrity and privacy if exploited. Solutions like
Calico and Cilium enforce identity-based rules based on specific attributes, such as
cryptographic identities, HTTP methods, paths, or headers, thereby restricting communication to
authorized components. They also provide encryption (IPSec, WireGuard) and multi-cluster
policies for secure hybrid-cloud Al operations.

Google Cloud Armor, AWS Shield, and Azure DDoS are examples of cloud firewalls that defend
against external threats, including Distributed Denial-of-Service (DDoS) attacks, cross-site
scripting (XSS) vulnerabilities, and SQL injection (SQLi) exploits. Its Adaptive Protection detects
abnormal traffic patterns to prevent attacks. Features, like per-client rate limiting and bot
management, help protect backend Al services from overload and exploitation.

Service meshes, such as Istio, enhance security by encrypting traffic with mutual TLS (mTLS)
and providing visibility into network activity.

Al faces risks, such as data poisoning, where attackers can corrupt training data, leading to
inaccurate models and flawed decision-making. Organizations must enforce strict data
validation, encryption, and access controls to counter this. Al's "black box" nature complicates
the detection of manipulations, necessitating the use of explainable Al techniques, audits, and
documentation to ensure trust and transparency.

Despite these tools, cloud native Al security still has gaps. While traditional cloud security tools
provide a foundation, there is a clear need for comprehensive, cloud native security platforms
that integrate Al-specific protections with broader infrastructure security. This gap presents an
opportunity for innovation in new solutions that combine Al protections with broader
infrastructure security.

Security Monitoring and Logging

Like any complex CN system, CNAI workloads require strong security monitoring and logging to
ensure integrity, performance, and compliance. Al systems involve multiple processes, including
data preprocessing, model training, and inference, which generate massive amounts of logs and
performance data. Robust monitoring and logging tools are crucial for tracking system behavior,
detecting anomalies, and ensuring compliance. However, implementing them effectively is
challenging due to the dynamic nature of containerized workloads, high data throughput, and
dependencies across multiple services. This highlights the need for a well-structured monitoring
strategy.

General-purpose monitoring tools like Prometheus and Grafana can be extended with
Al-specific metrics, including GPU usage and model inference times. Fluentd and Logstash
integrate with Kubernetes to collect logs from various Al components, including model servers
and data pipelines.

OpenTelemetry? provides a unified framework for logging, tracing, and metrics, making it a
strong choice for Al observability. Commercial monitoring platforms also offer log processing
features that help detect Al inference and training anomalies.

For security, encrypted logging systems should track data lineage to detect data poisoning or
unauthorized changes. Tools like Sigstore® maintain data provenance and ensure logs remain
authentic and tamper-proof. Secure, real-time remote logging solutions can be adopted to avoid
risks associated with insecure protocols, which could lend to spoofing attacks that could disrupt
dependent systems. Using TLS-based logging enhances security by encrypting log
transmissions. Finally, log access is also subject to an IAM policy to protect sensitive Al logs.

Network and Runtime Monitoring

Monitoring network traffic is key to detecting intrusions and configuration changes that could
compromise the cluster’s security posture. Cilium, powered by eBPF, provides deep visibility
into network activity and enforces policies at the kernel level.

Container runtime environments should also be monitored at the process, file, and network
levels to detect abnormal behaviors. Falco, another eBPF-based tool, detects suspicious
system calls and network activity that might indicate an exploit attempt. Monitoring north-south
traffic** (external connections) helps prevent access to command-and-control (C&C) domains
used in cyberattacks.

Monitoring Al inference requests and responses using structured logging tools can help identify
anomalous patterns to mitigate application-layer security threats, such as prompt injection
attacks.

Al Model Execution and Data Monitoring

Al models should be continuously monitored for anomalous behavior. Tools like Alibi Detect®
can identify adversarial attacks or attempts to extract model information. Using Kafka and
Apache Flink, event-driven systems can automate anomaly detection and model retraining,
enabling more efficient and effective data analysis.

Incorporating security monitoring into MLOps workflows ensures that Al model updates and
deployments remain auditable and compliant. Al-focused data monitoring tools like Great
Expectations help detect distribution shifts, data leaks, or PIlI exposure. Logs can also track Al
prompt usage with tools like Helicone and Rebuff, which help detect prompt-based attacks while
maintaining privacy.

Trusted Logs and Remote Logging

2 https://opentelemetry.io/blog/2024/otel-generative-ai/
= https://www.sigstore.dev/

24 https://en.wikipedia.org/wiki/North-south_traffic

% https://github.com/SeldonlO/alibi-detect

The sanctity of logs is paramount for gaining insights into the system and using it for forensics in
cases where past events need to be corroborated against a suspected breach. However, the
reliability of the logs on a system allegedly breached is also questionable. To address this issue,
two mechanisms can be implemented to ensure the integrity of logs is not compromised.

1. Logs are streamed to a remote system in real time over secure transport. Syslogging to
a remote server is an old concept; however, it is increasingly necessary for an Al system
that may have scale and complexity far beyond traditional applications.

2. Employ cryptographic means to make the logs immutable by signing them periodically or
encrypting them with a key not available to read by entities of a given application.

Gaps and Opportunities

Despite existing tools, Al monitoring still has significant gaps, particularly in detecting
adversarial attacks, model theft, and Al-specific risks such as model drift or data distribution
shifts. Cloud Native monitoring tools provide limited visibility into proprietary Al models, and
real-time security analysis of Al logs remains underdeveloped. Finally, Pll leakage in the log is a
real issue, and there seems to be no foolproof solution. CNAI deployments may have to find a
solution on a case-by-case basis.

This presents an opportunity to develop more effective monitoring tools specifically designed for
Al workloads, ensuring enhanced security, improved accuracy, and more reliable system
performance over time. A timely CNCF blog®® explores logging needs and what is needed for Al.

Data Security

Securing data in cloud native environments requires robust cryptographic mechanisms to
ensure confidentiality during storage and transmission. Furthermore, data in use may also need
to be protected on a CNAI system, as any access or manipulation of data can impact the
system's stability and/or functionality.

Data at Rest

Data at rest refers to information stored in physical or cloud-based storage and not actively
being transmitted or processed. In Al systems, this can encompass a wide range of sources,
including stored training, validation, fine-tuning, inference datasets, long-lived chat contexts,
vector embeddings, model checkpoints, and datasets used by external tools accessed through
Al system function calls.

Cloud native Al systems can require vast amounts of data, including proprietary datasets and
high-dimensional embeddings stored in databases. Without proper encryption and key

26

https://www.cncf.io/blog/2025/03/24/reimagining-log-management-tools-and-software-the-impact-of-ai-an
d-genai/

management, this data is vulnerable to unauthorized access, tampering, or theft. Ensuring data
security at rest used by Al systems is critical to maintaining confidentiality and preventing data
breaches. Encryption protects stored data on disk using symmetric encryption algorithms such
as AES, with variations like XTS for block devices. Cloud storage solutions often support
encryption with customer-managed keys (CMK) or bring-your-own-key (BYOK) approaches.
Secure storage and lifecycle management of encryption keys are critical for protecting sensitive
Al datasets. In addition to encrypting the data, key management tools like HashiCorp Vault®,
OpenBao#, and other cloud native Key Management Services (KMS) can securely manage
encryption keys while enforcing access policies.

Disk-level encryption solutions, such as Linux Unified Key Setup (LUKS), provide encryption for
databases and persistent storage, ensuring that Al training data, model artifacts, embeddings,
and logs remain protected even if the underlying storage is compromised.

Many Retrieval Augmentation Generation (RAG) implementations use vector databases to store
high-dimensional embeddings. These databases are specially designed for managing and
querying high-dimensional vector data and require specialized, end-to-end encryption
approaches to ensure security. However, some vector databases lack encryption support,
posing a data interception risk. It is essential to select vector databases that can support
encryption for data at rest and in transit. When native encryption isn't available, implementing
application-level encryption becomes necessary as an additional security measure.

In addition to encryption and key management, protecting Al data at rest requires
considerations in access control. Role-based access control (RBAC) configuration enables
defining roles and assigning permissions, ensuring that only authorized users can access or
modify data. For example, when defining roles for a user interacting with a vector database
used to store embeddings for RAG:

- Administrator: Trusted entity with full access to all data and configuration settings

- Data Scientist: Read and write access to data for analysis and model training, with

potential restrictions on modifying sensitive data or configurations
- Analyst: Read-only access to specific datasets for reporting and analysis

This approach should be complemented with the principle of least privilege, regular access
reviews, multi-factor authentication for accessing sensitive embedded data, and comprehensive
audit logging to track all access attempts. Refer to the Identity and Access section for more
information.

