Факультет биоинженерии и биоинформатики Московского Государственного Университета имени М.В. Ломоносова

# Обзор генома и протеома бактерии Streptomyces fodineus

Автор: М.С. Давитадзе

#### **РЕЗЮМЕ**

В данном обзоре я провела анализ нуклеотидной последовательности генома *Streptomyces fodineus*, проанализировала разнообразие генов в геноме и их местоположение. Данные, полученные мной в этой работе, соответствуют данным о геноме *Streptomyces fodineus* из других источников.

## СПИСОК СОКРАЩЕНИЙ

SRP-частица - signal recognition particle, частицы распознавания сигнала

### 1. ВВЕДЕНИЕ

Бактерии рода Streptomyces относятся к актинобактериям. Это грамположительные аэробные нитевидные бактерии. Для них характерны следующие признаки: ДНК с повышенным содержанием гуанина и цитозина, жирные кислоты с сильно разветвленными цепочками и наличие LL-диаминопимелиновой кислоты в клеточной стенке. Эти бактерии образуют обильно ветвящийся мицелий и цепочки спор. Они являются основными представители почвенных бактерий. Штамм Streptomyces fodineus был выделен из образца кислой почвы, взятого возле шахты. Эти бактерии образуют бело-серый или желтовато коричневый воздушный мицелий и серобелый субстратный мицелий, споры их гладкие. Они также продуцируют противогрибковые вещества. Streptomyces fodineus устойчивы к пенициллину, ампициллину и хлорамфениколу [1].

Цели и задачи

В данной работе я поставила перед собой следующие цели: проанализировать нуклеотидную последовательность генома *Streptomyces fodine*us, выяснить, какие гены в нем закодированы, а также проанализировать гены, кодирующие белки.

## 2. МАТЕРИАЛЫ И МЕТОДЫ

Для обработки данных я пользовалась электронными таблицами "Google таблицы", языком программирования Python 3, а также командной оболочкой Bash.

Анализ нуклеотидной последовательности ДНК

С помощью написанного мной на Python скрипта (сопроводительные материалы, пункт 1), я вычислила длину нуклеотидной последовательности генома. Также с помощью Bash я посчитала число нуклеотидов в геноме (сопроводительные материалы, пункт 2) и количество димеров (сопроводительные материалы, пункт 3) каждого типа, а также их процент от общего числа. Я вычислила GC-состав, используя формулу:

$$GC(\%) = ((G+C) \div L) \cdot 100$$
 где  $L$  - это число всех нуклеотидов одной цепи ДНК:  $A+T+G+C$  (табл.1).

Анализ генов

С помощью функции СЧЁТЕСЛИ Google таблиц я нашла число генов разных типов и посчитала их общее количество, а также нашла процент каждого типа от общего числа генов. Также с помощью функции СЧЁТЕСЛИМН я вычислила процент генов, закодированных на + и - цепях ДНК.

Анализ длин белков

С помощью функции Google таблиц ЕСЛИ я составила таблицу длин белков Streptomyces fodineus в аминокислотных остатках. На ее основе я построила гистограмму. Также с помощью функций МАКС и МИН я нашла самый длинный и самый короткий белок, среднюю длину белков (с помощью функции СРЗНАЧ) и медианное значение длин белков (функция МЕДИАНА).

### 3. РЕЗУЛЬТАТЫ

Анализ нуклеотидной последовательности ЛНК

Длина генома Streptomyces fodineus - 9698948 пар нуклеотидов. В геномной последовательности встречаются только буквы А, Т, G и С нуклеотиды аденин, тимин, гуанин и цитозин. При этом число аденинов примерно равно числу тиминов, а число гуанинов примерно равно числу цитозинов (табл.1).

Табл.1 количество нуклеотидов каждого типа (в шт. нуклеотидов)

| тип нуклеотида | количество |
|----------------|------------|
| Аденин         | 1408226    |
| Тимин          | 1395856    |
| Гуанин         | 3443047    |
| Цитозин        | 3451819    |

Гуанин и цитозин составляют 71% от общего числа нуклеотидов ДНК. Также оказалось, что наиболее часто в геноме встречаются димеры CG(14%), а самые редкие димеры - TA(1%) (табл.2).

Табл.2 количество и процент димеров каждого типа

| 2-mers | count   | percent |
|--------|---------|---------|
| CG     | 1373701 | 14      |
| GC     | 1205512 | 12      |
| CC     | 1084175 | 11      |
| GG     | 1075713 | 11      |
| GA     | 610179  | 6       |
| TC     | 608558  | 6       |
| AC     | 553574  | 6       |
| GT     | 551643  | 6       |
| CA     | 525288  | 5       |
| TG     | 515103  | 5       |
| AG     | 478529  | 5       |
| CT     | 468654  | 5       |
| AT     | 208007  | 2       |
| AA     | 168116  | 2       |
| TT     | 167552  | 2       |
| TA     | 104643  | 1       |

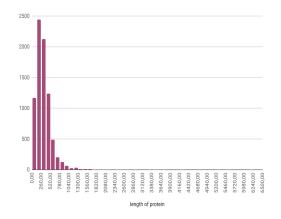
#### Анализ генов

Всего в геноме *Streptomyces fodineus* 8714 генов, при этом большую их часть составляют гены, кодирующие белки (92%). Также в геноме присутствуют псевдогены, составляющие 7% от общего числа генов. Генов же, кодирующих РНК, в геноме всего 1,03% (в т.ч. 0,79% тРНК и 0,21% рРНК) (табл.3).

