Conguering C++

This is the first part of C++ (basics of programming and O0F)

.} Introduction

+* a.) Evolution of Programming Languages
+ b.) Binary System & Memories

¢) Terms used in programming

Contents - PART I

Basic C++

2.) Simple C++ Programming

* Your very first C4++ program
« Compilers and how to run a program
+« Data Types of variables
Integer
Floating Types
Double
Character
Boolean type
Data type range
Determining the range
o More on Binary numbers
» Simple C+4 programs
s Identifiers Keywords and File
Momenclature, Constants, Comments

o Q0O0O0O0OO

3.) Operators

s Arithmetic operator, Escape Sequences

+ Assignment operator, Type Conversion

+ Arithmetic Assignment operators,
Relational operators

+ Logical Operators, Unary operator

s Sizeof operator, Temary (conditional)
operator

s Operator Precedence and Associativity,
Comma Operator, Bitwise Operator

Workshop (for chapters 1, 2 and 3)

+ Test Yourself
+ More guestions
(extra programs)

|
EI More Data Types

s Scope of varables, Storage Classes
{auto, static, extemn, register)

s Type Qualifiers (const and volatile),
Variable Initialization, Arrays

¢ Character Arrays

« Multi Dimensional Armays, Initializing
Multi Dimensional Arrays, Passing
Arrays to functions

+« Structures, Nesting of Structures

+ Enumerated Data Types, Unions,
Passing structures to functions

Workshop (for chapters 4, 5 and &)
+ Test Yourself-II

+ More Questions
(extra programs)

7.) Pointers

¢ Address of operator, Declaration and
use of pointer

+ Arithmetic operation on pointers,
Pointers and Arravs

+ Pass by value, Pass by reference (C and
C4=+ style) and reference variables

« More on references

+ Rewming pointers from functions

+ Memory Allocation (new and delete)
and Memaory Heap

+ Pointers to functions, Pointer
Declarations

+ Pointers to Structures, Pointer to Pointer)
(multiple indirection)

+ Pointer to constants and constant
pointers, Void pointers

» Pointers to characters, Pointers
Demystified (2-D arrays and pointers)

+ Passing multidimensional arrays w
functions, Functions with varying
arguments

Conquering C++

This is the first part of C++ (basics of programming and OOP)

Contents - PART I Basic C++

1.) Introduction

* a.) Evolution of Programming Languages
* b.) Binary System & Memories

* ¢.) Terms used in programming

2.) Simple C++ Programming

* Your very first C++ program

» Compilers and how to run a program

* Data Types of variables

o Integer o Floating Types o Double o Character o Boolean type o Data type range o Determining the
range o More on Binary numbers

* Simple C++ programs

* Identifiers,Keywords and File Nomenclature,Constants,Comments

3.) Operators

* Arithmetic operator, Escape Sequences

* Assignment operator, Type Conversion

* Arithmetic Assignment operators, Relational operators

* Logical Operators, Unary operator

* Sizeof operator, Ternary (conditional) operator

* Operator Precedence and Associativity, Comma Operator, Bitwise Operator
Workshop (for chapters 1, 2 and 3)

6.) More Data Types

* Scope of variables, Storage Classes (auto, static, extern, register)

* Type Qualifiers (const and volatile), Variable Initialization, Arrays

* Character Arrays

* Multi Dimensional Arrays, Initializing Multi Dimensional Arrays, Passing Arrays to functions

* Structures, Nesting of Structures

* Enumerated Data Types, Unions, Passing structures to functions

Workshop (for chapters 4, 5 and 6)

Test Yourself-11

More Questions (extra programs)

7.) Pointers

* Address of operator, Declaration and use of pointer

* Arithmetic operation on pointers, Pointers and Arrays

* Pass by value, Pass by reference (C and C++ style) and reference variables
* More on references

* Returning pointers from functions

* Memory Allocation (new and delete) and Memory Heap

* Pointers to functions, Pointer Declarations

* Pointers to Structures, Pointer to Pointer (multiple indirection)
* Pointer to constants and constant pointers, Void pointers

* Pointers to characters, Pointers Demystified (2-D arrays and pointers) Test Yourself

More questions (extra programs)