Finally, protecting data at rest also requires consideration of compliance and governance
protocols. For more details, see the Regional Compliance and Explainability section.

https://www.vaultproject.io/

Protecting AI Data at Rest

EEE E = O & o

|

I

I

I

I

I =

| Trainin Inference Fine-tuning Embedds Model Checkpoints

f Dotor Data Data mbeslding ¢ Logs Storage Warehouse

I

I

I

I

: Encryption: Key Management Services (KMSiT\ /;;cess Control: \\ /E;mpliance & Governance: \\
I

''| - Symmetric Encryption with - AWS KMS - Role-based access control - Regulatory compliance

i | AES-256 (RBAC) (6DPR, HIPAA)

: - Google Cloud KMS

| - End-to-end encrypted - Principle of least privilege - Privacy by design principles
I'| vector databases - Azure Key Vault

: - Data Loss Prevention (DLP) - Data lifecycle management

I | - Disk-level protection with - HashiCorp Vault - Data exfiltration

| | Linux Unified Key Setup (LUKS) prevention - Information Rights

I - OpenBao - Anomalous access Management (IRM)

! detection

. J N NS J

Data in Transit

Data in transit refers to information actively transmitted between entities within an Al system,
such as models, databases, and external APIs. This data is highly vulnerable to interception,
manipulation, and leaks, especially in Al workflows involving sensitive model parameters,
training and fine-tuning datasets, real-time inference results, RAG pipelines, and tool calls
between services. Ensuring secure transmission requires encryption, authentication, and policy
enforcement. Security configurations must be applied at the ingress gateway for self-hosted
models and at the egress gateway when interacting with external provider models to safeguard
data integrity and confidentiality.

In addition to protecting data going to the model, data in other parts of the system should be
protected against interception, manipulation, and leaks. Consider, for example, a
recommendation system that generates personalized content based on user inputs. The system
uses embeddings in a vector database for retrieval-augmented generation (RAG). An attacker
could inject malicious vectors, compromising the accuracy of query results or slowing down
query performance. Protecting all vector database operations, including encrypting data in
transit and authenticating and authorizing all requests, is crucial to prevent such attacks.

In cloud native applications, this is commonly achieved through Transport Layer Security (TLS),
which enables certificate-based authentication. Service meshes like Istio?® and Linkerd? provide
built-in support for mutual TLS (mTLS), ensuring encrypted communication between services
within the mesh. For example, data retrieval for Al applications in RAG pipelines should be
secured using mTLS between components, ensuring encrypted communication between Al

2 https://istio.io/
2 phitps://linkerd.io/

https://linkerd.io/
https://istio.io/

models, vector databases, and document storage systems. Firewalls can help control ingress
and egress ftraffic based on predefined security rules that limit access to sensitive data and
models.

tools
RAG - Vector DB (MCP servers, self-
defined tools)

=

self-hosted
Inference
Models

Ingress /”/ in-cluster
Gateway application

Egress
Gateway

Data Plane

Control Plane

. Security, Observability,
Service Mesh Traffic Control Policies

— fmTLS @ J

With a service mesh, mTLS can be configured by a separate control plane issuing certificates to
each application in the mesh. The control plane manages certificate rotation and revocation,
reducing operational overhead while maintaining security compliance. Additionally, service
meshes provide fine-grained access control through authorization policies, allowing
organizations to define which services can communicate with each other. These policies can
enforce least-privilege access, restricting data flow based on identity and service role rather
than relying solely on network boundaries.

Traditionally, service meshes have been implemented with a sidecar approach, where each
entity in the mesh is injected with a sidecar container, which is configured by the control plane
and is responsible for traffic capture:

external
LLM

Providers

tools
RAG Vector DB (MCP servers, self-
defined tools)
B self-hosted i v
. Inference ; R
- |
L 2 K application

Ingress 1\ ,'f;"v) Egress
Gateway . Y o UUTRUURRRPREEEE R Gateway

Discovery, Configuration
. Certificate Management

Data Plane

Control Plane

) Security, Observability,
Service Mesh Traffic Control Policies

,,,,,,,,, . Configuration

5 /

¥

Some Al applications, such as Ollama or vector databases, require StatefulSets, which may be
more challenging to onboard into the mesh with injected sidecars. For these cases, alternative
service-mesh approaches eliminate the need for a sidecar container, such as Cilium Service
Mesh®* or Istio Ambient". Cilium Service Mesh offers node authentication with
WireGuard/IPSec, providing lightweight encryption without needing sidecar proxies. Cilium
Service Mesh can integrate with certificate management tools, such as SPIFFE, Vault, SMI,
cert-manager, or Istio, if a mutual authentication handshake is required. Unlike traditional mTLS,
which combines authentication and encryption using the same certificates, Cilium’s mutual
authentication handshake verifies identity but encrypts data separately using WireGuard or
IPSec. Istio Ambient utilizes a per-node L4 proxy for mTLS, with optional L7 proxies available
on a namespace basis. Istio Ambient's mTLS establishes secure tunnels between L4 proxies on
each node, ensuring encryption and authentication without requiring sidecars in individual
workloads. Like the sidecar model, the per-node proxies obtain certificates from the Istio control
plane, where Istiod serves as the Certificate Authority (CA), issuing and managing workload
identities.

When choosing between sidecar and no-sidecar approaches for Al applications, it's essential to
consider factors such as performance, complexity, and security requirements. Ensuring secure
data in transit requires authentication, encryption, and integrity verification between
communicating peers. mTLS is crucial in enforcing Zero Trust principles by ensuring that every
connection is explicitly authenticated and authorized, thereby preventing unauthorized access
and mitigating risks associated with compromised workloads or network attacks. Strong identity

%0 https://docs.cilium.io/en/latest/network/servicemesh/index.html

3 hitps://istio.io/latest/docs/ambient/

https://istio.io/latest/docs/ambient/
https://docs.cilium.io/en/latest/network/servicemesh/index.html

verification and encrypted communication remain essential for protecting Al-driven workloads,
whether implemented through a sidecar-based or sidecar-less service mesh.

Image sources: https:/link.excalidraw.com/I/AKnnsusvczX/3qqlZToY1gn

Data in Use

Data in use refers to data actively being used, processed, or modified by another application.
This includes data stored in memory (RAM), such as variables, user inputs, API responses, and
temporary representations that only exist during program execution. Unlike data at rest, runtime
data is ephemeral and dynamic, meaning it typically disappears when the program terminates
unless explicitly persisted.

Traditional CPUs have well-defined mechanisms for managing RAM, utilizing a combination of
hardware and operating system components, primarily through virtual memory, paging, and
access control mechanisms enforced by the Memory Management Unit (MMU). Over the
decades, CPU architectures have been refined with security in mind, implementing protections
against memory leaks and unauthorized access.

However, GPUs and TPUs were primarily designed for high-throughput parallel processing
rather than strict memory isolation. These processing units lack the same level of fine-grained
memory management, making them more vulnerable to shared memory attacks. Graphic
security has a large attack surface, as shared memory is challenging to implement correctly, and
improper isolation can lead to exploits and data leakage between processes. Improperly
configured cloud native shared compute environments can increase these risks, as multiple
tenants may inadvertently expose sensitive data due to weak isolation.

One notable recent example of such an attack is the LeftoverLocals®*? vulnerability, which
exposed residual data in GPU local memory that had been used by another process, allowing
attackers to recover sensitive information. As demand for GPUs surges due to Al and
large-scale model training workloads, attackers increasingly target vulnerabilities in GPUs and
TPUs. It is critical to continuously apply patches against emerging threats to ensure secure
multi-tenant execution. Confidential computing GPUs aim to mitigate such risks by providing
hardware-based memory encryption and isolation, ensuring sensitive workloads remain
protected even in multi-tenant environments. Refer to the Encryption and Confidential
Computing sections for more information.

Veracity of Telemetry Data

Data integrity has always been crucial in drawing accurate conclusions that support objective
reasoning. Data quality, feature selection, and correlation increase automation and productivity

%2 hitps://leftoverlocals.com/

https://link.excalidraw.com/l/AKnnsusvczX/3qqlZToY1gn
https://leftoverlocals.com/

when considering operational and core business functions. Telemetry data from IT systems has
often been utilized to assess system health and support diagnostics and fault triage scenarios.
In classic, human-operated environments, the quality of IT system telemetry was frequently
used in monitoring solutions, generally with limited intelligence applied, typically including trend
prediction and analysis.

New threat vectors are emerging as more advanced, increasingly autonomous systems are
introduced. The manipulation and/or spoofing of telemetry data can trigger actions such as
reboots and terminations of critical resources, including pods, nodes, and other primitives, within
a Kubernetes environment.

Remote telemetry data has a multitude of formats which are used for transmission (the list
below is not exhaustive):

Syslog
- Often, insecure versions are available, but they are secure.
SNMP Traps
- Insecurely transmitted over UDP
Open Telemetry (OTLP)
- Optionally transmitted insecurely over HTTP, secure gRPC, and HTTPS options are
available

While more secure variations of the above telemetry solutions are often available, the default
mode of operation tends to favor the insecure option.

Again, for local data logging, this dataset is vulnerable to tampering without proper controls on
system access, which could result in unforeseen consequences. In many modern IT
ecosystems, evaluating immutable storage for telemetry data through storage strategies, such
as leveraging IPFS* can support a concrete and viable audit trail for storing such data.

Model Security

Model Integrity

Ensuring the integrity of an Al model is a foundational step in safeguarding the entire system.
Models trained on large, often sensitive datasets can become prime targets for attackers
seeking to manipulate their behavior or gain unauthorized access to the underlying data. Such
tampering can go undetected without robust measures, compromising data privacy and the
reliability of the model’s outputs. One practical approach to address this risk is to leverage
model signing, which attaches a cryptographic signature to each model upon completion of its
training and validation. While the concept is similar to container image or open source code

% hitps://ipfs.tech/

https://ipfs.tech/

signing, the signed artifact here is typically the serialized model file or data blob, rather than a
container image. Depending on the implementation, the signature can be stored alongside the
model in a registry or as a separate metadata reference. Signing tools within the CNCF
ecosystem, such as Notary** or Cosign®, allow organizations to validate a model’s authenticity
before deploying it. This process prevents tampered or malicious models from silently entering
production, as the signature verification step will highlight discrepancies between the genuine
artifact and any modified versions.

