Vector Calculus MAT226 Spring 2025

Professor Sormani
Lesson 1 Review of Vectors and Plotting Points in 3D

Please go to your email and make <u>sormanic@gmail.com</u> a contact so that you will receive all my emails. Be sure to read them all semester.

Carefully take notes on pencil and paper while attending class or watching the lesson videos. You will cut and paste the photos of your notes and completed classwork and a selfie taken holding up the first page of your work in a googledoc entitled:

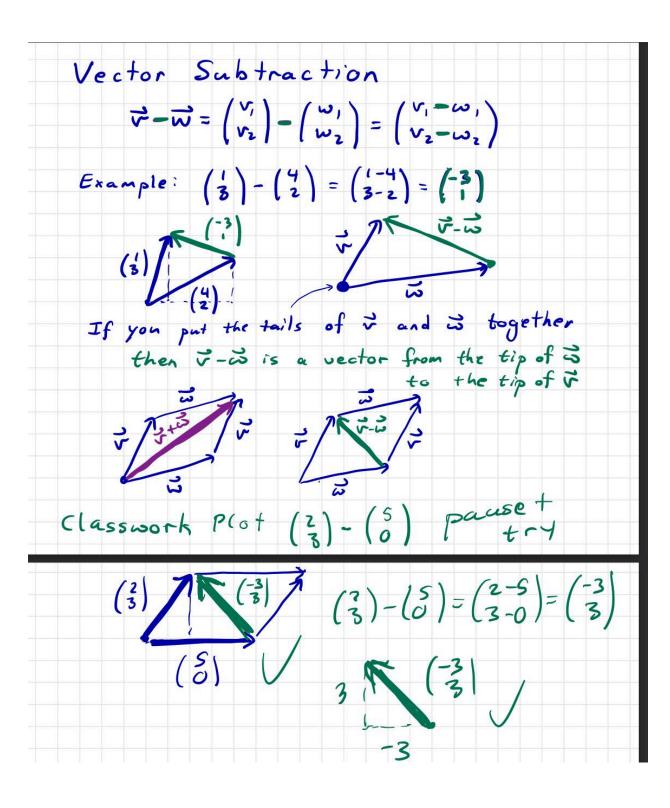
MAT226S25-lesson1-lastname-firstname

Then share editing of that document with me <u>sormanic@gmail.com</u>. You will also put photos of your homework in this googledoc. If you work with any classmates, be sure to write their names on the problems you completed together.

Today's <u>Playlist 226F21-1</u> has 22 short videos and photos of the notes for them are below.

Please watch all the videos if you missed class. If you attended class you may choose to watch some videos that might help you understand anything you did not understand in class.

Welcome to Vector Calculus
Welcome to Vector Calculus -Prof Sormani
Lesson I
Vectors
* Part I: Vectors in the Plane
Part II: Vectors in Space
A vector in a plane: (x y) where x, y ∈ R × and y are called components real real
tail is at a point (xo1/o)
tail x=x,-x0 is written
a vector can (y,-yo) tip-tail moved to have
its tail, and then the tip moves too.
Example: (2)
2


Rescaling a Vector FER2 scale by a factor relR Scalar Mult: r = r (V) = (rV) Examples: $\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $2\vec{v} = 2\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ is twice as long

in the same direction! $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ - Iv is the same length as v but opposite direction! Classwork (1); $\vec{r} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ @ plot \vec{r} (6) find and plot $2\vec{r}$ (2) find and plot $3\vec{r}$ (e) find and plot -v Classwork (2): repeat for = (-2)

```
Magnitude of Rescaled Vectors Theorem
       11-11 = 11/1/1
Consequences: r=2 ⇒ 112 $ 11 = 121 | $ 1 = 2 | $ 11
                   Proof:
 () 11 - 11 = 11 r ( ") 1) () by defin of a vector in 122
         = 11 ( rv; ) 11 @ by defn of scalar mult.
 6
         = V(rv,)2 + (rv,)2 3 by defn of magnitude
3
      = Vr2v2+r2.v2 (9by (ab)2 = a2 b2
 4
        = 1 [2 (v,2+v,2) (5) by factoring ab + ac = a (6+c)
(6)
        = Vr2 Vv12+v2 6 by Vab = Va Vb
6
      = 101 Vr2+v2 0 64 Va2 = 191
0
        = Irl | | FII 8 by defr of magnitude
(8)
  each step

has a justifaction

explaining that step.
                                  the proof is
```


Vector addition and scalar multiplication share many properties of ordinary arithmetic, as shown in the following theorem.

Commutative Property

Additive Identity Property

Additive Inverse Property

Distributive Property

Associative Property C

THEOREM II.I Properties of Vector Operations

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in the plane, and let c and d be scalars.

1.
$$u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = u$$

4.
$$u + (-u) = 0$$

5.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

$$6. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$1(\mathbf{u}) = \mathbf{u}, 0(\mathbf{u}) = \mathbf{0}$$

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 Distributive Property \leftarrow
8. $1(\mathbf{u}) = \mathbf{u}$, $0(\mathbf{u}) = \mathbf{0}$

 $\overrightarrow{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ To save space $\overrightarrow{V} = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \langle V_1, V_2 \rangle$

the correct way

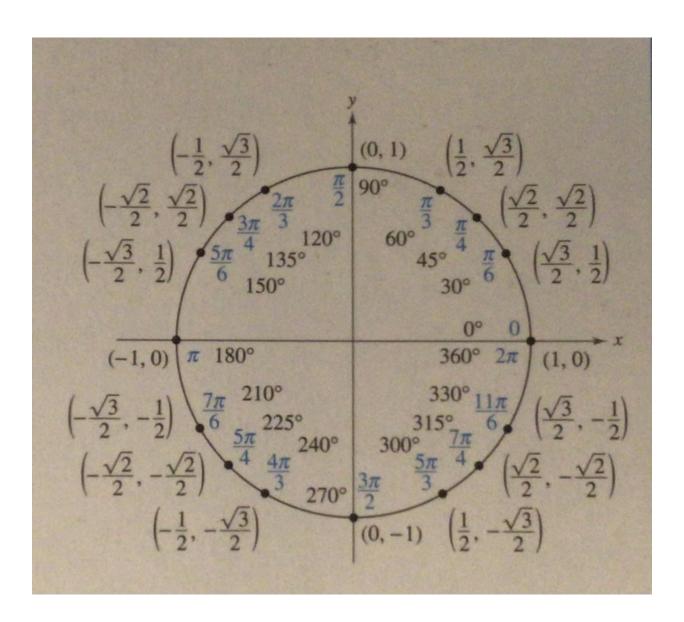
Proof The proof of the Associative Property of vector addition uses the Associative

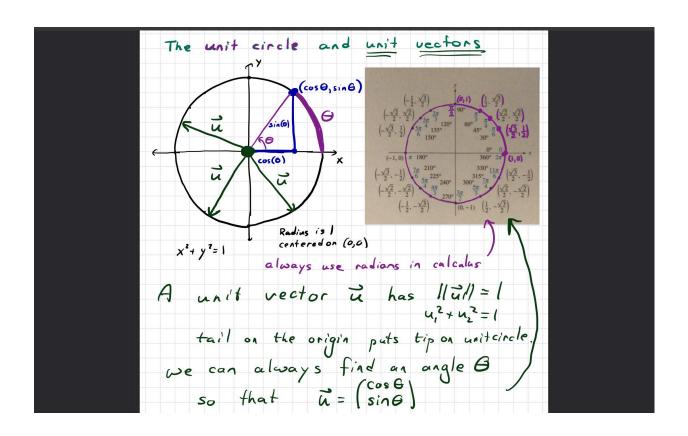
Proof The proof of the Associative Property of vector addition uses the Associative Property of addition of real numbers.