* Passing multidimensional arrays to functions, Functions with varying arguments

4.} Controlli am Flow
+ Loops (lterations)
o For loop and its variations
o While, Do-while loop
+ Decision statement
o [If . .elseif..., Nested If,
Conditional Operator
o Switch Case
+ Loop Control Statements
o Break, Continue, Goto,

Return
§5.) Functions
+ Declaration, call and definition,
Parameters and arguments

« Default Arguments, Retuming
values from a function, Returning
void, The int main{) function

+ An illustration of int main()

+ Types of functions, Using Library
functions (rand, srand and time),
Function overloading, An example
using functions

+ Recursion (calling oneself!), Inline
Functions

Classes and (Ohbj

+ Object Oriented Programming
Concept and OOP Languages

+ Class with example

+« Constructors, Constructor with
Parameters, Overloaded
Constructors, Default Constructors
and Arrays of Objects

+ Scope Resolution Operator,
Destructor, Objects and Functions
(passing and returning objects),
Initialializing an object using an
object

» A Practical Use of Classes

« Data Encapsulation...Who are we
hiding data from?

+ More objects and classes, Private
member functions (helper functions)

+ Friend Function and Friend Classes,
Static Class Members, Constant
Ohbjects (and the 'mutable’ qualifier)

s Copy Constructor, this pointer,
pointer to objects, objects in
MEmory

+ Ininalizer list, explicit keyword,
declaration and definition, return
vilue optimization

Workshop (for chapters 7 and 8)

+« Test Yourself-III
+ More Questions (extra
programs)

If you are done with the basics go on to
Advanced C++ (PART - II)

8.) 4.) Controlling Program Flow

Classes and Objects
* Loops (Iterations)

* Object Oriented Programming o For loop and its
variations

Concept and OOP Languages o While, Do-while
loop

* Class with example
* Decision statement

* Constructors, Constructor with o If...elseif...,
Nested If,

Parameters, Overloaded Conditional Operator
Constructors, Default Constructors o Switch Case
and Arrays of Objects
* Loop Control Statements

* Scope Resolution Operator, o Break, Continue,
Goto,

Destructor, Objects and Functions Return
(passing and returning objects), Initialializing an object using an object

* A Practical Use of Classes 5.)
Functions

* Data Encapsulation...Who are we hiding data from?
* Declaration, call and definition,

* More objects and classes, Private Parameters
and arguments

member functions (helper functions)
* Default Arguments, Returning

* Friend Function and Friend Classes, values
from a function, Returning

Static Class Members, Constant void, The int
main() function

Objects (and the 'mutable' qualifier)

* An illustration of int main()
* Copy Constructor, this pointer,
* Types of functions, Using Library

pointer to objects, objects in functions (rand,
srand and time),

memory Function overloading, An example

* Initializer list, explicit keyword, using
functions

declaration and definition, return
* Recursion (calling oneself!), Inline
value optimization Functions

Workshop (for chapters 7 and 8)

Test Yourself-111

More Questions
(extra programs)

Advanced If you are done C++ with the (PART basics go on - to

1)

Programming Languages

The earlier first section was Binary numbers. Some people said that | ought to reduce the math in this
tutorial and | felt that perhaps | should start off differently. And so I've altered the sequence of seclions
in this first .

Recap of important computer concepts:

When we talk of computers, we refer to “hardware” and “software’. All the physical components like monitor,
keyboard, mouse, modem, printer etc. fall under the hardware category. We need computers to do something
useful for us but compuiers aren’t smart enough to know what we want them to do (at least not vet!). We need to
explicitly tell the computer our requirements in the form of instructions. A set of instructions for doing
something useful forms a “program’. And we refer to these programs as software (i.e. unlike hardware, software
is something that we can’t touch and feel).

Major hardware parts in a computer:

1. Input and Qutput devices: Computer can receive input from input devices (like a keyboard,
mouse or a scanner). Oulput devices are used by the computer to send out information o the
user, example: monitor, printer, plotter etc.

2. Arithmetic and Logical Unit (ALU): As the name implies this unit is responsible for all
arithmetic calculations. It is part of the central processing unit.

3. Memory: When our computer wanis to work on some information, it will require some place
where it can store data; where it can slore the instructions; where it can store intermediate
results of operations etc. Memory serves this purpose and there are different types of memory
(for different requirements):

Primary memory: This memory can be quickly accessed by the computer (in technical jargon we say
that this memory has low access time; ie. time taken to access data in primary memory is less). Generally,
instructions and data needed by the computer immediately for processing are placed in primary memory. Data in
primary memory is not permanent. Each time we restart the compauter, the memaory would get refreshed.