Building on this foundation, Immutable Infrastructure®, a well-established concept in cloud
native environments, further ensures that once a model is created and verified, it cannot be
overwritten or altered. In practice, this means using version-controlled registries or artifact
repositories that mark a model artifact as “read-only” once it has been published. Whether the
model is off-the-shelf from a third-party vendor or the result of an in-house training pipeline, the
principle remains the same: updates must go through the same rigorous build, sign, and verify
process, resulting in a new versioned artifact rather than silently modifying an existing one. This
also involves version controlling the entire training process for in-house models, ensuring that
each training iteration is captured and can be reproduced. Additional vendor integrity checks
can be applied before a model is brought into the system when dealing with third-party sources.
This approach aligns with the CNCF’s immutable infrastructure principles, emphasizing
replacement rather than patching. Beyond simplifying audits, immutability makes it
straightforward to roll back to a known good state if problems arise.

Moreover, securing the entire pipeline—from data ingestion and feature engineering to final
artifact creation—ensures that each stage is version-controlled, auditable, and protected by
cryptographic checks. This end-to-end approach reinforces trust in the final model by
guaranteeing that no step has been compromised during its lifecycle. This involves
implementing rigorous access control measures across data and feature stores, adhering to
model serialization best practices to maintain consistency and security, enforcing runtime
isolation to prevent the deployed model from being tampered with, and implementing
vulnerability management within the CI/CD Pipeline. By tying these controls together,
organizations can achieve a cohesive security posture that addresses threats at every phase of
the Cloud Native Al Development lifecycle.

Model Format, Serialization, and Common Vulnerability

Even with solid integrity checks and access controls, vulnerabilities can stem from how models
are serialized and loaded at runtime. Formats like Pickle®, Marshal®, or Keras H5 allow
arbitrary code execution when deserialized, making them prime vectors for runtime remote
code execution (RCE) attacks in untrusted environments. Python's official documentation

34 https://www.cncf.io/projects/notary-project/

% https://github.com/sigstore/cosign

% https://glossary.cncf.io/immutable-infrastructure/

37 https://docs.python.org/3/library/pickle.html#restricting-globals
% https://docs.python.org/3/library/marshal.html

explicitly warns about this risk for Pickle and Marshal. Likewise, while more standardized,
TensorFlow and Keras Model files can still contain untrusted code or exploit file read/write
vulnerabilities if not used carefully, for example, CVE-2021-37678. Safetensors*’ is another
format that stores the tensors securely and provides additional safety over formats like Pickle,
given it loads only trusted data, which prevents RCE. These risks highlight why models, like
other software artifacts, should be treated with the same scrutiny—scanned for known CVEs,
hashed, and verified before loading.

Recent disclosures in frameworks such as ONNX (for example, CVE-2024-27318 and
CVE-2024-27319) illustrate directory traversal issues that allow maliciously crafted ONNX
model files to overwrite or read unintended locations on the filesystem. Keras also provides a
“safe mode” to reduce attack vectors, disabling features that enable code execution during
model loading. Regardless of the format used, organizations are advised to adopt container
isolation and limit file system access to only the paths that a model-serving component strictly
requires.

The Hugging Face pip package transformers is a library that provides a unified API for loading,
configuring, and deploying natural language processing models and other Al models. Similar to
serialization tools such as Pickle, Marshal, or Keras H5, transformers handle various model
artifacts, but their functionality for processing multiple model formats and configurations also
introduces additional attack surfaces. The package has been identified with a Deserialization of
Untrusted Data vulnerability, with associated CVEs including CVE-2023-6730, CVE-2023-7018,
CVE-2024-11392, CVE-2024-11393, and CVE-2024-11394. Runtime security practices can
mitigate these issues by isolating model-serving containers from one another and sensitive host
resources.

LLM Model Guardrail

LLM GuardRail is an emerging concept focused on the systematic validation of inputs and
outputs from large language models (LLMs), thereby mitigating risks such as prompt injection,
sensitive Information disclosure, improper output handling, system prompt leakage, and other
potential security vulnerabilites from OWASP Top 10 for LLM Applications*'. Several efforts
exemplify different methodological approaches within the landscape of open-source projects
that address these challenges. For instance, Llama Guard*? encompasses a suite of safety
classification models extending beyond traditional text analysis to include a mixed-modality
model capable of processing text and images, offering a broader scope in safety evaluation. In
parallel, NVIDIA NeMo** Guardrails provides an integrated framework that deploys layered
validation mechanisms to monitor and restrict the inputs fed to the model and its corresponding
outputs, aligning with enterprise-scale security requirements. Meanwhile, Guardrails* Al

% https://nvd.nist.gov/vuln/detail/CVE-2021-37678

40 https://github.com/huggingface/safetensors

41 https://owasp.org/www-project-top-10-for-large-language-model-applications/
2 https://github.com/meta-llama/PurpleLlama/tree/main/Llama-Guard3

43 https://github.com/NVIDIA/NeMo-Guardrails

“ https://github.com/guardrails-ai/guardrails

presents a modular, Python-based system that allows for the composition of multiple validators
into customizable safety pipelines, thereby facilitating tailored guardrail implementations in
diverse application contexts.

Each approach represents a distinct technical strategy for enforcing security constraints in
LLM-based applications. Their designs reflect varying priorities, ranging from the multimodal
safety assessments in Llama Guard 3 to the comprehensive, policy-driven orchestration of
NeMo Guardrails and the flexibility inherent in the Guardrails Al framework. Notably, these
solutions are being developed within the broader context of cloud native security, aligning with
the CNCF’s goals of promoting scalable, reproducible, and secure deployments of advanced Al
systems. Together, they contribute to a growing body of work to establish robust guardrail
mechanisms that can be integrated into modern, containerized infrastructures to enhance the
overall resilience of Al systems.

Deployment and Operational Security

Threat Detection

Threat detection focuses on identifying and neutralizing threats to Al workloads before they
cause significant harm. By leveraging advanced tools and Al-driven detection mechanisms,
cloud native environments can be fortified against emerging threats. Al workloads are
particularly vulnerable to adversarial attacks, data poisoning, runtime anomalies, and
denial-of-service attacks.

Current tools offer a starting point for addressing these risks. For instance, deploy runtime tools
such as Falco* or Tetragon“® to monitor container activities against defined rules, providing
real-time alerts for malicious behaviors. These tools help enforce security rules and detect
runtime anomalies by scanning for known vulnerabilities and suspicious activities.

Automated model integrity checks should be incorporated into Al pipelines to bolster security
before deployment, using tools such as Deepchecks*’. For deployed Al models, frameworks like
CleverHans*® provide adversarial attack detection, helping to defend against inference-time
threats.

Using open-source scanning tools, organizations should continuously scan third-party Al models
and dependencies for vulnerabilities and supply chain risks. Some proprietary tools also
simulate adversarial attacks to test model robustness.

45
46

https://falco.org/

47 hitps://www.deepchecks.com/

“8 https://github.com/cleverhans-lab/cleverhans

https://github.com/cleverhans-lab/cleverhans
https://www.deepchecks.com/
https://tetragon.io/
https://falco.org/

Al-enabled threat detection systems are useful in identifying data poisoning or tampering during
the training phase, while data anomaly detection models help flag suspicious patterns in labeled
datasets.

Gaps and Opportunities

Despite the availability of general-purpose tools for cloud native threat detection, significant
gaps remain in Al-specific threat detection. Poisoned datasets used during training can
compromise Al models, leading to substantial downstream risks; however, detecting them
remains challenging. Similarly, inference-time threats, including adversarial attacks targeting
deployed models, are underexplored by conventional cloud native security solutions. Another
opportunity lies in leveraging Al to establish behavioral baselines for workloads, detecting
unusual activity that might indicate an attack. Closing these gaps will require more specialized
and proactive security strategies tailored to Al workloads.

Vulnerability Management in a CI/CD Pipeline

Effective vulnerability management ensures Al models remain secure throughout the CI/CD
pipeline, protecting against known and emerging threats. This requires integrating security
checks at every stage of development and deployment. One key practice is generating a
Software Bill of Materials (SBOM) using formats like SPDX or CycloneDX, which provide
visibility into dependencies. Vulnerability scanning with tools like Trivy*® or Clair®® helps identify
security risks, automatically blocking high-severity issues from being merged or deployed. In
contrast, lower-priority vulnerabilities can follow scheduled remediation cycles based on
frameworks like the NIST Cybersecurity Framework.

Container images and Al models are signed, often using technologies such as Cosign or Notary,
and stored in trusted registries, enabling Kubernetes clusters to verify their integrity at runtime.
GitOps and progressive deployment strategies also help maintain auditability, enforce security
policies, and allow quick rollbacks in the event of anomalies. Organizations maintain a proactive
security posture across the entire Al model lifecycle by treating vulnerability scanning, patching,
and validation as first-class citizens of the CI/CD pipeline.

Tools like Trivy, Clair, and Anchore®' provide robust container scanning capabilities, ensuring
vulnerabilities are identified and addressed early in the development lifecycle. Trivy, for
example, scans container images for known vulnerabilities, including OS packages and
application dependencies. Clair provides layered security analysis for container images, while
Anchore integrates with CI/CD pipelines to enforce security checks before deployment.