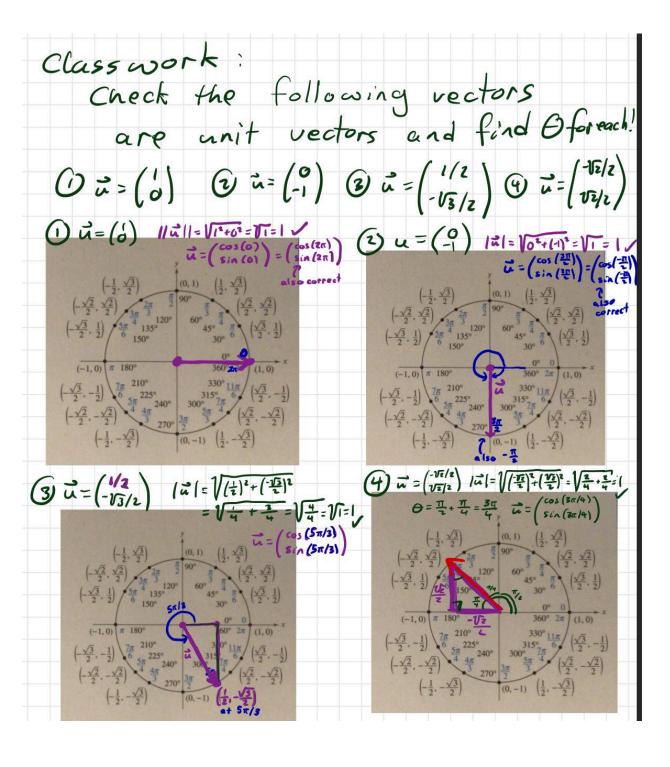
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \underbrace{\left[(u_1, u_2) + \langle v_1, v_2 \rangle \right] + \langle w_1, w_2 \rangle}_{= (u_1 + v_1, u_2 + v_2) + \langle w_1, w_2 \rangle}_{= (u_1 + v_1) + w_1, (u_2 + v_2) + w_2 \rangle}_{= (u_1 + (v_1 + w_1), u_2 + (v_2 + w_2))}_{= (u_1, u_2) + \langle v_1 + w_1, v_2 + w_2 \rangle}_{= (u_1, u_2) + \langle v_1 + w_2, v_2 + w_2 \rangle}_{= (u_1, u_2) + \langle v_1 + w_2, v_2 + w_2 \rangle$$

Similarly, the proof of the Distributive Property of vectors depends on the Distributive Property of real numbers.

$$(c + d)\mathbf{u} = (c + d)\langle u_1, u_2 \rangle$$


$$(2) = \langle (c + d)u_1, (c + d)u_2 \rangle$$


$$(3) = \langle cu_1 + du_1, cu_2 + du_2 \rangle$$


$$(4) = \langle cu_1, cu_2 \rangle + \langle du_1, du_2 \rangle = c\mathbf{u} + d\mathbf{u}$$

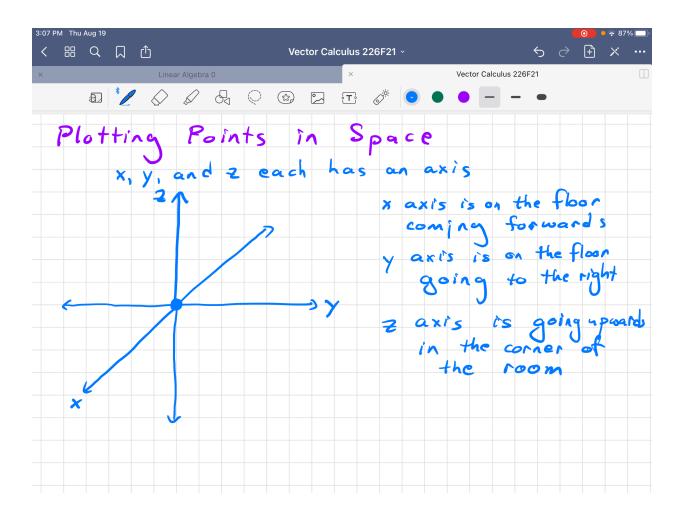
The other properties can be proved in a similar manner.

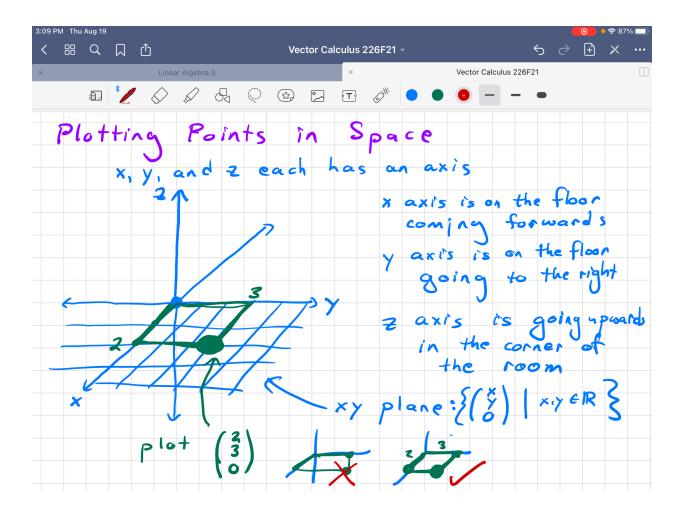
You can write in your own justifications.