Secondary memory/ storage: This is the place where we store all our data. It's a long-term storage
device (like a hard-disk). Access times are higher but secondary memory is cheaper than primary memory.

Introduction

3

Introduction

Programming Languages

The earlier first section was Binary numbers. Some people said that | ought to reduce the math in this
tutorial and | felt that perhaps | should start off differently. And so I've altered the sequence of sections in
this first unit.

Recap of important computer concepts:

When we talk of computers, we refer to ‘hardware’ and ‘software’. All the physical components like monitor,
keyboard, mouse, modem, printer etc. fall under the hardware category. We need computers to do something
useful for us but computers aren’t smart enough to know what we want them to do (at least not yet!). We need to
explicitly tell the computer our requirements in the form of instructions. A set of instructions for doing
something useful forms a ‘program’. And we refer to these programs as software (i.e. unlike hardware, software
is something that we can’t touch and feel).

Major hardware parts in a computer:

1. Input and Output devices: Computer can receive input from input devices (like a keyboard,

mouse or a scanner). Output devices are used by the computer to send out information to the

user; example: monitor, printer, plotter etc.

2. Arithmetic and Logical Unit (ALU): As the name implies this unit is responsible for all

arithmetic calculations. It is part of the central processing unit.

3. Memory: When our computer wants to work on some information, it will require some place

where it can store data; where it can store the instructions; where it can store intermediate

results of operations etc. Memory serves this purpose and there are different types of memory

(for different requirements):

Primary memory: This memory can be quickly accessed by the computer (in technical jargon we say

that this memory has low access time; i.e. time taken to access data in primary memory is less). Generally,
instructions and data needed by the computer immediately for processing are placed in primary memory. Data in
primary memory is not permanent. Each time we restart the computer, the memory would get refreshed.
Secondary memory/ storage: This is the place where we store all our data. It’s a long-term storage

device (like a hard-disk). Access times are higher but secondary memory is cheaper than primary memory.

4. CPU (Central Processing Unit):

We've seen computer parts 1o get input, store information, display output and also to perform
calculations. But there needs to be someone at a higher level to control the individual units;, someone
1o decide when to caplure the input, when to send output information o the monitor ete. The CPU
lakes up this responsibility and is termed the 'brain’ of the computer. The CPU is also called the
processor (a microprocessor chip).

Comprter

FPeripherals

i
: Input devices

Fig, Basic components of a compuier

The langnage computers understand:

Wi have a lot of languages in this world but all computers can understand only binary language. The vocabulary
is very simple and small; it consists of only 2 things: 0 and 1. This is all that a computer understands. (Humans
are comfortable with the decimal system - consisting of the numbers 0 to 9). We'll look at the binary system later
in this chapter.

Remember: A computer finally needs everything in binary language {instructions and data).

Programming Languages:

Programs are written to tell the computer to do something useful for us. It might be as simple a task as
adding two numbers or as complex as transferring data between 2 computers in a network.

There are several reasons why we nead programs. Imagine searching through a stack of papers o
search for some lelephone bill. Imagine a company maintaining ils accounts (expenses and income on
a day-to-day basis) - If this was done using the traditional file and paper method, someocne would have
1o keep entering all the details in sheets of paper and then stack them into files. If, in future, someone
wants to find out when a particular product was sold they would have to manually read through each

Introduction

4. CPU (Central Processing Unit):

We’ve seen computer parts to get input, store information, display output and also to perform
calculations. But there needs to be someone at a higher level to control the individual units; someone
to decide when to capture the input, when to send output information to the monitor etc. The CPU
takes up this responsibility and is termed the ‘brain’ of the computer. The CPU is also called the
processor (a microprocessor chip).

The language computers understand:

We have a lot of languages in this world but all computers can understand only binary language. The vocabulary
is very simple and small; it consists of only 2 things: 0 and 1. This is all that a computer understands. (Humans
are comfortable with the decimal system - consisting of the numbers 0 to 9). We’ll look at the binary system later
in this chapter.

Remember: A computer finally needs everything in binary language (instructions and data).