Adopting a secure CI/CD pipeline requires integrating vulnerability management into every
workflow stage, from dependency scanning to deployment enforcement. For comprehensive
guidelines on these practices, refer to the CNCF’s Software Supply Chain Security Best

49

%0 https://clairproject.ora/

® hitps://anchore.com/

https://www.nist.gov/cyberframework
https://anchore.com/
https://clairproject.org/
https://github.com/aquasecurity/trivy

Practices v2°2, which outlines strategies for ensuring artifact integrity and mitigating supply chain
risks.

Cloud Native Application Protection Platforms

Cloud Native Application Protection Platforms (CNAPPs) have become increasingly prevalent
for securing the deployment of cloud native applications in both on-premises and cloud
architectures. CNAPP solutions benefit from their ability to maintain an end-to-end context of
the threat landscape within and between microservice architectures within a given deployment.

Key domains in which CNAPP solutions provide security are:
Cloud Security Posture Management (CSPM) identifies and remediates
misconfigurations in cloud environments. This also helps organizations comply with
regulations such as PCI DSS, GDPR, SOC 2, HIPAA, and other relevant standards.
Cloud Service Network Security (CSNS) provides strategies and tools to secure
network configurations and data transmission. This helps ensure data integrity and
secure access to resources.
Cloud Workload Protection Platform (CWPP) provides security for workloads running
in cloud environments, including virtual machines, containers, and serverless functions.
Thus, it enables proactive defense mechanisms and supports a secure cloud
infrastructure.

While the solutions themselves do not provide an explicit means to perform deep inspection into
the inner workings of a specific Al model and its training / fine-tuning data and applied guard
rails, the deployment of a CNAPP solution can support in impeding the ability of an attacker to
leverage multiple exploits to reach the a Retrieval Augmented Generation (RAG) datastore used
by an Agent in conjunction with LLM which could result in critical corporate data being
compromised, or poisoned, potentially resulting in cascading effects, particularly in domains
which may use this data for activities such as Al OPS.

Note that there isn't a single, universally accepted standard for CNAPP. However, CNAPP
vendors adhere to industry standards and best practices to ensure comprehensive security
coverage and compliance. Some of these standards are listed below. Vendors running CNAI
systems may select a particular CNAPP from a list of offerings by vendors, based on the
specific offering's suitability for the deployment.

e NIST Cybersecurity Framework®
e Center for Internet Security (CIS) Benchmarks®
ISO/IEC 27001%®

52 https://tag-security.cncf.io/blog/software-supply-chain-security-best-practices-v2/
53 . H

% https://www.cisecurity.org/cis-benchmarks/
% https://www.iso.org/isoiec-27001-information-security.html/

https://www.nist.gov/cyberframework/

e Cloud Security Alliance (CSA) Controls®®
GDPR and Other Data Protection Regulations®’
OWASP Application Security Verification Standard (ASVS)%®

View of potential exploits within a container:

©@N

http://us-central1-aiplatfo...
,/ Application Endpoint

/

*
© >

2 reputation reputation
@ Vertex Al Endpoint Vertex Al Model
E il

/' https:/lus-central1-aiplatf...
Application Endpoint

https://storage.googleapis....

reputation
Data Findings Vertex Al Training

Click to expand

Internet

Click to expand path

Application Endpoint @
0~
00 ©
" cloud-ai-platform-4873c122-... reputation
....... g Bucket Vertex Al Dataset

allUsers
Predefined Group

Encryption and Confidential Computing

Encryption plays a crucial role in Al deployment by ensuring the security and privacy of sensitive
data throughout its lifecycle. As Al models often rely on large datasets that may include
personal or confidential information, encryption safeguards this data at rest and in transit.
However, when data is processed, it is decrypted and becomes vulnerable to various security
issues. These include hardware-based data leaks, such as stack and heap read/write
vulnerabilities, infrastructure-based access issues, insufficient isolation that exposes entities to

% https://cloudsecurityalliance.org/research/cloud-controls-matrix/
57 https://gdpr.eu/
%8 https://owasp.org/www-project-application-security-verification-standard/

others, dirty buffer leaks, and memory scraping. Confidential computing solves this puzzle and
provides encryption during use.

Confidential Computing

Confidential Computing protects data while it is being processed. It uses hardware-based
Trusted Execution Environments (TEEs) to create isolated processor areas, ensuring that data
and operations remain confidential and protected from unauthorized access, even if the
underlying system is compromised. This is particularly useful in Al deployments where sensitive
data must be processed securely in cloud environments, enabling organizations to maintain
data privacy and integrity.

Confidential computing requires a processor with hardware-based security features like AMD
Secure Encrypted Virtualization (SEV)® on AMD EPYC CPUs or Intel Trusted Domain
Extensions (TDX)® on Intel Xeon Scalable processors, which allow for the encryption of data in
memory. At the same time, it's being processed, protecting it even from the cloud provider or
system administrator. Both AMD and Intel offer a wide range of confidential computing solutions.
These solutions enable confidential computing to be executed directly on hosts equipped with
Trusted Execution Environment (TEE) processors or virtual machines (VMs) running on such
hosts. Most large cloud platforms, such as GCP®', AWS®?, and Azure®®, offer confidential
compute-enabled platforms, and users deploying their Al systems on these platforms can
choose from various solutions.

Confidential Containers

Furthermore, in a cloud native environment, Al workloads are often deployed on container
orchestration platforms, such as Kubernetes, which run in a pod consisting of one or more
containers. The Confidential Containers project enables running pods within virtual machines,
allowing CN workloads to utilize confidential computing hardware with minimal modification.
Confidential Containers extends the guarantees of confidential computing to complex
workloads. With Confidential Containers, sensitive workloads can be run on untrusted hosts and
be protected from compromised or malicious users, software, and administrators.

Benefit of enabling confidential computing

By integrating confidential computing, Al deployments can achieve higher levels of security and
privacy, fostering innovation while maintaining user trust and compliance with regulatory
requirements. Benefits include:

Enhanced Data Privacy

%9 https://www.amd.com/en/developer/sev.html
80 https://www.intel.com/content/www/us/en/security/confidential-computing.html

61 - ?hl=

82 https://aws.amazon.com/confidential-computing/
% https://azure microsoft.com/en-us/solutions/confidential-compute/

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://aws.amazon.com/confidential-computing/
https://cloud.google.com/security/products/confidential-computing?hl=en
https://www.intel.com/content/www/us/en/security/confidential-computing.html
https://www.amd.com/en/developer/sev.html

Ensures the protection of sensitive data, such as medical records, financial information, or
proprietary business data, during the development and training of Al models. This prevents
unauthorized access, including from cloud providers or malicious actors.

Secure Model Training

Al models require large datasets for training, which may include sensitive information.
Confidential computing protects this data during training, ensuring it remains confidential and
tamper-proof.

Collaboration and Data Sharing
Enables multiple organizations to contribute data to a shared Al model without revealing their
data, facilitating collaborative Al development while maintaining data confidentiality.

Protection Against Insider Threats Even if someone gains access to the system, confidential
computing ensures that sensitive data remains protected within the trusted execution
environment, reducing the risk of insider threats.

Regulatory compliance:
Helps organizations meet strict data privacy regulations by ensuring sensitive data is protected
throughout its lifecycle, including during Al training and inference.

Challenges

While confidential computing offers essential protection for data in use, it comes with significant
costs. The primary drawback is reduced Al system performance due to the encryption
processes, which necessitate additional computing power through more compute nodes or
powerful processors, thereby increasing costs. Furthermore, the lack of universal standards
among vendors and cloud platforms supporting confidential computing leads to slow adoption.
Lastly, it introduces system complexity requiring specialized expertise, which can complicate
adherence to regulatory compliance.

Unikernels

A unikernel is a highly specialized, lightweight operating system designed to run a single
application. By bundling the application with only the minimal set of operating system
components it needs, a unikernel creates a compact, efficient, and secure runtime environment.
Unlike traditional operating systems, it eliminates unnecessary features, resulting in a smaller
memory footprint, faster boot times, and a reduced attack surface. Unikernels are commonly
used in scenarios where performance, security, and resource efficiency are critical, such as in
loT devices, edge computing, microservices, and high-performance virtual machines. They are
especially suited for single-purpose workloads that require minimal overhead and maximum
isolation from external threats.

Homomorphic Encryption

This form of encryption enables computations on encrypted data without requiring it to be
decrypted first. The results of these computations remain encrypted and can be decrypted only
by the data owner. In Al deployments, Homomorphic Encryption (HE) enables the use of
sensitive data for training and inference without exposing the raw data, thus maintaining privacy
and confidentiality. This is particularly valuable in scenarios where data privacy is paramount,
such as in healthcare or financial services.

Partially Homomorphic Encryption (PHE) supports addition or multiplication operations, but
not both. Examples of PHE cryptosystems include RSA (multiplicative) and Paillier (additive).
Somewhat Homomorphic Encryption (SHE): Supports limited additions and multiplications.
Leveled Fully Homomorphic Encryption (Leveled FHE): Supports a fixed number of
operations determined during key generation.

Fully Homomorphic Encryption (FHE) supports unlimited additions and multiplications,
allowing for arbitrary computations on ciphertexts. FHE is lattice-based cryptography; hence, it
is considered a PQC type of encryption, i.e., future-safe.

