https://www.intbio.org/SynBioWS2018/

Расписание практической части

Часть 1

- 1. Трансформация клеток плазмидой бекбонд
- 2. Оценка эффективности компетентных клеток.

Часть 2

- 1. Лиониризация и выделение из геля бекбоне
- 2. Рестрикция, 3А ассей, Лигирование
- 3. Трансформация
- 4. Оценка клонов, клон чек. отбор клонов
- 5. приготовление трансфер функции
- 6. расчет трансфер функции
- 7. отчет по праку
- 8. Презентация проектов

Тайминг

День	Процедура	Время	Примечание
1 Трансформация клеток плазмидой бекбонд	Замешивание чашек с добавлением плазмиды Инкубирование при +4 ХитШок +42 Инкубирование со свежим LB	1 мин 30 мин 90 сек 45 мин	
	Параллельно Заливка чащек с твердым LB	60 мин итог:2 часа	
2 Оценка эффективности компетентных клеток.	Подсчет количества клонов Подготовка культур и чащек для второй части практикума	1 часа 2 часа итог 3 часа	
3 Лионеризация вектора и выделение из геля	Лионеризация вектора бекбона Заливка геля Выделение вектора бекбона из геля	1 час 1 час 1 час итог 3 часа	
4 Рестрикция, 3A	Рестрикция векторов для получения конструкций к	1 час	

ассей, Лигирование	3А ассею Проведение 3А ассея Лигирование	1 час ON	
5 Трансформация	См выше оценка качества сборки гельэлектрофорезом	2 часа 1 час итог 3 часа	
6 Оценка клонов, клон чек. отбор клонов	Отбор клонов Замешивание ПЦР смеси Постановка ПЦР Агарозный гельэлектрофорез	30 мин 30 мин 1 час 1 час	
		Итог 3 часа	
7 Проверка клонов	в зависимости от выбранных конструкций		
8 На всякий случай			
9 Отчет по праку	Предоставление отчета в виде написанных методов и оформленных результатов. Ответ на вопросы.	3 часа	
10 Презентация проектов			

Описание процедур

Молекулярное клонирование

проведена на приборе фирмы BioRad IQ5.

Нуклеотидную последовательность, кодирующую целевой белок CNBD, получали методом ПЦР из последовательности полноразмерного канала Kv10.2, используя следующие праймеры:

- 1. Прямой праймер;5' ATGTG<u>CTCGAG</u>TCAAAAGATGATCCG 3' длина 26, Mw8019 г/моль. Сайт действия рестриктазы: Xho1.
- 2. Обратный праймер; 5' AGT TAA <u>TGG CGG CCG C</u>GG CTT TTC 3' длина 24, Мw 7376 г/моль. Сайт действий рестриктазы: Not1. Праймеры были синтезированы в ЗАО «Евроген». Процедура ПЦР была

Реакционная смесь для проведения процедуры ПРЦ содержала следующие компоненты:

10хТаq Buffer с MgSO4 (Fermentas), 0.25 мМ dNTP (Fermentas), 35 рМ Прямого праймера, 35 рМ Обратного праймера, ДНК последовательность канала hEAG 0.45 нг, Таq Полимераза (Fermentas), вода (nuclear Free, Fermentas).

Продолжительность и температура каждой стадии амплификации была установлена следующим образом: предварительное расплавление последовательности ДНК всего канала в течение 1 минут при 95°С; 18 циклов, включающих этапы: денатурация при 95°С в течение 15 секунд, отжиг праймеров 55°С 30 секунд, элонгация при 72°С в течение 1 минуты; для окончания процесса амплификации была выбрана температура 4°С, которая поддерживалась до момента изъятия реакционной смеси.

Реакционную смесь анализировали методом электрофореза в 1 % агарозном геле.

Очистка ПЦР- фрагмента CNBD

Для очистки ПЦР- фрагмента использовали Sigma PCR Purification Kit. К образцу ПЦР-фрагмента добавляли Binding Solution буфер в 1:5. загружали Полученную отношении смесь В колонку И центрифугировали в течение 1 минуты на 12000 g. Предварительно колонку центрифугировали с добавлением Column Preparation Solution буфера в объеме 0,5 мл в течение 1 минуты на 12000 g. Затем колонку промывали используя Wash Solution буфер и дважды центрифугировали в течение 1 и 2 минут на 12000 g. Для элюции колонку перемещали в новую пробирку и использовали 50 мкл MiliQ воду, предварительно нагретую до температуры 55 °C. Полученную смесь инкубировали в течение 1-5 минут и центрифугировали в течение 1 минуты на 12000 g для первой элюции. Вторая элюция была получена аналогичным образом. Концентрация очищенного ПЦР- продукта для первой и второй элюций составила 10 нг/мкл и 4 нг/мкл соответственно.