Programming Languages:

Programs are written to tell the computer to do something useful for us. It might be as simple a task as
adding two numbers or as complex as transferring data between 2 computers in a network.

There are several reasons why we need programs. Imagine searching through a stack of papers to
search for some telephone bill. Imagine a company maintaining its accounts (expenses and income on
a day-to-day basis) - if this was done using the traditional file and paper method, someone would have
to keep entering all the details in sheets of paper and then stack them into files. If, in future, someone

wants to find out when a particular product was sold they would have to manually read through each

Introduction

and every paper in each and every file. Computers can be programmed o perform such tasks and
they will do it faster. Basically, the computer is very good in performing repetitive tasks. One point to
note: man created computers and man programs computers to perform certain tasks. A program is a
set of instructions that can be executed by the computer. The computer will cbediently follow whatever
the programmer instructs it to do (as long as it understands the instructions). The downside to this is
that the computer does not have any special intelligence; it is only as intelligent as it is programmed 1o
be. For instance, a robol can be programmed to walk. If it s not programmed to detect obstacles, the
robot will simply bang into obstacles because it does not have the intelligence to recognize and avoid
obstacles. If the programmer provides such provisions, then the robot will be able to handle such
SCenanos.

With many software programs already existing, you may wonder why do we need more software, why
not just buy and use what already exists? Software is usually not custom designed for the
requirements of a particular company and you may not even have software for your own special
requirement. For example, dentists never used to have any software specifically for their use but now
you can see a range of dental software (the dentist can maintain details of each of his patients’ tooth
in the computer). Programs needn'’t be as complicated as dental software; you may want to have a
little software to calculate your CGPA or to calculate your rank in class. To perform such tasks a
programmer has to wrile a program (or a set of instructions). These instructions are wrilten in a
specific programming language and the programmer can chosea to write the instruction in any one of
the available languages.

Evolution of Programming Languages:

Any programming language can be categorized into one of the following categores:

+ High Leval
+« Middle Level
+ Low Level (machine and assembly languages)

Middle level languages are sometimes clubbed together under the category of high-level languages.
Machine Level Languages:

A computer has a processor and if we want the computer 1o do something then we need to
direct instructions at the processor. The problem is that computers can understand only binary
language (i.e. the language which comprizes of only 15 and 0s). All instructions to the processor
should be in binary and so a programmer can write programs using a series of 13 and 0s. Every

Introduction

and every paper in each and every file. Computers can be programmed to perform such tasks and
they will do it faster. Basically, the computer is very good in performing repetitive tasks. One point to
note: man created computers and man programs computers to perform certain tasks. A program is a
set of instructions that can be executed by the computer. The computer will obediently follow whatever
the programmer instructs it to do (as long as it understands the instructions). The downside to this is
that the computer does not have any special intelligence; it is only as intelligent as it is programmed to
be. For instance, a robot can be programmed to walk. If it is not programmed to detect obstacles, the
robot will simply bang into obstacles because it does not have the intelligence to recognize and avoid
obstacles. If the programmer provides such provisions, then the robot will be able to handle such
scenarios.

With many software programs already existing, you may wonder why do we need more software; why
not just buy and use what already exists? Software is usually not custom designed for the
requirements of a particular company and you may not even have software for your own special
requirement. For example, dentists never used to have any software specifically for their use but now
you can see a range of dental software (the dentist can maintain details of each of his patients’ tooth
in the computer). Programs needn’t be as complicated as dental software; you may want to have a
little software to calculate your CGPA or to calculate your rank in class. To perform such tasks a
programmer has to write a program (or a set of instructions). These instructions are written in a
specific programming language and the programmer can chose to write the instruction in any one of

the available languages.

Evolution of Programming Languages:

Any programming language can be categorized into one of the following categories:

¢ High Level

* Middle Level

* Low Level (machine and assembly languages)

Middle level languages are sometimes clubbed together under the category of high-level languages.
Machine Level Languages:

A computer has a processor and if we want the computer to do something then we need to

direct instructions at the processor. The problem is that computers can understand only binary
language (i.e. the language which comprises of only 1s and 0s). All instructions to the processor

should be in binary and so a programmer can write programs using a series of 1s and Os. Every

Introduction

6

processor will understand only some instructions (this depends on how the processor was designed).
An instruction to increment a variable might be:

110110100011101

Imagine having 100 such instructions in a program! The advantage is that no conversion (or
translation) is needed because the computer can understand the 15 and 0s. This is called machine
level language and this was used at the time computers came into existence.