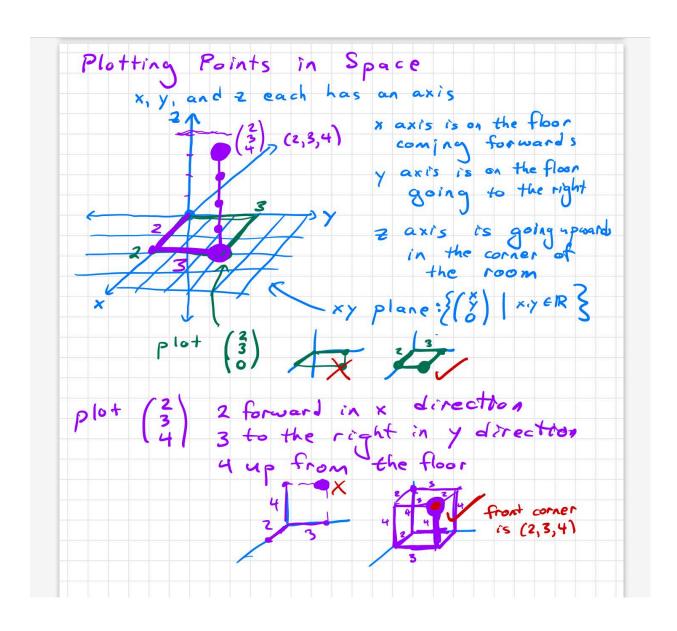
Theorem: " = IIII I is a unit vector for v+0 It is called the unit vector in the direction of v. Proof: Check //211 = 1 (3) = 1/1 · 11 v 11 (3) |= = = = = = if a>0 Emal) = 1 (4) 1 a = 1 for a = 1R QED Apply this to find the unit vector in the direction of v= (5) $\overrightarrow{u} = \frac{1}{\| \begin{pmatrix} 5 \\ 5 \end{pmatrix} \|} \begin{pmatrix} 5 \\ 5 \end{pmatrix} = \frac{1}{\sqrt{5^2 + 5^2}} \begin{pmatrix} 5 \\ 5 \end{pmatrix} = \frac{1}{\sqrt{2 \cdot 25}} \begin{pmatrix} 5 \\ 5 \end{pmatrix} =$ $=\frac{1}{5\sqrt{2}}\begin{pmatrix} \zeta \\ \zeta \end{pmatrix} = \begin{pmatrix} \frac{\zeta}{5\sqrt{2}} \\ \frac{\zeta}{5\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \cos\left(\frac{\pi}{4}\right) \\ \sin\left(\frac{\pi}{4}\right) \end{pmatrix}$ Canswers J textbook: < 12/2, 12/2> Points in direction the same

Standard Unit Vectors

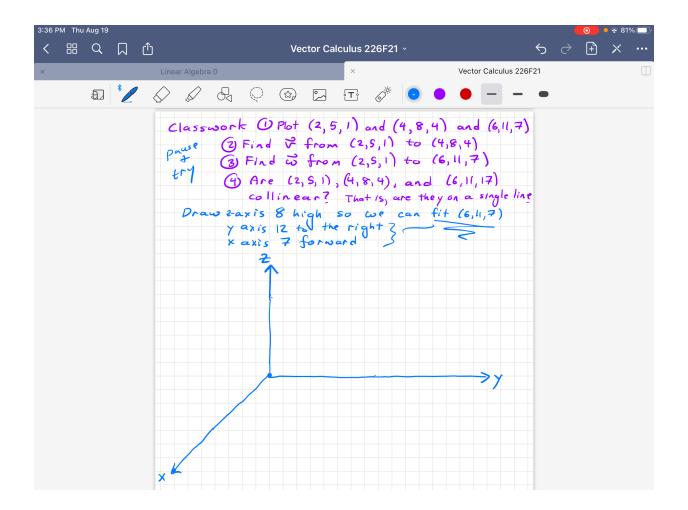
The unit vectors (1,0) and (0,1) are called the standard unit vectors in the plane and are denoted by

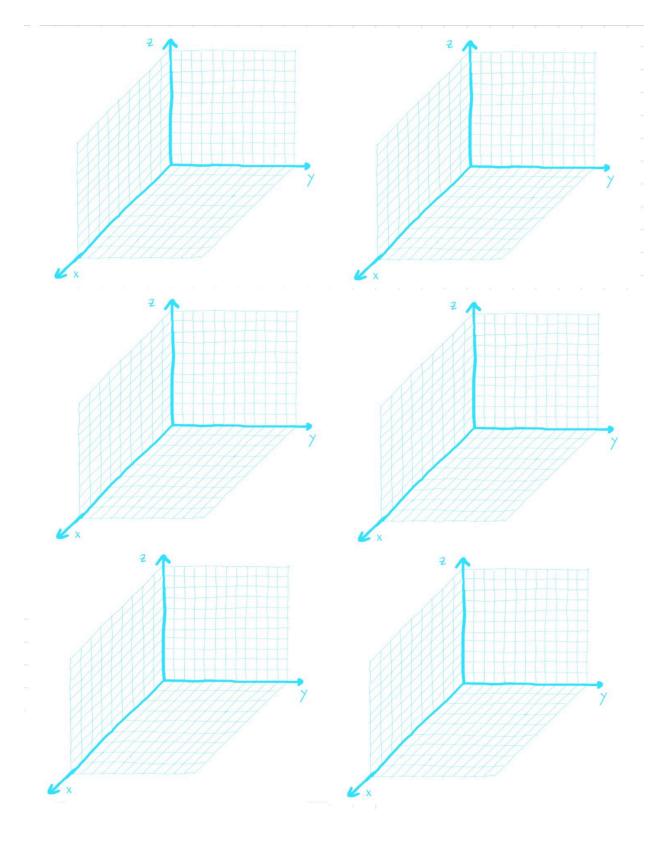

$$\mathbf{i} = \langle 1, 0 \rangle$$
 and $\mathbf{j} = \langle 0, 1 \rangle$ Standard unit vectors

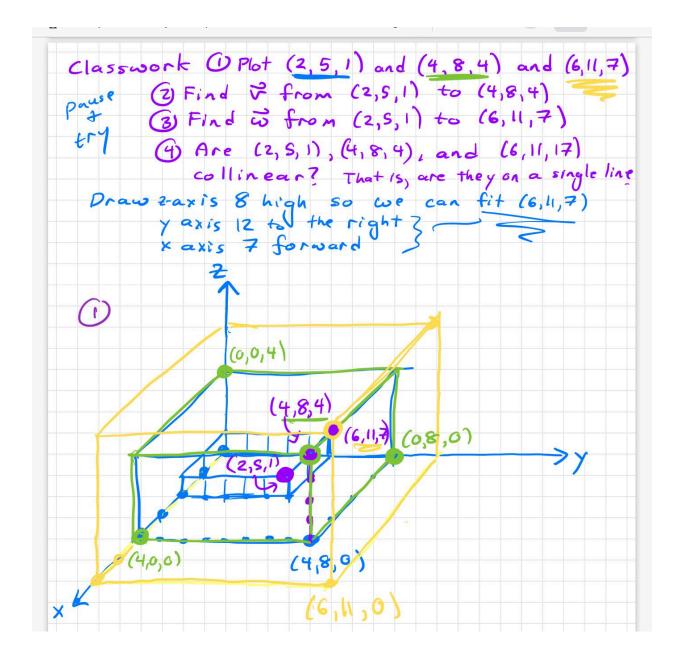

as shown in Figure 11.10. These vectors can be used to represent any vector uniquely, as follows.