This is an evolving field in terms of its usage in Al. Further details about this type of encryption
can be found in the Cloud Security Alliance paper titled Fully Homomorphic Encryption (FHE)®.
The last option above, i.e., FHE, provides complete confidentiality but may still not be preferred
due to the excessive computational power required. Note that fewer platforms and fewer
vendors offer native support for homomorphic encryption, though the support base is increasing.
CNAI deployments may utilize OpenFHE, an open-source library and associated wrappers, to
support homomorphic encryption (HE).

Challenges

e Computational overhead can be mitigated by using efficient algorithms and leveraging
hardware acceleration.

e Key Management, specifically the Keys used for HE, must be secured, even though they
may be repeatedly required to access the same encrypted results.
Need for very high random number entropy - noise management on CNAI systems.
Side-channel attacks are possible during encryption and decryption
Lack of required expertise to implement and manage CNAI systems that consume HE.

Al Deployments and Post-quantum Cryptography

The security of software systems in general, and cloud native (CN) environments in particular,
relies heavily on traditional cryptography, which provides trust, confidentiality, identity, integrity,

64

https://cloudsecurityalliance.org/artifacts/fully-homomorphic-encryption-a-comprehensive-guide-for-cybers
ecurity-professionals

and secure communication. Any compromise in cryptography threatens the very foundation of
CN systems. With the potential for quantum computing to break traditional cryptography soon ©°,
it is crucial to ftransition to post-quantum cryptography (PQC), aka quantum-resistant
cryptography, to maintain security, i.e. not dealing with the issues of forged identity, forged
signatures, compromised confidentiality, and harvest now, decrypt later®® type of threats.

Quantum Resistant Cryptography

Countering future quantum capability requires new cryptographic methods that can protect data
from both current conventional computers and tomorrow's quantum computers. These methods
are referred to as post-quantum cryptography (PQC). NIST has released three PQC standards
to initiate the next and significantly larger stage of transitioning to post-quantum cryptography:
the Module-Lattice-Based Key-Encapsulation Mechanism [FIPS 203], the Module-Lattice-Based
Digital Signature Algorithm [FIPS 204], and the Stateless Hash-Based Signature Algorithm
[FIPS 205].

PQC in a Cloud Native Al Deployment

Post-quantum cryptography (PQC) in a cloud native (CN) environment refers to implementing
cryptographic algorithms designed to resist attacks from future quantum computers within a
cloud infrastructure that leverages the principles of CN design, like containerization,
microservices, and scalability, to protect sensitive data even when quantum computing becomes
more powerful; essentially, ensuring future-proof security in a modern cloud environment.
Essentially, it translates to:

- Moving TLS and SSH ciphers to PQC ciphers

- PQC compliant Hashing

- PQC compliant Digital Signing

Example of SSL and PQC

OpenSSL with PQC

Open Quantum Safe (OQS), part of the Linux Foundation’s Post Quantum Cryptography
Alliance, is an open-source project that aims to support the development and prototyping of
Quantum-Resistant Cryptography, also known as post-quantum cryptography (PQC).
Additionally, libogs is part of the Open Quantum Safe (OQS) project. It aims to develop and
integrate quantum-safe cryptography into applications, facilitating their deployment and testing
in real-world contexts. In particular, OQS provides prototype integrations of libogs into protocols
such as TLS, X.509, and S/MIME, through the OpenSSL 3 Provider. A shared library
ogsprovider# is available to OpenSSL through its provider functionality to support this
integration. OgsProvider provides pqc ops but can operate in hybrid mode, i.e., can support
traditional cryptography using libcrypto. The hybrid mode of ogsprovider ensures that the
transition to PQC is not disruptive. Many PoCs can consume PQC through ogsprovider, which

8 https://csrc.nist.gov/projects/post-quantum-cryptography

% hitps://www.keyfactor.com/blog/ha -now-decrypt-late

https://www.keyfactor.com/blog/harvest-now-decrypt-later-a-new-form-of-attack/
https://csrc.nist.gov/projects/post-quantum-cryptography

can be adopted on CNAI systems. One can also develop their provider and use only the
implementation of the PQC algorithms available in libogs.

Adopting PQC comes with challenges. One needs to bring a set of new crypto, which has not
been comprehensively tested or stressed, and is written by a small group of individuals. There is
a general lack of expertise in navigating the PQC world.

Al Agents

As quoted by Mehdi Bahrami, Ph.D.,

“An Al agent is an autonomous system that allows machines to perceive its environment and
takes actions to achieve a target goal.

Unlike traditional applications that follow predefined rules, Al agents can adapt, learn, and make
decisions dynamically.”

There are different types of Al Agents, primarily differentiated by the amount of history they
possess (e.g., Reflex Agents only act upon current information and do not store any history) and
the language model (LLM) they use. Since LLMs are resource-intensive, agents often access
them over a network rather than running them locally.

All Agents incorporate autonomous interaction with their environment through function-calling
(or tool-calling). This interaction defines their blast radius and, therefore, their potential negative
security and safety impact in the event of exploitation.

Agent Architectures

Today, agents can be created using a variety of open-source or commercial solutions, each
offering distinct benefits in terms of usability, scalability, and deployment complexity. At the very
least, single agents interact with their environment. They utilize these interactions for both data
gathering and interaction.

More advanced implementations, such as LangGraph and PydanticAl, to name a few, can
implement a multi-agent architecture, in which teams of autonomous agents interact to achieve
a common goal. These architectures employ an agent-based approach, consisting of actors with
individual skill sets, capabilities, and tooling, often leveraging a shared memory state.

Different architectures utilize their agents in various ways. For task execution, sub-tasks can be
delegated to separately running agents, emulating human teamwork. Other architectures utilize
Al agents as judges: multiple agents try to solve a problem in parallel, and a separate judge
agent selects the best solution.

Architectures can also be differentiated by their usage of LLMs. They can either allocate a single
dedicated LLM (or LLM connection) for each agent or utilize a pool of LLMs and connect these
to pre-defined LLMs. In the latter case, agents are often referred to as actors, similar to
established OOM actor models. While both approaches have advantages and disadvantages,
the second framework type can be more cost-effective when new models require frequent and
repeated inferencing.

Agent Framework Type #1 Agent Framework Type #2

2=

Actor1 Actor2 Actor3 Actord

Further, regarding how autonomous agents are structured to communicate and coordinate their
activities within a system, two common paradigms for agent architectures are Master Control
Program (MCP) and Agent-to-Agent (A2A) communication.

MCP Architecture

In an MCP-based architecture, a centralized Master Control Program orchestrates all agent
activities. The MCP acts as the decision-making authority, issuing commands to agents and
ensuring coordinated, hierarchical execution. This architecture simplifies task management and
provides a global system view, making it suitable for scenarios requiring strict oversight and
global optimization. However, it introduces a single point of failure, limited scalability, and
reduced agent autonomy, as agents rely heavily on the MCP for instructions.

A2A Architecture

In an A2A-based architecture, agents communicate directly with one another in a decentralized,
peer-to-peer manner. Each agent operates autonomously, sharing information and collaborating
dynamically to achieve shared goals. This architecture is more scalable and fault-tolerant, as
there is no central controller, and agents can adapt to changes in real time. However, it requires

more sophisticated protocols to manage agent coordination, avoid conflicts, and ensure secure
communication.

Securing Agent Communication

Securing agents' communications can be compared to securing communications between
client endpoints within an enterprise, defense, or manufacturing architecture. In such
architectures, the core principles of Zero Trust deployments are followed to limit lateral
(peer-to-peer) communications, which can easily compromise information systems.

Zero Trust Core Principles:

Verify Explicitly:

1. Perform continuous Authentication and Authorization to ensure the veracity of the
entity and its respective communications.

2. Ensure multi-factor authentication is utilized to limit the exposure of a
compromised set of credentials.

Least Privilege Access:

1. Role Based Access Control (RBAC) provides the most limited level of access to
resources that would allow for the function needed to be executed, lowering the
potential blast radius of a system becoming compromised.

2. Just-in-time(JIT) access, allowing only access to resources for a given activity,
during a fixed period.

Assume Breach:

1. When designing a system, assume that it has already been compromised. Thus,
microprocesses and their data should be isolated to limit the potential fallout of a
third party's activity on the system.

2. An up-to-date incident response plan should allow for rapid detection and
remediation actions.

The principle described may sound overly thorough. However, since many agents may be
involved in their interactions with information systems, compromising the weakest link often
results in catastrophic data breaches. Therefore, it is essential to maintain proper system
hygiene when developing agents and their respective deployments from the outset and to
support the deployment to ensure it is on a more solid footing.

Situations associated with agent-to-agent communications can arise in Kubernetes, particularly
in Cluster-to-Cluster communications, where agent instances run in pods that aim to
communicate with a remote agent within a separate cluster instance. Such communications can
be achieved via service mesh deployments using tooling such as Cilium Cluster Mesh, Istio
Ambient Mesh, or Linkerd. Coupled with network policy deployed across clusters, standardized
security can be achieved.

Security of Classified Data accessed by Agents

In many corporations, there is a need to separate public data from what would be considered
classified, corporate intellectual capital, and trade secrets from being publicly exposed. Using
internal data in conjunction with LLMs/SLMs can be significant; however, maintaining control
over this data can pose security risks and challenges, particularly in a multi-agent or multi-actor
deployment, where each agent may be interfacing with a separate LLM.

Communications between agents depend upon the LLM used. While many LLMs support
communication through function-calling, JSON output, or structured output, others only support
communication through natural language. The latter can increase the risk of leaking sensitive
private data to the public (or attackers).