The drawbacks are quite clear. By using machine language writing programs Is very tedious
and also prone to emor (even if one bit is wrong, the entire program functionality could get alterad).
Trying to identify the error will also be a very tedious job (imagine reading a seres of 1's and 0's trying
1o locate the mistake).

Assembly Languages:

Since it is very difficult for us to write instructions in binary language, assembly languages were
developed. Instead of using a set of 15 and 0= for a particular instruction, the programmer could use
some short abbreviations (called 'mnemonics’) o write the program (for example: ADD is a mnemonic
1o add two numbers). Every processor has an instruction set that describes the various commands
that the processor can understand. A normal instruction set will have instructions like JMP (jump),
ADD (for addition) and so on. A programmer will write the program using these instructions and an
assembler will convert the mnemonics into binary form so that the processor can understand it The
problem is that azsembly level languages are specific o each processor. For example the 8085 (the
simplest microprocessor) has an instruction set different from the 8088 microprocessor. Thus you
would have to rewrite the program for each microprocessor. Another problem with assembly level
programming is that the programmer needs 1o know details aboul the processor’s architecture such as
the internal registers whera values can be stored, how many internal registers are available for use
alc.

Low level languages are very close to the hardware but difficult for writing programs.
High Level Languages:

Writing larger programs in assembly language is quite difficult and hence, high-level languages were
developed (like BASIC). These languages were nol close to the actual computer hardware but were
very close to the English language. Thay tried to simplify the process of programming. In thesa
languages the programmer needn'l worry about internal registers and processor architecture;
instructions could be typed in almost normal English. The English-like instructions had to be converted
1o machine language using a compiler. One simple example of an English like command in COBOL is:

Introduction

processor will understand only some instructions (this depends on how the processor was designed).
An instruction to increment a variable might be:

110110100011101

Imagine having 100 such instructions in a program! The advantage is that no conversion (or
translation) is needed because the computer can understand the 1s and 0s. This is called machine
level language and this was used at the time computers came into existence.

The drawbacks are quite clear. By using machine language writing programs is very tedious

and also prone to error (even if one bit is wrong, the entire program functionality could get altered).
Trying to identify the error will also be a very tedious job (imagine reading a series of 1’s and Q’s trying
to locate the mistake).

Assembly Languages:

Since it is very difficult for us to write instructions in binary language, assembly languages were
developed. Instead of using a set of 1s and Os for a particular instruction, the programmer could use
some short abbreviations (called ‘mnemonics’) to write the program (for example: ADD is a mnemonic
to add two numbers). Every processor has an instruction set that describes the various commands
that the processor can understand. A normal instruction set will have instructions like JMP (jump),
ADD (for addition) and so on. A programmer will write the program using these instructions and an
assembler will convert the mnemonics into binary form so that the processor can understand it. The
problem is that assembly level languages are specific to each processor. For example the 8085 (the
simplest microprocessor) has an instruction set different from the 8086 microprocessor. Thus you
would have to rewrite the program for each microprocessor. Another problem with assembly level
programming is that the programmer needs to know details about the processor’s architecture such as
the internal registers where values can be stored, how many internal registers are available for use
etc.

Low level languages are very close to the hardware but difficult for writing programs.

High Level Languages:

Writing larger programs in assembly language is quite difficult and hence, high-level languages were
developed (like BASIC). These languages were not close to the actual computer hardware but were
very close to the English language. They tried to simplify the process of programming. In these
languages the programmer needn’t worry about internal registers and processor architecture;
instructions could be typed in almost normal English. The English-like instructions had to be converted

to machine language using a compiler. One simple example of an English like command in COBOL is:

Introduction

ADD incentive TO basic GIVING salary.

The instruction is quite salf-explanatory (Add ‘incentive’ and 'basic’ and store the resull in ‘salary’).
COBOL k= alzo a high-level language.