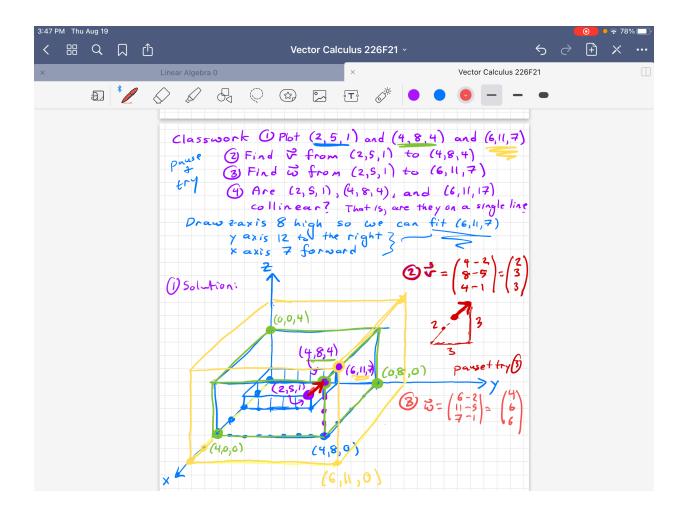

$$\mathbf{v} = \langle v_1, v_2 \rangle = \langle v_1, 0 \rangle + \langle 0, v_2 \rangle = v_1 \langle 1, 0 \rangle + v_2 \langle 0, 1 \rangle = v_1 \mathbf{i} + v_2 \mathbf{j}$$

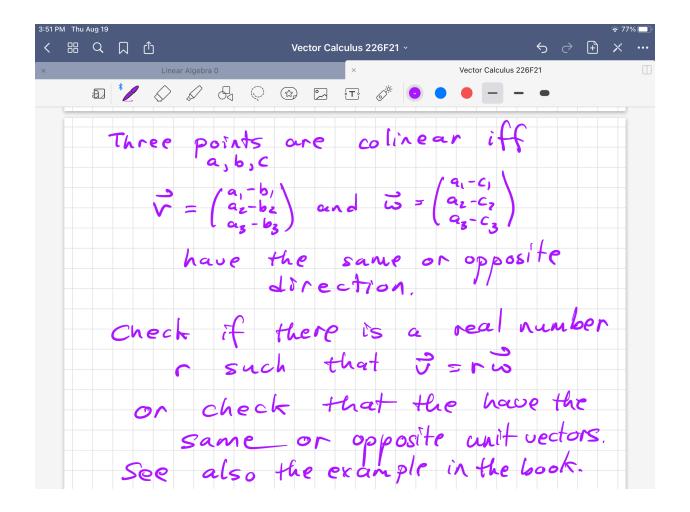
The vector $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j}$ is called a linear combination of \mathbf{i} and \mathbf{j} . The scalars v_1 and v_2 are called the horizontal and vertical components of \mathbf{v} .

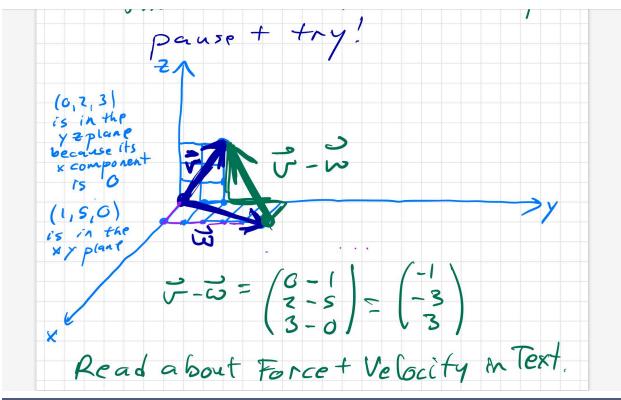

$$\overrightarrow{V} = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} V_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ V_2 \end{pmatrix} = V_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + V_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = V_1 \hat{C} + V_2 \hat{J}$$
by vector addition by scalar mult by defin of standard punit vectors 2 and 3