~

/\/ /,\(W \ /\/\/\/

SaaS P Saa$ i On-Prem :
((Provider #1 ! & Provider #2 [| Data Center !
=)= '

Prlvate Model C

I ,
[|I

.

6) o= & == 6

Agent 1 ii Agent 2 iI Agent 3 .
Data Classification: || Data Classification: || Data Classification:
N Public ./‘ '\'. ./-' "\ Trade Secrets ./~'

Containerized Agents

Kubernetes and lightweight variations such as K3s provide an ideal environment for agent
deployment, given the versatility of containerized application deployment. This includes the
robust ecosystem of tooling that facilitates the secure deployment and scaling of pods, as well
as the ability to utilize different address families for protocol-level operations.

Agent Deployment Form Factors

/—\(\\/A >

 ®6ee
Public Cloud - Private Cloud
On-Prem DC
>
&

Decentralized
Web3 Based

Edge Compute &
Resource Constrained

Internet / Corporate WAN

@%}

® 6 66 6

200
20

This section introduces an overview of the different types of agent architectures observed in the
industry today and the security challenges that can arise through incorrect deployment, missing
containment, failed guardrails, or a lack of Zero Trust Security concepts being considered during
the ideation, planning, and development phases of the (agent) microservice and deployment
activities within an IT architecture or system.

Constrained Access

Security implications in Agent deployments can manifest themselves in numerous ways. In the
context of Al Operations (AIOPS), agents may be granted system-level access based on their
goal and objective, and they may attempt to perform actions to escape their environment and
execute a given task.

Scenarios have been observed in air-gap environments where agents have attempted to modify
their code or even perform privilege escalation actions to achieve their objectives. While there
are many valid scenarios in which privilege escalation is a desired outcome, mapping directly to
the target function and intent of the deployed Agent, measures must be applied to avoid
unexpected consequences.

An example of where such intent is needed and desired is when an agent escalates privilege in
an AIOPS context, where a service affecting change on a system under an Al Agent's
operational supervision may be required immediately. This could be a critical software update or
the deployment of a critical security patch in response to a recently disclosed security advisory.
It is crucial to ensure, however, that the actions performed by the Al Agent do not exceed the
realm within which the respective agent is authorized to execute and act upon.

Ensuring that each agent has the necessary access to perform its required task, while limiting
their ability to perform actions beyond their domain of focus, must be controlled through robust

and thorough auxiliary systems and policies. These systems may include dynamizing network
and application security rulesets and applying authorization-based policies to “ring-fence” agent
resources and their corresponding access through micro-segmentation, API gateways, and API
security systems. Additionally, consideration of further security deployment constructs, such as
using Cloud Native Application Protection Platforms, may also be applicable, depending on the
system architecture. Following Zero Trust security principles within agent deployments and
utilizing requisite security guardrails is critical to avoid unexpected or unwanted consequences
of unplanned or unwarranted activity.

Methods to secure agent-to-system communication can be achieved via some of the following
techniques:

- One can deploy the MCP model where access policies can be deployed centrally

- CNI-based security enforcement through tooling like Cilium®

- Role-based access control for external systems with which agents interact

- Restriction/Limitation of agent-to-agent communications through microsegmentation

- Agent to Agent (A2A) communication restrictions through the intermediate API Gateway

- Extended auditing using pattern recognition assessment through guardrails

Securing Agent Localisation and Registries

The growth of agent architectures, modularity, and the ability to deploy key components within a
closed corporate network or utilize public (commercial) agents in a machine-to-machine
cooperation mode requires trust and security. In the context of Cloud Native Kubernetes
environments, agents may exist in clusters that are placed at the Edge to support in providing
low-latency activity, Cloud, or in a Corporate DC, in some circumstances in a secure VPC - in
other scenarios, a publicly accessible service from a SaaS type vendor.

With predictions of millions of public Al Agents running actively by 2030 that can perform
cooperative tasks, secure methods are needed to harden communications with or between
agents, thereby lowering the burden on the application stack in handling the corresponding
scale securely.

Global Registration of Agents and Agent Systems

Agent registration is the process by which an autonomous agent identifies itself to a system and
is granted access to participate in its operations. This involves verifying the agent's identity,
authenticating its credentials, and authorizing it based on predefined roles or permissions to
ensure it can only access resources necessary for its function. During registration, the agent is
often configured with essential parameters, such as communication protocols, security policies,
and service endpoints, enabling it to interact seamlessly with other system components or

7 https://cilium.io

agents. Secure communication channels, such as encrypted connections, are typically
established to safeguard data exchanged during registration. Additionally, the system may
perform health and status checks to ensure the agent functions correctly before adding it to a
central registry or directory for discoverability. Proper agent registration is essential to maintain
the system's integrity, security, and efficiency, preventing unauthorized or malicious agents from
compromising operations.

Al Powered Threat Detection and Mitigation

All Al deployments, including those on cloud native platforms, are subject to an increased attack
surface due to several factors: the large volumes of data involved, the introduction of new Al
models (LLM/SLM), innovative use cases, and the enhanced scale of the system. Security
threats can manifest in many forms. Some, such as access violations, exceeding limits, and
erroneous results, can be easily detected or predicted, allowing for the deployment of mitigating
protections. On the other hand, some threats follow complex heuristics and patterns. In these
cases, Al-powered security tools can be beneficial. These tools utilize machine learning to
identify existing patterns and adapt to emerging patterns, thereby enhancing security measures.
In the CN environment, threat detection and mitigation can be integrated directly into the
application, eliminating the need to share data, logs, and configurations with external systems.
This approach enhances security by maintaining tighter control over sensitive information.

Threat Detection using Al

The following are the ways Al could be used to have superior threat detection vis-a-vis
traditional detection mechanisms:

e Machine learning-based adaptive learning and threat detection also identify evolving
threats.

e |dentifying patterns in vast amounts of data and detecting possible signs of malicious
activity that may otherwise go undetected is essential. Data could be of all types,
including output, configurations, logs, and the system's current state.

Learning from the false positives and creating a more crisp model of future threats.
Real-time analysis of data enables the collection of threat intelligence.

Finally, Al-powered threat detection is not intended to replace traditional methods
entirely. Instead, it builds upon existing approaches, fine-tuning findings and exploring
new threat vectors to enhance security.

Threat Mitigation using Al

Al-based threat mitigation is directly linked to the concepts outlined in the detection section
above. By effectively identifying situations within a complex set of real-time conditions, Al can

provide robust defense mechanisms by analyzing and pinpointing issues at their core. Here are
some situations where it can be beneficial:
e |solating or terminating offending hosts, processes, systems, users, networks, and CN
platform entities, such as pods and workloads.
e Correlate events with user actions and then take actions based on a pattern of events. If
such feedback is available, learn and adapt from false positives.
Mitigate vast numbers of threats simultaneously.
Provide users with targeted insights to achieve better clarity before they take action.

Challenges

Despite the availability of numerous tools for detecting and mitigating security threats in Cloud
Network (CN) deployments, including those powered by Al, several challenges remain
unresolved. Consequently, Al-based security solutions are often used in conjunction with
traditional methods. Users must thoroughly assess their application, infrastructure, and security
needs before deploying any Al-based detection and mitigation solution.

Notable challenges are:

e False positives and negatives—This persistent issue is often attributed to insufficient or
poor-quality data.

e Complexity of solutions—Integrating Al into an existing security infrastructure introduces
complexity, hindering the ability to collect and utilize the necessary data types. This is
also linked to the shortage of skilled personnel.

e Adversarial attacks—Al intelligence, i.e., the model itself—can be vulnerable to security
risks and manipulations. There is no straightforward way to detect these manipulations,
opening the door to unintended actions.

e Scalability issues—The collection, processing, and dissemination of vast data may be an
issue on an infrastructure not built for the required scale.

Regulatory Compliance and Explainability

Government imposed regulations

Data, Privacy and Al Regulations and Directives

Algorithmic
”””””” ‘ \ Accountability
GDPR ! ; Act
2016 [' 2022

" Al Liability
Directive
2022 [

, Data Act Al Bill of Rights
| 2022 2022

1
1
1
1
1

Al Act 3 | National Al '

2024 I | Initiatives Act 1
,,,,,,,,,, : 2020

EU Al Act#—The Al Actis a European regulation on artificial intelligence (Al). The Act assigns
Al applications to three risk categories. First, applications and systems that create an
unacceptable risk, such as government-run social scoring of the type used in China, are
banned. Second, high-risk applications, such as a CV-scanning tool that ranks job
applicants, are subject to specific legal requirements. Lastly, applications not explicitly
prohibited or listed as high-risk are largely left unregulated.

USA’s Algorithmic Accountability Act® (Proposed)—This is proposed legislation in the
United States to address concerns related to automated decision-making systems, including
those powered by artificial intelligence. It would mandate companies to conduct an impact
assessment of their Al systems, ensure transparency regarding data usage, implement
measures to mitigate bias, and hold those responsible for final decisions accountable.

Various other countries have framed their Al regulatory compliance rules in line with the EU.
Still, those are not listed here because the above two are examples of what is required, i.e.,
security frameworks must provide ways to comply with these regulations.

Explainability through Observability

https://opentelemetry.io/docs/specs/semconv/gen-ail

With new legislation being applied globally, from Europe to the Middle East, organizations are
already planning how to meet future mandates. As described, with certain domains and
systems falling into the “critical infrastructure” categorization, there is a dire need to ensure
end-to-end explainability in systems in the execution path of Al-based models and systems.