Табл.3 количество генов каждого типа и их процент от общего числа генов

| тип гена      | количество | процент |
|---------------|------------|---------|
| proteins      | 7997       | 91,77   |
| pseudogenes   | 627        | 7,2     |
| tRna          | 69         | 0,79    |
| rRna          | 18         | 0,21    |
| tmRNA         | 1          | 0,01    |
| SRP_RNA       | 1          | 0,01    |
| RNase_P_RNA   | 1          | 0,01    |
| ncRNA         | 0          | 0       |
| antisense_RNA | 0          | 0       |

Выяснилось, что на - цепи содержится в целом больше генов (52%), чем на + цепи. При этом на + цепи больше генов, кодирующих рРНК, а также есть гены тмРНК, SRP-частицы и РНКазы P, которых нет на - цепи (табл.4).


Табл.4 распределение генов по цепям ДНК

| gene type            | + strand | - strand |
|----------------------|----------|----------|
| protein coding genes | 3878     | 4119     |
| pseudogenes          | 300      | 327      |
| tRna genes           | 21       | 48       |
| rRna genes           | 12       | 6        |
| tmRNA genes          | 1        | 0        |
| SRP_RNA genes        | 1        | 0        |
| RNase_P_RNA genes    | 1        | 0        |

#### Анализ длин белков

В среднем длина белков составляет 328 аминокислотных остатков, медианное значение при этом равно 278. Самый длинный белок *Streptomyces fodineus* состоит из 6145 аминокислотных остатков, а самый короткий - из 17 (рис.1, сопроводительные материалы, таблица protein\_length).

Рис.1 гистограмма длин белков



#### 4. ОБСУЖДЕНИЕ

Результаты, полученные мной в результате работы, совпали с уже имеющимися данными о геноме Streptomyces fodineus: геном этих бактерий состоит из 9698948 пар нуклеотидов, в нем всего 8714 генов, 7997 из которых кодируют белки [5]. В результате проведения исследования я выяснила, что в последовательности одной цепочки геномной ДНК Streptomyces fodineиѕ число аденинов примерно равно числу тиминов, а число гуанинов приблизительно равно числу цитозинов, а это значит, что для генома этой бактерии выполняется второе правило Чаргаффа. В ходе работы я также выявила, что доля гуанина и цитозина в геноме - 71%, что совпадает со значением GC-состава ДНК Streptomyces fodineus, полученным в других исследова ниях [1]. Вероятно, такой высокий процент этих нуклеотидов связан с тем, что для данного штамма важно, чтобы ДНК была более устойчива. Гуанин соединен с цитозином тремя водородными связями, в то время как аденин с тимином - двумя, поэтому высокая доля GC-пар делает ДНК более стабильной.

# 5. ЗАКЛЮЧЕНИЕ

В результате работы мне удалось проанализировать нуклеотидный состав генома и найти соотношение нуклеотидных димеров в ДНК *Streptomyces fodineus*. Также я провела анализ генов, закодированных в геноме и выяснила, какие типы генов в нем присутствуют, а также выявила число генов каждого типа. Кроме того, я посчитала длину генов, кодирующих белки.

## БЛАГОДАРНОСТИ

Хочу сказать огромное спасибо Андрею Владимировичу Алексеевскому, который учил меня ра ботать с таблицами и наставлял при выполнении данного обзора. Спасибо Андрею Владимировичу за идею проведения подобного исследования. Выражаю благодарность Сергею Александровичу Спирину, Ивану Русинову и всем ос тальным преподавателям биоинформатики ФББ, благодаря которым я смогла освоить Bash и Python. Без них эта работа также не могла быть выполнена. И, конечно, благодарю своих однокурсников, подавших идеи для исследования генома, которые были частично реализованы в данной работе.

#### СОПРОВОДИТЕЛЬНЫЕ МАТЕРИАЛЫ

Документ со скриптами и командами: <a href="https://docs.google.com/document/d/1U6ZJOzQ-7">https://docs.google.com/document/d/1U6ZJOzQ-7</a>
<a href="lsunlePoDfjl71kCNKrtd08ejJVGx-pezQ/edit?usp">lsunlePoDfjl71kCNKrtd08ejJVGx-pezQ/edit?usp</a>
<a href="mailto:sharing">=sharing</a>

- 1) скрипт для вычисления длины последов ательности, написанный на Python;
- команда Bash для подсчета числа нукле отидов каждого типа;
- команда Bash для подсчета числа нукле отидных димеров каждого типа;
- 4) список использованных мной функций и методов в Google таблицах.

Ссылка на таблицу protein\_length с длинами белков и гистограмму длин этих белков <a href="https://d">https://d</a> ocs.google.com/spreadsheets/d/1jDNa79VRHxwN <a href="https://d">YkK6Z7-bCiH\_w9atdRrOffeQf5KLxhk/edit?usp=s haring</a>

### СПИСОК ЛИТЕРАТУРЫ

Min-Kyeong Kim, Hye-Jeong Kang, Su Gwon Roh, Ji Sun Park, Seung Bum Kim, *Streptomyces fodineus* sp. nov., an actinobacterium with antifungal activity isolated from mine area soil, International Journal of Systematic and Evolutionary Microbiology 69:1350–1354, 2019.

Директория с данными о геноме Streptomyces fodineus на сайте NCBI <a href="ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/735/805/GCF\_001735805.1">ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/735/805/GCF\_001735805.1</a>
\_ASM173580v1

Страница сайта NCBI со сведениями о геноме Streptomyces fodineus <u>https://www.ncbi.nlm.nih.g</u> ov/assembly/GCF\_001735805