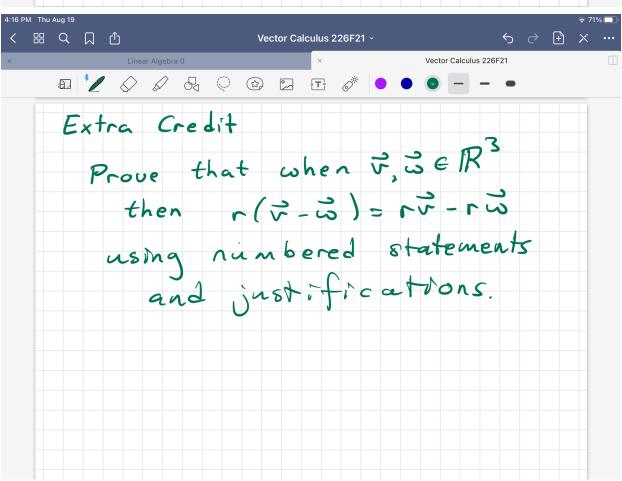


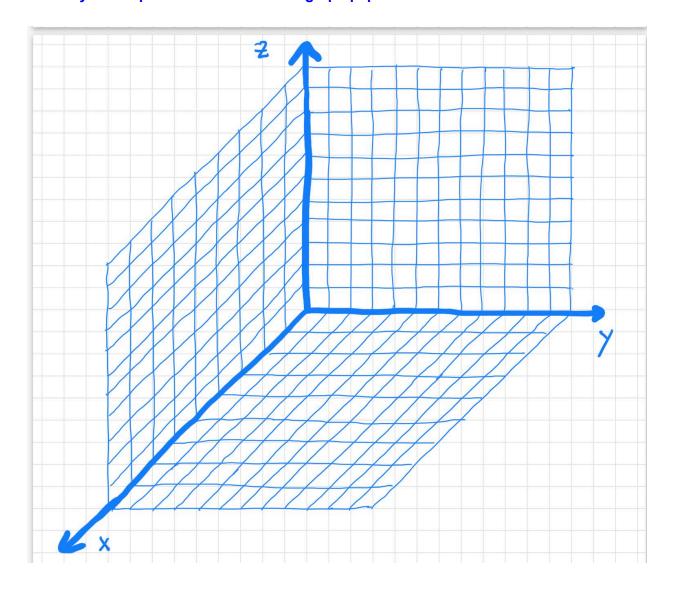


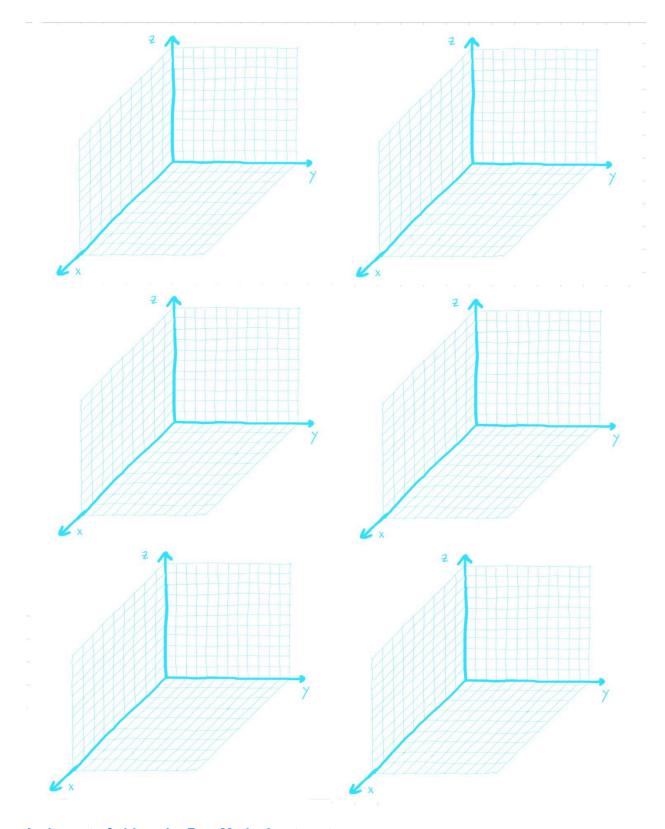






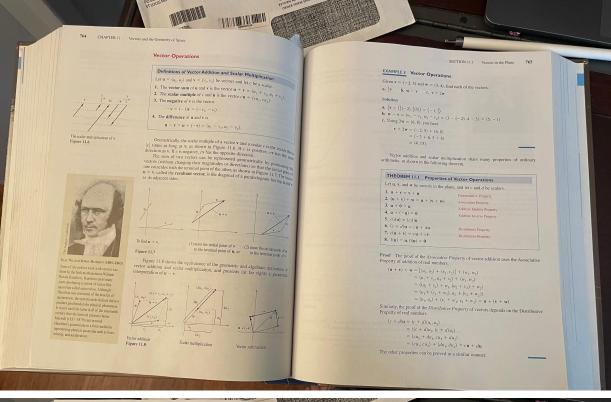


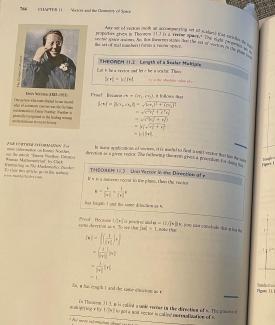




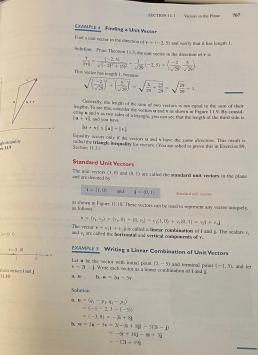
A chart you can print out and use as 3D graph paper:

A nice set of videos by RootMath about vectors


How to check if you have watched all the videos


Homework from the department syllabus is Read 11.1-11.2 and do odd problems in 11.1-11.2

I understand if you do not have time to do all of it. Focus on the ones similar to the classwork that can be done quickly. Physics and engineering majors should read and do the applications with forces and velocities but other students may skip these for now.


Submit the homework in the same googledoc as the classwork. Be sure to write out the questions as well as the answers.

In case you have not purchased the book, today I include photos of the sections we covered and the solutions:

For more information about vector spaces, see Elementary Linear Algebra, Fifth Edition In Lation, Edwards, and Falvo (Baston: Houghton Mifflin Company, 2004).

If u is a unit vector and θ is the angle (measured counterclockwise) $f_{0.0}$ positive a-axis to u, then the terminal point of u lies on the unit circle, and $f_{0.0}$ positive a-axis $f_{0.0}$ and $f_{0.0}$ are $f_{0.0}$ and $f_{0.0}$ because

positive r-axis to u, then the terminal point or u ness on the unit circle $\frac{du}{dt} \frac{du}{dt} = \frac{du}{dt} \frac{du}{dt} = \frac{du}{d$

EXAMPLE 6 Writing a Vector of Given Magnitude and Direct

The vector \mathbf{v} has a magnitude of 3 and makes an angle of $30^\circ \approx \pi/6$ with the positive ax-axis. Write \mathbf{v} as a linear combination of the unit vectors \mathbf{i} and \mathbf{j} .

Solution Because the angle between v and the positive x-axis is write the following. $\mathbf{v} = \|\mathbf{v}\| \cos \theta \mathbf{i} + \|\mathbf{v}\| \sin \theta \mathbf{j}$

MIMILIAN

Applications of Vectors

EXAMPLE 7 Finding the Resultant Force

Two tugboats are pushing an ocean liner, as shown in Figure 11.12, Each burt exerting a force of 400 pounds. What is the resultant force on the ocean liner?

Solution Using Figure 11.12, you can represent the forces exerted by the second tugboats as

$$\begin{split} F_1 &= 400(\cos 20^\circ, \sin 20^\circ) \\ &= 400\cos(20^\circ)\mathbf{i} + 400\sin(20^\circ)\mathbf{j} \\ F_2 &= 400\cos(20^\circ)\mathbf{i} + 400\sin(20^\circ)\mathbf{j} \\ &= 400\cos(20^\circ)\mathbf{i} - 400\sin(20^\circ)\mathbf{j}. \end{split}$$

The resultant force on the ocean liner is

= $[400\cos(20^\circ)\mathbf{i} + 400\sin(20^\circ)\mathbf{j}] + [400\cos(20^\circ)\mathbf{i} - 400\sin(20^\circ)\mathbf{j}]$

So, the resultant force on the ocean liner is approximately 752 pounds in the direction of the positive x-axis.

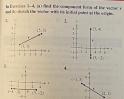
EXAMPLE 8 Finding a Velocity

An airplane is traveling at a fixed altitude with a negligible wind factor. The airplane is traveling at a speed of 500 miles per hour with a bearing of 330°, as shown in Figure 11,13(a). At the airplane reaches a certain point, it encounters wind with a velocity of 70 miles per bour in the direction V45°; E (45° east of north), as shown in Figure 11,13(b). What are the resultant speed and direction of the airplane?

In surveying and navigation, a bearing is a direction that measures the acute angle that a path or line of sight makes with a fixed north-south line. In air navigation, bearings are measured in degrees clockwise from north.

SECTION 11.1 Vectors in the Plane

Solution Using Figure 11.13(a), represent the velocity of the airplane (alone) as


 $\mathbf{v}_1 = 500 \cos(120^\circ)\mathbf{i} + 500 \sin(120^\circ)\mathbf{j}.$ The velocity of the wind is represented by the vector $\mathbf{v}_2 = 70 \cos(45^\circ)\mathbf{i} + 70 \sin(45^\circ)\mathbf{j}.$

The resultant velocity of the airplane (in the wind) is $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 = 500 \cos(120^\circ)\mathbf{i} + 500 \sin(120^\circ)\mathbf{j} + 70 \cos(45^\circ)\mathbf{i} + 70 \sin(45^\circ)\mathbf{j} \\ = -200.5\mathbf{i} + 482.5\mathbf{j},$

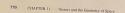
To find the resultant speed and direction, write ${\bf v}=\|{\bf v}\|(\cos\theta\,{\bf i}+\sin\theta\,{\bf j}).$ Because $\|{\bf v}\|=\sqrt{(-200.5)^2+(482.5)^2}\simeq 522.5$, you can write

 $\mathbf{v} \approx 522.5 \left(\frac{-200.5}{522.5} \mathbf{i} + \frac{482.5}{522.5} \mathbf{j} \right) \approx 522.5, [\cos(112.6^\circ)\mathbf{i} + \sin(112.6^\circ)\mathbf{j}].$

The new speed of the airplane, as altered by the wind, is approximately 522.5 miles per hour in a path that makes an angle of 112.6° with the positive x-axis.