Az programs grew larger (for example: maintaining a record of all employees, accounts
maintenance etc.), even high level languages had certain drawbacks. These languages are also
referred o as unstructured form of programming. The reason they are unstructured is because when a
large program is writlen, it becomes very difficult to analyze the program at a later date (by someona
alze or even by the original programmer himself). There are many reasons for this; one is the use of
statements like GOTO in high-level languages. In any program some tasks will either be performed
repetitively or the programmer might want the program o execute a different set of instructions if some
condition is satisfied. For example in a division program, in case the denominator is 0 then the
program should not divide the two numbers; instead it should display an emror message. Only if the
denominator ks not 0 should the program divide the two numbers. This kind of programming is referred
1o as program flow control. In a larger program there could be various other possibilities and all this
was dealt with by using the GOTO statement. If you've used BASIC you will be aware that for every
instruction that you type, you have lo specify a line number (example 10,20,30 and so on). GOTO will
be followed by some line number (indicating the instruction that has to be executed next. Ex: 1020
GOTO 50 means that now you want the program flow to go o line number 50).

The problem with this ks that in a large program it will become very difficult for anyone to
understand the program logic. Imagine reading through 100 lines and then finding one GOTO
stalement to the 200" line. Then on the 205™ line there could be another GOTO statement directing
you to the 150™ line. This should make it clear as to what is meant by the term ‘unstructured'. This ks a
major problem with high level languages. Another fact is that high level languages are very far away
from the actual hardware. Examples of high-level languages are BASIC, Fortran (Formula
Translation), COBOL {Common Business Oriented Language) and LIST (List processing).

Thus to take advantage of high level and low level languages, middle level languages like C and C++
were developed. They were easy to use and fried to retain the advantages of low level languages (i.e.
being closer to the architecture).

Introduction

ADD incentive TO basic GIVING salary.

The instruction is quite self-explanatory (Add ‘incentive’ and ‘basic’ and store the result in ‘salary’).
COBOL is also a high-level language.

As programs grew larger (for example: maintaining a record of all employees, accounts

maintenance etc.), even high level languages had certain drawbacks. These languages are also
referred to as unstructured form of programming. The reason they are unstructured is because when a
large program is written, it becomes very difficult to analyze the program at a later date (by someone
else or even by the original programmer himself). There are many reasons for this; one is the use of
statements like GOTO in high-level languages. In any program some tasks will either be performed
repetitively or the programmer might want the program to execute a different set of instructions if some
condition is satisfied. For example in a division program, in case the denominator is 0 then the
program should not divide the two numbers; instead it should display an error message. Only if the
denominator is not 0 should the program divide the two numbers. This kind of programming is referred
to as program flow control. In a larger program there could be various other possibilities and all this
was dealt with by using the GOTO statement. If you’ve used BASIC you will be aware that for every
instruction that you type, you have to specify a line number (example 10,20,30 and so on). GOTO will
be followed by some line number (indicating the instruction that has to be executed next. Ex: 1020
GOTO 50 means that now you want the program flow to go to line number 50).

The problem with this is that in a large program it will become very difficult for anyone to

understand the program logic. Imagine reading through 100 lines and then finding one GOTO
statement to the 200

th

line. Then on the 205

th

line there could be another GOTO statement directing

you to the 150

th

line. This should make it clear as to what is meant by the term ‘unstructured’. This is a

major problem with high level languages. Another fact is that high level languages are very far away
from the actual hardware. Examples of high-level languages are BASIC, Fortran (Formula
Translation), COBOL (Common Business Oriented Language) and LIST (List processing).

Thus to take advantage of high level and low level languages, middle level languages like C and C++
were developed. They were easy to use and tried to retain the advantages of low level languages (i.e.

being closer to the architecture).

Introduction

C and C++

Dennis Ritchie developed C and it was quite popular. An interesting feature in C is
the use of functions. The programmer could write a function for checking whether a number
is odd or even and store it in a separate file. In the program, whenever it is needed to check
for even numbers, the programmer could simply call that function instead of rewriting the
whaole code. Usunally a set of commonly used functions would be stored in a separate file and
that file can be included in the current project by simply using the #include <filename>
syntax. Thus the current program will be able to access all functions available in *filename’.
Programs written in C were more structured compared to high level languages and another
feature was the ability to create your own data types like structures. For instance if you want
to create an address book program, you will need to store information like name and
telephone number. The name is a string of characters while the telephone number is an integer
number. Using structures you can combine both into one unit. Similarly there are many more

advantages of using C.