Рестрикция ПРЦ-фрагмента CNBD

Состав реакционной смеси: раствор очищенного ПЦР-фрагмента - 50 мкл, FD рестриктаза Xho1 (Fermentas) - 1 мкл, FD рестриктаза Not1 (Fermentas) - 1 мкл, буферный раствор (10х FD Buffer) - 6мкл, MiliQ вода - 2 мкл.

Смесь была приготовлена при комнатной температуре. Рестрикцию проводили при 37 °C в течении одного часа с использованием термостата "Гном" (ДНК-Технология). По окончанию процедуры ферменты были инактивированы при 80 °C в течении 20 минут. Результат рестрикции проверяли с помощью электрофореза в 1% агарозном геле.

Выделение векторной плазмиды pET32 ссайтом TEV протеазы

Состав раствора №1: глюкоза 50 мМ, TrisHCl (рН 8) 25 мМ, ЭДТА 10 мМ, MiliQ вода.

Состав раствора №2:NaOH 0.2 M, SDS 1%, TritonX100, MiliQ вода.

Клеток и тщательно ресуспендировали в 5 мл раствора №1.К добавили 0,5 полученному раствору ΜЛ раствора лизоцима концентрацией 10 мг в мл и инкубировали в течение 15 минут при комнатной температуре. К данной смеси резко добавили 10 мл раствора №2, затем аккуратно перемешали и инкубировали образец при 0 °C (на ледяной бане)в течение 5 минут. Далее к раствору нами было добавлено по каплям 5 мл охлажденного 10 М ацетата аммония с последующей инкубацией полученной смеси при 0 °C в течении 5 минут. Далее образец центрифугировали при 4 °C в течение10 минут на 5000 g.Затем к полученному супернатанту добавили 12,5 мл изопропанола, инкубировали смесь в течение 10 минут при комнатой температуре и центрифугировали при 4 °C в течение10 минут на 5000 g. Осадок после центрифугирования ресуспендировали в 800 мкл 2М ацетата аммония и инкубировали в течение 10 минут при комнатной температуре. Данную центрифугировали в течение 10 минут при комнатной температуре. К полученный супернатанту добавили 400 мкл изопропанола с последующими инкубацией и центрифугированием в течение 5 минут при комнатной температуре. Осадок сполоснули 70%этанолом и растворили в 200 мкл MiliQ воды. Результат выделения плазмиды проверяли с помощью электрофореза в 0,5% агарозном геле. Концентрацию выделенной плазмиды измеряли с помощью спектрофотометра NanoDrop 2000с (Thermo Fisher Scientific), которая составила 12,4 мкг в 1 мкл.

Экстракция из геля векторной плазмиды pET32 с сайтом TEV протеазы

Для экстракции плазмиды использовался Extraction kit (Sigma). Предварительно нужный участок был вырезан из геля скальпелем, взвешен и растворен в растворе Solubilization buffer в соотношении 1:3. Гель в растворе инкубировали при 55°C в течение 10 минут, периодически перемешивая с использованием прибора Vortex (Fisher Scientific). Для "Гном" использовался термостат поддержания температуры (ДНК-Технология). Затем к растворившемуся гелю был добавлен изопропанол, полученная смесь была нанесена на колонку с дальнейшим центрифугированием на максимальных оборотах в течением одной минуты при комнатной температуре. Предварительно колонка была подвержена центрифугированию с нанесенным раствором Column Preparation Solution на максимальных оборотах в течением одной минуты при комнатной температуре. В дальнейшем колонку промывали два раза с использованием раствора Wash Solution. Затем элюировали плазмидную ДНК 30 мкл MiliQ водой, нагретую до 65 °C. Концентрацию выделенной плазмиды измеряли с помощью спектрофотометра NanoDrop 2000с (Thermo Fisher Scientific), которая составила 14,8 нг в 1 мкл.

Рестрикция векторной плазмиды pET32 ссайтом TEV протеазы

Состав реакционной смеси: раствор векторной - 2 мкл, FD рестриктаза Xho1 (Fermentas) - 0,5 мкл, FD рестриктаза Not1 (Fermentas) - 0,5мкл, буферный раствор (10х FD Buffer) -1 мкл, MiliQ вода - 6 мкл. Смесь была приготовлена при комнатной температуре. Рестрикцию проводили при 37 °C в течении одного часа с использованием термостата. По окончанию процедуры ферменты были инактивированы при 80 °C в течении 20 минут. Результат рестрикции проверяли с помощью электрофореза в 0,5% агарозном геле.