Exercises for Section II.I

In Exercises 5-8, find the vectors ${\bf u}$ and ${\bf v}$ whose initial and terminal points are given. Show that ${\bf u}$ and ${\bf v}$ are equivalent.


5. u: (3, 2), (5, 6) v: (-1, 4), (1, 8) 7. u: (0, 3), (6, -2) v: (3, 10), (9, 5)

6. u: (-4,0), (1,8) v: (2,-1), (7,7) 8. u: (-4,-1), (11,-4) v: (10,13), (25,10)

In Exercises 9-16, the initial and terminal points of a vector v are given. (a) Sketch the given directed line segment, (b) write the vector in component form, and (c) sketch the vector with its initial point at the origin. Initial Point Terminal Point Initial Point Terminal Point (2, -6) (3, 6) (0, -4) (-5, -1)

-4+	1+ 1+ x	9. (1, 2) 11. (10, 2)	(5, 5) (6, -1)	10.
indicates that in the for this text, you will find an i computer algebra systems Ma	HM mathSpace® CD-ROM and the Open Exploration, which further explo- ple, Mathead, Mathematica, and Deriv	online Eduspace® s tres this example usi tre.	ystem ng the	

Initial Point 13. (6, 2) 15. $\binom{2}{3}$, $\frac{3}{3}$	Terminal Point (6, 6) (1, 3)	Initial Point 14. (7, -1) 16. (0.12, 0.60)	Terminal Point (-3, -1) (0.84, 1.25
In Exercises 17 an	d 18, sketch	rach scalar multiple	
17. v = (2, 3)		and and any	or v.
(a) 2v (b) - 18, v = (-1,5)	-3v (c) ½v	(d) }v	
(a) 4v (b) -	v (c) 0v	(d) -6v	

In Exercises 19-22, use the figure to sketch a graph of the vector. To print an enlarged copy of the graph, go to the website

In Exercises 23 and 24, find (a) $\frac{2}{3}u_{\rm s}$ (b) $v=u_{\rm s}$ and (c) 2u+5

25. $v = \frac{1}{2}u$ 27. v = u + 2w26. v = u + w28. v = 5u - 3w

In Exercises 29 and 30, the vector v and its initial point are given. Find the terminal point.

In Exercises 31-36, find the magnitude of v.

In Exercises 37–40, find the unit vector in the directiverity that it has length 1.

38. u = (5, 15) 40. u = (-6.2, 3.4)

In Exercises 41-44, find the

(a) u	(b) v
	(c) u+v
(d) u	COLVE TOTAL
Null	(e) $\left \frac{y}{\ y\ } \right $ (f) $\left \frac{u+y}{\ u+y\ } \right $
41. u = (1, -1)	Uu + vi
v = (-1, 2)	42. u = (0, 1)
	- (0,1)
43. $u = (1, \frac{1}{2})$	v = (3, -3)
v = (2, 3)	44. $u = (2, -4)$

demonstrate the triangle inequality using the vectors $u=(2,1), \quad v=(5,4)$ 46. $u=(-3,2), \quad v=(-3,2), \quad v=(-3,2),$

In Exercises 47–50, find the vector v with the giand the same direction as u.

In Exercises \$1-54, find the component form of v give a magnitude and the angle it makes with the positive rank, $SL \| v \| = 3, \ \theta = 0^{\circ} \qquad \qquad SZ \| \| v \| = 5, \ \theta = 150^{\circ} \qquad \qquad SJ \| \| v \| = 1, \ \theta = 3.5^{\circ}$ $SJ \| \| v \| = 1, \ \theta = 3.5^{\circ}$

In Exercises 55–58, find the component form of u+v gives be lengths of u and v and the angles that u and v make with the positive v-axis.

 $\begin{aligned} & \text{positive } s\text{-axis.} \\ & 55. \parallel u \parallel - 1, \quad q_s = 0^s \\ \lVert \mathbf{v} \rVert = 3, \quad q_s = 45^s \\ & 57. \parallel u \rVert = 2, \quad q_s = 4 \\ \lVert \mathbf{v} \rVert = 1, \quad q_s = 2 \end{aligned} \end{aligned}$

Writing About Concepts

reasoning.

(a) The muzzle velocity of a gun
(b) The price of a company's stock

2. Identify the quantity as a scalar or as a
reasoning
(a) The air temperature in a room
(b) The weight of a car

in Exercises 69-74, find a unit vector (a) parallel to and a) normal to the graph of f(x) at the given point. Then sketch graph of the vectors and the function.

exercises 75 and 76, find the component form of v given the satisfaces of u and u + v and the angles that u and u + v and the positive x-axis.

ke with the posture x-axxs. $|u| = 1, \theta = 45^{\circ}$ $|u + v| = \sqrt{2}, \theta = 90^{\circ}$ $|u + v| = 4, \theta = 30^{\circ}$ $|u + v| = 6, \theta = 120^{\circ}$

 $r(z) = \tan x$ $\left(\frac{\pi}{4}, 1\right)$

Solution (a) (x,y) = (x,y) (b) (x,y) = (x,y) (c) (x,y) = (x,y) (d) (x,y) = (x,y) (e) (x,y) = (x,y) (f) (x,y) = (x,

(b) Write the magnitude M and direction α of the force as functions of θ, where 0° ≤ θ ≤ 180°.
 (c) Use a graphing utility to complete the table.

Figure for 81.

12. Residual Force: Forces with magnitudes of 500 pounds and 200 pounds act on a machine part at stage of 307 and 4-45°, 200 pounds act on a machine part at stage of 307 and 4-45°, 200 pounds and 200 pounds act on another part at stage of 307 and 407°, and 107°, respectively, with the praguides of the research of the stage of 307°, and 107°, respectively, with the provider a stage of 400°, and 107°, respectively, with the provider a stage of 400° pounds, and 25° pounds act on an object at angles of 307°, and 107°, respectively, with the provider a stage of 400° pounds and 107°, respectively, with the provider and pounds of 400° pounds and 107°, respectively, with the provider act of 400° pounds of 400° pounds and 107°, respectively, and 107°, respectively, and the positive actual respectively. The provider was forces of equal magnitude of 50°, and 107°, respectively, and 10° pounds and 10°°, respectively, r

the angle between the forces.

(c) Can the magnitude of the resultant be greater than the sum of the magnitudes of the two forces? Explain.

100 mm

distincted of the or of Table, II if it fairs, explain why or else-cation is the Table.

98. If a and a law the same magninds and direction that any 98. If a and the other in the direction of γ , there is γ in the other 99. If a γ is an overein the direction of γ , there is γ is γ in γ in

between \mathbf{u} and \mathbf{v} . 105. Consider the vector $\mathbf{u} = \langle x, y \rangle$. Describe the set of all point $\langle x, y \rangle$ such that $\|\mathbf{u}\| = 5$.

Putnam Exam Challenge

106. A coast artillery gun can fire at any angle of elevation 0° and 50° in a fixed vertical plane. If air res neglected and the muzzle velocity is constant (=) mine the set H of points in the plane and above the l which can be hit.