% https://www.congress.gov/bill/118th-congress/senate-bill/2892/text/is ?format=txt

https://opentelemetry.io/docs/specs/semconv/gen-ai/

While various telemetry sources exist today, they can provide valuable information about a
system's activity at a specific time. The most comprehensive solution—and, ostensibly, the
industry standard today—is using OpenTelmetry (OTEL). The key advantages of OTEL
architecture are the ability to collect and transmit Metrics, Traces, Spans, and Logs within its
framework. Using this data between microprocessors on a single system can help identify key
characteristics of the system and what it may be doing at a given time, such as integration with
activities like CPU Profiling.

Spans and Traces can extend the telemetry context from microservice to microservice, or, in
the context of Al, from Agent to Agent (A2A) within a containerized architecture, provided the
correct instrumentation is in place. In a well planned system, the use of the proper signals
between systems, can also ensure that needed metadata in the context of security and
explainability can be maintained, as a means to allow for a post mortem audit of function, both
for system optimization or Root Cause Analysis in the case of an unexpected or unplanned
action that may have been executed by an Agent or Agent based architecture.

Security Framework and Best Practices

Each Al system, including those deployed on a Cloud Network (CN) platform, faces its security
challenges. These challenges are particularly influenced by the unique characteristics of Al
usage, such as the specific data, models, use cases, and outcomes associated with each
application and deployment. While NIST does not create a one-size-fits-all solution, various
standard frameworks can be relied upon for risk assessment, management, and mitigation.

1. Linux Foundation Responsible Generative Al Framework (RGAF)®°
The Linux Foundation's RGAF refers to principles, guidelines, and tools to ensure
generative Al systems' ethical, responsible, and secure development, deployment, and
use.

2. NIST’s Al Risk Management Framework™®
The Al RMF aims to enhance the trustworthiness of Al systems by offering a structured
approach to identifying, assessing, and mitigating Al-related risks. It seeks to ensure Al
systems are reliable, safe, and aligned with ethical principles. It requires Al offerings to

utilize GenAl for mapping, measuring, managing, and governing associated risks.

3. Secure Software Development Practices for Generative Al and Dual-Use
Foundation Models (NIST SP 800-218A)"

This publication augments the secure software development practices and tasks defined

8 https://Ifaidata.foundation/wp-content/uploads/sites/3/2025/03/Ifn_wp_rgaf 032025a.pdf
70 https://nvipubs.nist.gov/nistpubs/ai/NIST.Al.600-1.pdf
" https://csrc.nist.gov/pubs/sp/800/218/a/ipd

in SP_800-218, Secure Software Development Framework (SSDF) Version 1.1:
Recommendations for Mitigating the Risk of Software Vulnerabilities. SP 800-218A adds
practices, tasks, recommendations, considerations, notes, and informative references
specific to Al model development throughout the software development life cycle.

4. Securing Large Language Model Development and Deployment’

Navigating the Complexities of LLM Secure Development Practices to Align with the
NIST Secure Development Framework.

5. The Framework for Al Cybersecurity Practices (FAICP)™

The Framework for Al Cybersecurity Practices (FAICP), developed by the European
Union Agency for Cybersecurity (ENISA), is designed to address the security challenges
posed by integrating Al systems across various sectors. The framework outlines a
lifecycle approach, beginning with a pre-development phase where organizations assess
the scope of Al applications and identify potential security and privacy risks.

6. OWASP Top 10 LLM Security Risks™

OWASP’s Top 10 for Large Language Models (LLMs) identifies common vulnerabilities
specific to LLMs, covering areas like data leakage, model inversion attacks, and
unintended memorization. It provides a standardized checklist for developers and
security professionals to audit and protect large language models (LLMs).

7. OSCAL-COMPASS™

The Open Security Controls Assessment Language (OSCAL) is a standardized
framework developed by the National Institute of Standards and Technology (NIST) to
enhance the documentation, sharing, and automation of security controls, system
security plans, and assessment plans. OSCAL provides a machine-readable format for
security-related information, such as XML, JSON, and YAML, facilitating automation and
interoperability across various systems and tools.

OSCAL-COMPASS™ (Compliance Automated Standard Solution) is designed to work
with the OSCAL framework, facilitating security and compliance processes. It helps

72 https://www.nist.gov/system/files/documents/2024/02/01/NIST-LLMs-Nick-Hamilton.pdf

3 https://www.faicp-framework.com/

™ https://genai.owasp.org/lim-top-10/

7S https://github.com/oscal-compass/community/blob/main/presentations/oscal-compass-End-to-End.pdf
76 https://github.com/oscal-compass

https://csrc.nist.gov/pubs/sp/800/218/final
https://genai.owasp.org/llm-top-10/

organizations manage, assess, and report on their security controls using OSCAL's
standardized, machine-readable formats.

Future trends and challenges

Future trends in cloud native Al security are steering toward more integrated, adaptive, and
proactive measures to safeguard increasingly complex environments. Techniques such as
Federated Learning (FL) and Split Learning (SL) are gaining traction, enabling decentralized
model training and data partitioning, thereby enhancing privacy and security. These methods
reduce the need to share sensitive data across environments, which is crucial for compliance
with data protection regulations. One major trend is adopting advanced -cryptographic
techniques, such as homomorphic encryption and confidential computing, which enable
computations on encrypted data to protect sensitive Al training and inference processes without
decryption.

Additionally, there is a growing emphasis on broadening supply chain security to encompass not
just software code but also data, Al models, and Al hardware, demanding rigorous vulnerability
management practices to guard against breaches, adversarial attacks, and hardware
compromises. This involves protecting training data and models, tracking dataset provenance,
securing model weights and architectures, and safeguarding Al frameworks and infrastructure.
Emerging risks include vulnerabilities from third-party Al components, data poisoning attacks
that manipulate training data, and model theft techniques that reconstruct Al models through
repeated queries. The introduction of Software Bill of Materials (SBOM) for Al systems and
model provenance verification is crucial for managing third-party models, securing datasets, and
mitigating dependency vulnerabilities. Integrating Al security into broader third-party risk
strategies is essential to harnessing Al's potential while minimizing associated risks.

Dynamic identity and access management are other key areas where traditional models, such
as OAuth and SAML, are being replaced by ephemeral, context-aware authentication and
fine-grained controls that can adjust in real-time to the dynamic nature of Al agents and
machine identities. Al-specific cybersecurity measures enforce Role-Based Access Control
(RBAC), OAuth-based access control, and zero-trust principles for Al APIs and large language
model (LLM) services. Concerns surrounding excessive Al agency, overly permissive
integrations, and insecure output handling underscore the need for stricter access controls and
robust content validation mechanisms. Al-driven threat detection and adaptive network security
are increasingly leveraged to identify and mitigate sophisticated attack vectors in real-time.
Deploying Al-driven anomaly detection and logging enhances threat detection and incident
response capabilities. At the same time, secure output handling and context-aware filtering
prevent vulnerabilities such as SQL injection, cross-site scripting (XSS), and LLM-based
attacks. Denial-of-service risks targeting Al systems and prompt injection attacks that
manipulate Al behavior require robust defense mechanisms.

Meanwhile, security challenges persist in containerized and orchestrated environments such as
Kubernetes, where issues like misconfigurations, weak secrets management, and runtime
security require continuous monitoring and advanced isolation strategies. Relevant Kubernetes
security projects, such as OPA (Open Policy Agent) and Falco, are crucial for implementing
these security measures effectively.

Furthermore, integrating security early in the development process—through shift-left practices
in CI/CD pipelines—remains crucial for detecting and mitigating vulnerabilities early. As Al
security evolves, protecting system prompts, preventing the disclosure of sensitive information,
and mitigating adversarial attacks will be key priorities. Adversarial robustness training, anomaly
detection, and penetration testing are essential for validating the security of Al systems.

As cloud native Al deployments become more pervasive, organizations must continuously
evolve their security frameworks to address these emerging challenges while ensuring
compliance and maintaining operational efficiency.

Appendix

Glossary

In addition to the listed items, please refer to the CNAI glossary, available at
https://tag-runtime.cncf.io/wgs/cnaiwg/glossary/.

Attribute Based Access Control (ABAC)

Attribute Based Access Control (ABAC) is a method to manage user access to systems and
data based on characteristics associated with users, rather than roles (see RBAC). This is a
more flexible and fine-grained approach to assigning permissions than traditional role-based
methods.

Authentication (AuthN)

Authentication is the process of verifying a user's or system's identity. It ensures that the entity
attempting to access a system is who it claims to be.

Authorization (AuthZ)

Authorization determines whether a user or system has permission to access a resource or
perform an action.

A Distributed Denial of Service (DDoS)

A Distributed Denial of Service (DDoS) attack is a malicious attempt to disrupt the normal
functioning of a targeted server, service, or network by overwhelming it with excessive Internet

traffic. These attacks leverage multiple compromised computer systems, often part of a botnet,
as sources of attack traffic.

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) is a security vulnerability in web applications. It allows attackers to
inject malicious scripts into web pages that other users view, potentially compromising their
security and privacy. These scripts can execute in the user's browser, potentially leading to data
theft, session hijacking, or other malicious activities.

Mutual TSL (mTLS)

Mutual TLS (mTLS) is an extension of the standard TLS (Transport Layer Security) protocol that
adds a layer of security by requiring both the client and server to authenticate each other. This
mutual authentication process ensures that both parties are verified and trusted, thereby
enhancing the protection of sensitive data exchanges.