Лигирование, создание вектора

Предварительно плазмида была дефосфорилирована. К 10 мкл плазмиды добавили фосфотазу (Fermentas) 1 мкл, 10х FD Buffer 2 мкл. Полученную смесь инкубировали сначала при 37 °C в течение 10 минут, затем при 75°C для инактивации фермента. Для поддержания температуры использовался термостат.

Смесь для лигирования содержала следующие компоненты: линейный вектор рЕТ32 ссайтом ТЕV протеазы 10 мкл, ПЦР фрагмент 30 мкл, 10хТ4 DNA buffer (Fermentas) 5 мкл, Т4 лигаза (Fermentas) 0,5 мМ АТФ 2 мкл, MiliQвода 2 мкл. Лигазную смесь инкубировалипри22 °C в течение первого часа и при 4 °C в течение 22 часов. Для поддержания температуры использовался прибор BioRad IQ5. По окончании реакции

смесь инкубировали при 65 °C в течении 10 минут для инактивации фермента. Данный образец использовался нами для трансформации клеток.

Химическая трансформация клеток, наработка и выделение плазмиды

Для трансформации 50 мкл суспензии компетентных клеток (*E. coliXL 10 Gold*) с 20 мкл лигазной смеси инкубировали при 0°C в течение 30 минут. Затем проводили процедуру теплового шока при 42°C в течение 90 секунд, в дальнейшем охлаждали на ледяной бане в течение 5 минут, параллельно добавляя к полученной смеси охлажденный 200 мкл раствор LB. Далее образец инкубировали в течение 30 минут при 37°C, активно перемешивая. Для последнего шага нами использовался инкубатора (Thermofish Scientific).

Затем клетки были высеяны на чашки с твердым агаром LB, содержащим 50 мкг/мл ампициллина, методом истощающего штриха. Чашки с нанесенными клетками поместили в инкубатор при 37°C на 16 часов [46].

Клоны, выросшие на чашке, проверяли на наличие плазмиды с целевой вставкой методом ПЦР. Клетки клонов ресуспендировали в 10 мкл MiliQ воды. Смесь для процедуры содержала следующие компоненты: 10хТаq Buffer с MgSO4 (Fermentas), 0.25 мМ dNTP (Fermentas), 35 рМ Прямого праймера, 35 рМ Обратного праймера, 1 единицу Таq полимераза (Fermentas), 5 мкл ресуспендированных клеток с чашки. Температура и продолжительность каждой стадий были выбраны те же, что и для амплификации вставки. Результаты процедуры анализировали методом электрофореза в 1 % агарозном геле.

Образцы, которые по результатам проведения ПЦР, содержали нужную вставку, инкубировали сначала в 4 мл, затем в 20 мл жидкой среды LB с ампициллином при 37°C в течение 10-12 часов оба объема. Из полученных культур выделяли плазмидную ДНК.

Для выделения плазмиды использовалась методика, описанная выше.

Суспензии выращенных культур центрифугировали при 4000 g в течение 10 минут при 4°C. Осадок, содержащий клетки, ресуспендировали в 1,5 мл плазмидного раствора №1. К данной смеси добавили 400 мкл плазмидного раствора №2, инкубировали образец на ледяной бане в течение 5 минут. Затем к раствору добавили по каплям 200 мкл охлажденного 10 М ацетата аммония с последующей инкубацией полученной смеси при 0 °C в течении 5 минут. Далее образец центрифугировали при комнатной температуре в течение 10 минут на 5000 д. Затем к полученному супернатанту добавили 500 мкл изопропанола, инкубировали смесь в течение 10 минут при комнатой температуре и центрифугировали при 4 °C в течение 10 минут на 5000 g. Осадок после центрифугирования ресуспензировали в 100 мкл 2 М ацетата аммония и инкубировали в течение 10 минут при комнатной температуре и центрифугировали при тех же условиях. К полученному супернатанту добавили 100 мкл изопропанола с последующими инкубацией и центрифугированием в течение 5 минут при комнатной температуре. Осадок сполоснули 70% этанолом и растворили в 20 мкл раствора ТЕ, содержащего РНКазу, с концентрацией 50 мкг в 1 мкл. Смесь инкубировали при 37 °C 15 минут. Результат выделения плазмиды проверяли с помощью электрофореза в 0,5% агарозном геле. Полученные плазмиды с целевой вставленной нуклеотидной последовательностью белка секвенировали в ЗАО "Евроген".