Space Coordinates and Vectors in Space

- Understand the three-dimensional rectangular coordin
 Analyze vectors in space.
 Use three-dimensional vectors to solve real-life probler

Coordinates in Space

Coordinates in Space

Up to this point in the text, you have been primarily concerned with the two-dimensional coordinate systems. Much of the remaining part of your study of Belorg extending the concept of a vector to three dimensions, you must be able to the study of the stud

Several points are shown in Figure 11.15.

Points in the three-dimensional coordinate system represented by ordered triples. Figure 11.15

A three-dimensional coordinate system can have either a left-handed or a right-handed or containin. To determine the orientation of a system, imagine that you are standing at the origin, with you army sorting in the direct positive x-and y-axes, and with the x-axis pointing up, as shown in Figure 11.16. The system is right-handed crick-handed depending on which hand points along the x-axis. In this text, you will work exclusively with the right-handed system.

Left-handed

N

Use vectors to find the points of trisection of the line segment with endpoints (1, 2) and (7, 5).

5000 IP

Many of the formulas established for the two-dimensional coordinate testuded to three dimensions. For example, to find the distance between the space, you can use the Pythagorean Theorem twice, as shown in Figure doing this, you will obtain the formula for the distance between the and (x, y, z, z).

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

EXAMPLE I Finding the Distance Between Two Points in Space

The distance between the points (2, -1, 3) and (1, 0, -2) is $d = \sqrt{(1-2)^2 + (0+1)^2 + (-2-3)^2} \\ = \sqrt{1+1+25} \\ = 3\sqrt{3}.$ A sphere with center at (x_0, y_0, z_0) and radius r is defined to be the set of all r (r, y, z) such that the distance between (r, y, z) and (x_0, y_0, z_0) is r, r, r, y_0 and (x_0, y_0, z_0) for r, r, r, y_0 and (x_0, y_0, z_0) . If (x_0, y_0, z_0) is an arbitrary point on the sphere, the equation of the obtain

 $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$

as shown in Figure 11.18. Moreover, the midpoint of the line segment joints (x_1, y_1, z_1) and (x_2, y_2, z_2) has coordinates

EXAMPLE 2 Finding the Equation of a Sphere

Find the standard equation of the sphere that has the points (5, -2, 3) and (0,4,-3) as endpoints of a diameter.

Solution By the Midpoint Rule, the center of the sphere is

 $\left(\frac{5+0}{2}, \frac{-2+4}{2}, \frac{3-3}{2}\right) = \left(\frac{5}{2}, 1, 0\right).$

By the Distance Formula, the radius is

$$r = \sqrt{\left(0 - \frac{5}{2}\right)^2 + (4 - 1)^2 + (-3 - 0)^2} = \sqrt{\frac{97}{4}} = \frac{\sqrt{97}}{2}.$$

Therefore, the standard equation of the sphere is

 $\left(x - \frac{5}{2}\right)^2 + (y - 1)^2 + z^2 = \frac{97}{4}.$

Figure 11.20

SECTION 11.2 Space Co Vectors in Space

In space, vectors are denoted by ordered triples $\mathbf{v}=(v_1,v_2,v_3)$. The zero vector is denoted by 0=(0,0,0). Using the unit vectors $\mathbf{i}=(1,0,0)$, $\mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$ in the direction of the positive z-axis, the standard unit vector notation for \mathbf{v} is

 $v=v_1 i+v_2 j+v_3 k$ $P(v_1,v_2)+v_3 k$ $P(p_1,p_2,p_3)=Q(p_1,p_3,p_4)$ with represented by the directed line segment from $P(p_1,p_2,p_3)=Q(p_1,p_3,p_4)$ with residue in Figure 12.0, the component from of v is given by subtracting the coordinates of the initial point from the

 $\mathbf{v} = \langle v_1, v_2, v_3 \rangle = \langle q_1 - p_1, q_2 - p_2, q_3 - p_3 \rangle$

Vectors in Space

Let $\mathbf{u}=\langle u_1,u_2,u_3\rangle$ and $\mathbf{v}=\langle v_1,v_2,v_3\rangle$ be vectors in space and let c be a scalar.

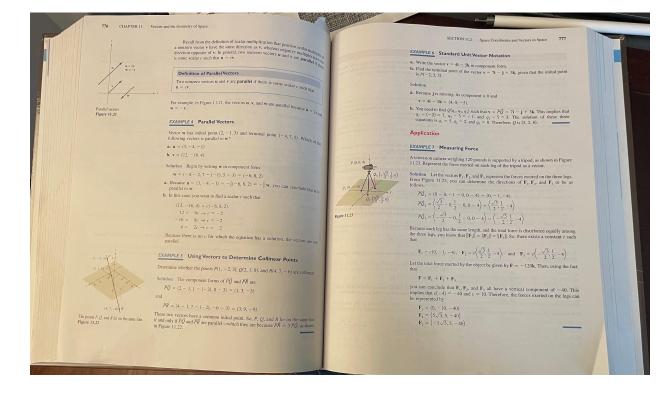
scalar. Lequality of Vectors: $\mathbf{u} = \mathbf{v}$ if and only if $u_1 = v_1, u_2 = v_2$ and $u_3 = v_2$. 2. Component Form: If \mathbf{v} is represented by the directed line segment from $P(P_1, P_2, P_3)$ to $Q(q_1, q_2, q_3)$, then $\mathbf{v} = (v_1, v_2, v_3) = (q_1 - P_1, q_2 - P_2, q_3 - P_3).$ 3. Length: $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

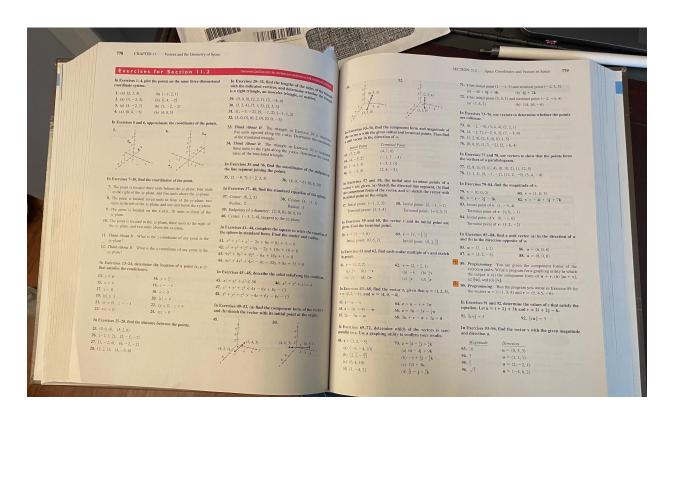
 $\textbf{4. Unit Vector in the Direction of } \textbf{v}; \ \, \frac{\textbf{v}}{\|\textbf{v}\|} = \left(\frac{1}{\|\textbf{v}\|}\right) \langle \nu_1, \nu_2, \nu_3 \rangle, \quad \textbf{v} \neq \textbf{0}$

5. Vector Addition: $\mathbf{v} + \mathbf{u} = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle$ 6. Scalar Multiplication: $\mathbf{c}\mathbf{v} = \langle cv_1, cv_2, cv_3 \rangle$

NOTE The properties of vector addition and scalar multiplication given in Theorem 11.1 are also valid for vectors in space.