Though C seemed to be ideal, it was not effective when the programs became even more
complex (or larger). One of the problems was the use of many functions (developed by
various users) which led to a clash of variable names. Though C is much more efficient than
BASIC, a new concept called Object Oriented Programming seemed better than C. OOP was
the basis of C++ (which was initially called ‘C with classes’). C++ was developed by Bjame
Strastroup. In object oriented programming, the programmer can solve problems by breaking
them down into real-life objects (it presented the programmer with an opportunity to mirror
real life). What is an object? This topic is dealt with extensively in the chapter on “Objects
and Classes” but a brief introduction is provided here.

Consider the category of cars. All cars have some common features (for example all cars have
four wheels, an engine, some body colour, seats etc.). Are all cars the same? Of course not. A
Fiat and a Ford aren’t the same but they are called as cars in general. In this example cars will

form a class and Ford (or Fiat) will be an object.

Introduction

Introduction

C and C++

Dennis Ritchie developed C and it was quite popular. An interesting feature in C is

the use of functions. The programmer could write a function for checking whether a number
is odd or even and store it in a separate file. In the program, whenever it is needed to check
for even numbers, the programmer could simply call that function instead of rewriting the
whole code. Usually a set of commonly used functions would be stored in a separate file and
that file can be included in the current project by simply using the #include <filename>
syntax. Thus the current program will be able to access all functions available in ‘filename’.
Programs written in C were more structured compared to high level languages and another
feature was the ability to create your own data types like structures. For instance if you want
to create an address book program, you will need to store information like name and
telephone number. The name is a string of characters while the telephone number is an integer
number. Using structures you can combine both into one unit. Similarly there are many more
advantages of using C.

Though C seemed to be ideal, it was not effective when the programs became even more
complex (or larger). One of the problems was the use of many functions (developed by
various users) which led to a clash of variable names. Though C is much more efficient than
BASIC, a new concept called Object Oriented Programming seemed better than C. OOP was
the basis of C++ (which was initially called ‘C with classes’). C++ was developed by Bjarne
Strastroup. In object oriented programming, the programmer can solve problems by breaking
them down into real-life objects (it presented the programmer with an opportunity to mirror
real life). What is an object? This topic is dealt with extensively in the chapter on ‘Objects
and Classes’ but a brief introduction is provided here.

Consider the category of cars. All cars have some common features (for example all cars have
four wheels, an engine, some body colour, seats etc.). Are all cars the same? Of course not. A
Fiat and a Ford aren’t the same but they are called as cars in general. In this example cars will

form a class and Ford (or Fiat) will be an object.

For those people who know C programming, it would be useful to know the differences
between C and C++. Basically C++ includes everything present in C but the use of some C

features is deprecated in C++.

« (does not have classes and objects (C does not support OOF)

« Structures in C cannot have functions.

« C does not have namespaces (namespaces are used to avoid name collisions).

+ The IO functions are entirely different in C and C++ (ex: printf(), scanfi) etc. are
part of the C language).

+ You cannot overload a function in C (ie. you cannot have 2 functions with the same
name in C).

+ Better dynamic memory management operators are available in C++.

s C does not have reference variables (in C++ reference variables are used in functions).

s In C constants are defined as macros (in C++ we can make use of ‘const” to declare a
constant).

s Inline functions are not available in C.

Let's recap the evolution of programming languages: initially programs were written in terms
of 1s and 0s (machine language). The drawback was that the process was very tedious and
highly error-prone. Assembly language was developed to write programs easily (short
abbreviations were used instead of 1s and 0s). To make it even simpler for programmers, high
level languages were developed (instructions were more similar to regular English). As the
complexity of programs increased, these languages were found to be inadequate (because they
were unstructured). C was developed but even that was not capable of dealing with complex

or larger programs. This led to the development of C++.

Note: Sometimes languages are divided into low level and high level only. In such a
classification, C/C++ will come under high level languages.

Introduction

For those people who know C programming, it would be useful to know the differences
between C and C++. Basically C++ includes everything present in C but the use of some C
features is deprecated in C++.

* C does not have classes and objects (C does not support OOP)

* Structures in C cannot have functions.

* C does not have namespaces (namespaces are used to avoid name collisions).

* The I/O functions are entirely different in C and C++ (ex: printf(), scanf() etc. are

part of the C language).

* You cannot overload a function in C (i.e. you cannot have 2 functions with the same

name in C).