ChatGPT

ChatGPT is an advanced language model developed by OpenAl. It uses deep learning
techniques, specifically a variant of the Transformer architecture, to generate human-like text
based on the input it receives.

Chatbot

A chatbot is software designed to simulate human conversation through text or voice
interactions. It automates communication, provides information, and assists users in performing
tasks across various platforms, such as websites, messaging applications, and customer
service interfaces.

Fine-tuning Data

Fine-tuning data is a specialized dataset that adapts pre-trained models to specific domains or
tasks, often smaller than the original training data.

Identity and Access Management (IAM)

Identity and Access Management (IAM) is a framework of policies and technologies that
ensures the right individuals have access to the right resources at the correct times for the right
reasons.

Inference Data

Inference data contains information collected when the model is deployed and making
predictions, including inputs, outputs, and associated metadata.

Long-lived Chat Contexts (Context Memory)

Long-lived chats are stored conversation histories, commonly referred to as “memory”, that
provide context for Al systems engaged in ongoing dialogues with users.

Model Checkpoints

Model checkpoints are saved states of an Al model during or after training that capture weights,
biases, and architecture configurations, allowing training to resume or the model to be deployed.

Model Context Protocol (MCP)

Model Context Protocol (MCP) is an open standard protocol developed by Anthropic to
standardize how Large Language Models (LLMs) integrate with external tools, servers, and data
sources. Users can expose their data or tools through MCP-compliant servers, then incorporate
and build Al applications that connect to these servers as MCP clients. MCP acts as a bridge
between Al models and external data sources, providing a standardized communication
framework. MCP supports STDIO, Server Sent Events (SSE), and WebSockets communication
methods.

Open Authorization (OAuth 2.0)

OAuth (Open Authorization) is an open standard for access delegation commonly used to grant
websites or applications limited access to a user's information without exposing passwords.
OAuth enables users to authorize third-party services to access their information from another
service, allowing them to access user data from social media accounts without sharing login
credentials.

OpenlID Connect (OIDC)

OpenID Connect (OIDC) is an authentication layer built on the OAuth 2.0 protocol. It allows
clients to verify the end-user's identity based on the authentication performed by an
authorization server and obtain basic profile information about the user. OIDC is designed for
federated identity and single sign-on (SSO), providing a secure and straightforward method for
authenticating users across different domains and applications.

Open Security Controls Assessment Language (OSCAL)

Open Security Controls Assessment Language (OSCAL) is a standardized framework
developed by the National Institute of Standards and Technology (NIST) to represent control
catalogs, system security plans, and assessment plans in a machine-readable format. OSCAL
aims to enhance the efficiency and consistency of security assessments and compliance
reporting by providing a unified language that can be applied across various systems and tools.

Post-quantum cryptography (PQC)

Post-quantum cryptography (PQC) refers to cryptographic algorithms designed to be secure
against the potential threats of quantum computers.

Role Based Access Control (RBAC)

Role Based Access Control (RBAC) is a method to manage user access to systems and data
based on their assigned roles. Using RBAC, administrators can assign permissions for specific
roles, rather than at an individual user level.

Training Data
Training data is raw data used to initially train Al models, containing labeled examples from
which the model learns patterns and relationships.

Trusted Execution Environment (TEE)

A Trusted Execution Environment (TEE) is a secure area within a processor that provides
security for code execution and data protection. It ensures that sensitive computations and data
are isolated and protected from unauthorized access or tampering, even if the primary operating
system is compromised. TEEs enhance application security by providing a trusted space for
executing sensitive operations.

Validation Data

Validation data is data collection separate from the training used to tune hyperparameters and
evaluate model performance during development, helping prevent overfitting.

Vector Embeddings

Vector embeddings are high-dimensional numerical representations of text, images, or other
data that capture semantic meaning in a form that Al systems use.

Workload Identity (WID) / Non-Human Identity (NHI)

A cryptographically verifiable, non-human identity that a cloud-native compute workload, such
as a containerized Al training job, inference service, or data-processing pipeline, receives at
runtime. It enables the workload to obtain short-lived, least-privileged credentials to call cloud
APls, access data, and interact with other services without embedding static keys or secrets,
allowing for secure, scalable, and multi-tenant Al operations across clusters and regions.

References & Citations
1. Cloud Native Security Whitepaper (Version 2)

2. CNCF Cloud Native Al Whitepaper

https://www.cncf.io/wp-content/uploads/2022/06/CNCF_cloud-native-security-whitepaper-May2022-v2.pdf
https://tag-runtime.cncf.io/wgs/cnaiwg/whitepapers/cloudnativeai/

3. Cloud Native Al Personas

4. Presentation about security and ML

5. OWASP Al Security and Privacy Guide
6. OWASP Resources

7. Al/ML Security Group Documents

8. CNCF Landscape

9. CNAI WG Resources

10. Software Supply Chain Security Best Practices

Resources

1. CN Security Training

a. Kubernetes and Cloud Native Security Associate (KCSA) -
https://training.linuxfoundation.org/certification/kubernetes-and-cloud-native-secu
rity-associate-kcsa/

b. Certified Kubernetes Security Specialist (CKS) -
https://training.linuxfoundation.org/certification/certified-kubernetes-security-speci
alist/

2. Al Vulnerability listings

a. GenAl Security Project by OWASP - https://genai.owasp.org/

b. CVE Guidance for Al by CVEAI WG -
https://www.cve.org/Media/News/item/blog/2025/02/18/CVE-ID-CVE-Record-Alre
lated-Vulnerabilities

Authors

Aonan Guan, Boris Kurktchiev, Deep Patel, Joel Roberts, Josh Halley, Nimisha Mehta, Nina
Polshakova, Pedro Ignacio, Ronald Petty, Saad Sheikh, Sudhanshu Prajapati, Victor Lu

Reviewers
Adel Zaalouk, Andrew Block, Jon Zeolla, Lei Wang, Nitin Naidu, Yoshiyuki Tabata

https://tag-runtime.cncf.io/wgs/cnaiwg/glossary/
https://dwheeler.com/secure-class/presentations/AI-ML-Security.ppt
https://owasp.org/www-project-ai-security-and-privacy-guide/
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/wiki/Educational-Resources
https://docs.google.com/spreadsheets/d/1XOzf0LwksHnVeAcgQ7qMAmQAhlHV2iEf4ICvUwOaOfo/edit?gid=0#gid=0
https://landscape.cncf.io/
https://tag-runtime.cncf.io/wgs/cnaiwg/
https://tag-security.cncf.io/blog/software-supply-chain-security-best-practices-v2/
https://training.linuxfoundation.org/certification/kubernetes-and-cloud-native-security-associate-kcsa/
https://training.linuxfoundation.org/certification/kubernetes-and-cloud-native-security-associate-kcsa/
https://training.linuxfoundation.org/certification/certified-kubernetes-security-specialist/
https://training.linuxfoundation.org/certification/certified-kubernetes-security-specialist/

Acknowledgments

Members of the CNCF Al Working Group and TAG-Security contributed to this paper. Thank you
to everyone.

	Tab 1
	Executive Summary
	Introduction
	Scope
	Target Audience
	Assumptions

	AI Security Landscape and Threat Scenario
	Traditional Cloud Native Security Issues
	Data Science and Data Management Security Issues
	AI Model and MLOps Security Issues
	AI Induced Threat Landscape

	Consequences of Security Breaches
	Examples of Real World AI Security Incidents
	CVE-2023-43654 (TorchServe - Tool for serving PyTorch models)5
	Child Sexual Abuse Material Taints Image Generators8
	Samsung Data Leak via ChatGPT6
	Chevrolet Dealer Chatbot underselling the vehicle7

	The Journey towards CNAI Security
	Platform Security
	Container and Orchestration Platform Security
	Identity and Access
	Safekeeping of Secrets
	Network Security
	Security Monitoring and Logging
	Gaps and Opportunities

	Data Security
	Data at Rest
	Data in Transit
	Data in Use

	​Veracity of Telemetry Data
	Model Security
	Model Integrity
	Model Format, Serialization, and Common Vulnerability
	LLM Model Guardrail

	Deployment and Operational Security
	Threat Detection
	Vulnerability Management in a CI/CD Pipeline

	​​Cloud Native Application Protection Platforms

	Encryption and Confidential Computing
	Confidential Computing
	Confidential Containers
	Benefit of enabling confidential computing
	Challenges

	Unikernels
	Homomorphic Encryption
	Challenges

	AI Deployments and Post-quantum Cryptography
	Quantum Resistant Cryptography
	PQC in a Cloud Native AI Deployment
	Example of SSL and PQC

	AI Agents
	​​Agent Architectures
	​​MCP Architecture
	​​A2A Architecture
	​​Securing Agent Communication

	​​Security of Classified Data accessed by Agents
	Containerized Agents
	​​Constrained Access
	​​Securing Agent Localisation and Registries
	​​Global Registration of Agents and Agent Systems

	AI Powered Threat Detection and Mitigation
	Threat Detection using AI
	Threat Mitigation using AI
	Challenges

	​​Regulatory Compliance and Explainability
	Government imposed regulations
	Explainability through Observability

	Security Framework and Best Practices
	Future trends and challenges
	Appendix
	Glossary
	References & Citations
	Resources
	Authors
	Reviewers
	Acknowledgments

