Thoughtful Thinking #2 - Trig Functions

You recently learned that you can, relatively easily, take the derivative of something like this...

1.) If you think of dy/dx as a function, what are the inputs? What are the outputs?

$$y = 8\cos x$$

And get this...

$$dy/dx =$$

3.) Try to find the function whose derivative is $dy/dx = 2\cos x$.

2.) Consider the slope equation $dy/dx = 2\cos x$. Let's graph this below. Only plot on the points with dots.

4.) Let's try graphing another slope equation. Try $dy/dx = \sin x \cos x$

5.) Try to find the function whose derivative is $dy/dx = \sin x \cos x$.

6.) Why is the slope field useful when it comes to answering #5?

If we wanted the function that went through the point (0,1) and had the derivative $dy/dx = \sin x \cos x$, how could we get a better idea of what that curve looks like?

Sketch your solution on the slope field above.