* Better dynamic memory management operators are available in C++.

* C does not have reference variables (in C++ reference variables are used in functions).

* In C constants are defined as macros (in C++ we can make use of ‘const’ to declare a
constant).

* Inline functions are not available in C.

Let’s recap the evolution of programming languages: initially programs were written in terms
of 1s and Os (machine language). The drawback was that the process was very tedious and
highly error-prone. Assembly language was developed to write programs easily (short
abbreviations were used instead of 1s and 0s). To make it even simpler for programmers, high
level languages were developed (instructions were more similar to regular English). As the
complexity of programs increased, these languages were found to be inadequate (because they
were unstructured). C was developed but even that was not capable of dealing with complex
or larger programs. This led to the development of C++.

Note: Sometimes languages are divided into low level and high level only. In such a
classification, C/C++ will come under high level languages.

Introduction

10
Why do you need to learn C++7?

There are many people who ask the question, "why should I learn C++7 What use is it in my
field?" It is a well-known fact that computers are used in all areas today. Programming is
useful wherever computers are used because it provides you the flexibility of creating a
program that suits your requirements. Even research work can be simulated on your computer
if you have programming knowledge. Construction and programming may appear to be miles
apart but even a civil engineer could use C++ programming. Consider the case of constructing
a physical structure (like a pillar) in which the civil engineer has to decide on the diameter of
the rods and the number of rods to be used. There are 2 variables in this case:

1. The number of rods needed (let’s denote it as "n’) and
2. The diameter of each rod (let’s call it as *d")

The civil engineer might have to make a decision like: “Is it cost-effective for me to have 10
rods of Scm diameter or is it better to have 8 rods of 6em diameter? This is just one of the
simple questions he may have in his mind. There are a few related questions: "What is the
best combination of number of rods, their diameters and will that combination be able to

handle the maximum stress?"

Usually equations are developed for each of the factors involved. It would be much easier if
the civil engineer could simply run a program and find out what is the best combination
instead of manually trying out random values and arriving at a solution. This is where
programming knowledge would benefit the engineer. Any person can write a good program if
he has adequate knowledge about the domain (domain refers to the area for which the
software is developed. In this case it is construction). Since the civil engineer has the best

domain knowledge he would be able to write a program to suit his requirements if he knew
programming.

Programming is applicable to almost every field- banking (for maintaining all account details
as well as the transactions), educational institutions (for maintaining a database of the
students), supermarkets (used for billing), libraries (to locate and search for books), medicine,

electrical engineering (programs have been developed for simulating circuits) etc.

Introduction

10

Why do you need to learn C++?

There are many people who ask the question, "why should I learn C++? What use is it in my
field?" It is a well-known fact that computers are used in all areas today. Programming is
useful wherever computers are used because it provides you the flexibility of creating a
program that suits your requirements. Even research work can be simulated on your computer
if you have programming knowledge. Construction and programming may appear to be miles
apart but even a civil engineer could use C++ programming. Consider the case of constructing
a physical structure (like a pillar) in which the civil engineer has to decide on the diameter of
the rods and the number of rods to be used. There are 2 variables in this case:

1. The number of rods needed (let’s denote it as ‘n’) and

2. The diameter of each rod (let’s call it as ‘d’)

The civil engineer might have to make a decision like: "Is it cost-effective for me to have 10
rods of Scm diameter or is it better to have 8 rods of 6cm diameter?" This is just one of the
simple questions he may have in his mind. There are a few related questions: "What is the
best combination of number of rods, their diameters and will that combination be able to
handle the maximum stress?"

Usually equations are developed for each of the factors involved. It would be much easier if
the civil engineer could simply run a program and find out what is the best combination
instead of manually trying out random values and arriving at a solution. This is where
programming knowledge would benefit the engineer. Any person can write a good program if
he has adequate knowledge about the domain (domain refers to the area for which the
software is developed. In this case it is construction). Since the civil engineer has the best
domain knowledge he would be able to write a program to suit his requirements if he knew
programming.

Programming is applicable to almost every field- banking (for maintaining all account details
as well as the transactions), educational institutions (for maintaining a database of the
students), supermarkets (used for billing), libraries (to locate and search for books), medicine,
electrical engineering (programs have been developed for simulating circuits) etc.

Introduction