EXAMPLE 3 Finding the Component Form of a Vector in Space


Find the component form and magnitude of the vector ${\bf v}$ having initial point (-2,3,1) and terminal point (0,-4,4). Then find a unit vector in the direction of ${\bf v}$.


Solution The component form of v is

$$(q_1 - p_1, q_2 - p_2, q_3 - p_3) = (0 - (-2), -4 - 3, 4 - 1)$$

= $(2, -7, 3)$
which implies that its magnitude is

 $\|\mathbf{v}\| = \sqrt{2^2 + (-7)^2 + 3^2} = \sqrt{62}$. The unit vector in the direction of \mathbf{v} is

 $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{1}{\sqrt{62}}(2, -7, 3).$

In Exercises 97 and 98, sketch the vector v and write its compo-

- 97. v lies in the yz-plane, has magnitude 2, and makes an angle of 30° with the positive y-axis.
- 98. v lies in the xz-plane, has magnitude 5, and makes an angle of 45° with the positive z-axis.

In Exercises 99 and 100, use vectors to find the point that lies two-thirds of the way from P to Q.

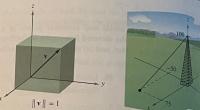
99. P(4, 3, 0), Q(1, -3, 3) **100.** P(1, 2, 5), Q(6, 8, 2)

101. Let u = i + j, v = j + k, and w = au + bv.

- (a) Sketch u and v.
- (b) If w = 0, show that a and b must both be zero.
- (c) Find a and b such that $\mathbf{w} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$.
- (d) Show that no choice of a and b yields $\mathbf{w} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
- 102. Writing The initial and terminal points of the vector v are (x_1, y_1, z_1) and (x, y, z). Describe the set of all points (x, y, z)such that $\|\mathbf{v}\| = 4$.

Writing About Concepts

- 103. A point in the three-dimensional coordinate system has coordinates (x_0, y_0, z_0) . Describe what each coordinate
- 104. Give the formula for the distance between the points (x_1, y_1, z_1) and (x_2, y_2, z_2) .
- 105. Give the standard equation of a sphere of radius r, centered at (x_0, y_0, z_0) .
- 106. State the definition of parallel vectors.
- **107.** Let A, B, and C be vertices of a triangle. Find $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$.
- 108. Let $\mathbf{r}=\langle x,y,z\rangle$ and $\mathbf{r}_0=\langle 1,1,1\rangle$. Describe the set of all points (x, y, z) such that $\|\mathbf{r} - \mathbf{r}_0\| = 2$.
- 109. Numerical, Graphical, and Analytic Analysis The lights in an auditorium are 24-pound discs of radius 18 inches. Each disc is supported by three equally spaced cables that are Linches long (see figure).



- (a) Write the tension T in each cable as a function of LDetermine the domain of the function.
- (b) Use a graphing utility and the function in part (a) to

L	20	25	30	35	40 45 5	1
T					73 5	0
		1	915 398			

- (c) Use a graphing utility to graph the function in patermine the asymptotes of the graph.
- (d) Confirm the asymptotes of the graph in part (e) and the same of the graph in part (e) and th
- (e) Determine the minimum length of each cable if a case designed to carry a maximum load of 10 pounds.
- 110. Think About It Suppose the length of each cable in Eq. (and there are fixed length L=a, and the radius of a. Think About the 109 has a fixed length L = a, and the radius of each a conjecture about the limit. 109 has a fixed length.

 Inches. Make a conjecture about the limit $\lim_{r \to \infty} T_{\text{and inches}}$.
- 111. Diagonal of a Cube Find the component form of the vector v in the direction of the diagonal of the cube sh

Figure for 111

Figure for 112

Interp vector

circle.

severa

the an

used. relation

of tw

the ve

180

- 112. Tower Guy Wire The guy wire to a 100-foot tower lata tension of 550 pounds. Using the distances shown in the figure, write the component form of the vector F representations. the tension in the wire.
- 113. Load Supports Find the tension in each of the supports cables in the figure if the weight of the crate is 500 newton

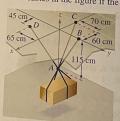


Figure for 113

Figure for 114

- 114. Construction A precast concrete wall is temporarily kept its vertical position by ropes (see figure). Find the total for exerted on the pin at position A. The tensions in AB and ACare 420 pounds and 650 pounds.
- 115. Write an equation whose graph consists of the set of point P(x, y, z) that for P(x, y, z) that are twice as far from A(0, -1, 1) as $\mathbb{R}(1, 2, 0)$

Solutions from back of text:

73. (a) $\pm \frac{1}{5}\langle -4, 3 \rangle$ (b) $\pm \frac{1}{5} (3, 4)$

75.
$$\langle -\sqrt{2}/2, \sqrt{2}/2 \rangle$$

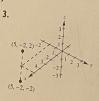
- **79.** 1.33, 132.5° 77. (a)-(c) Answers will vary.
- **81.** (a) Direction: $\alpha = 11.8^{\circ}$

Magnitude: 440.2 N

(b) $M = \sqrt{(275 + 180 \cos \theta)^2 + (180 \sin \theta)^2}$ $180 \sin \theta$ $\alpha = \arctan\left(\frac{160 \text{ m}}{275 + 180 \cos \theta}\right)$

(c)	θ	0°	30°	60°	90°	120°
	M	455.0	440.2	396.9	328.7	241.9
	α	0°	11.8°	23.1°	33.2°	40.1°

θ	150°	180°
M	149.3	95.0
α	37.1°	0°



- (e) M decreases because the forces change from acting in the same direction to acting in opposite directions as θ increases from 0° to 180°.
- **83.** 71.3°, 228.5 lb
- **85.** (a) $\theta = 0^{\circ}$ (b) $\theta = 180^{\circ}$
 - (c) No, the resultant can only be less than or equal to the sum.
- **87.** (-4, -1), (6, 5), (10, 3)
- **89.** Tension in cable $AC \approx 1758.8$ lb Tension in cable $BC \approx 1305.4$ lb
- **91.** Horizontal: 1193.43 ft/sec **93.** 38.3° north of west Vertical: 125.43 ft/sec
- 882.9 kph **95.** True **97.** True **99.** False. $||a\mathbf{i} + b\mathbf{j}|| = \sqrt{2}|a|$ **101–103.** Proofs **105.** $x^2 + y^2 = 25$

Section 11.2 (page 778)

- **7.** (-3, 4, 5) **9.** (10, 0, 0) I_{1,0} **5.** A(2, 3, 4)B(-1, -2, 2)
- 13. Six units above the xy-plane
- 15. Four units in front or the ye-plane
 17. To the left of the xz-plane and either above, below, or xy-plane and either in front of, behind, or on the ye-plane three units of the xz-plane

61. (a)

63. (

69. a

77. Ā

79. 0

85. (

87.

89.

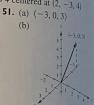
93.

97.

101.

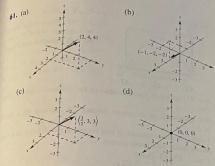
103.

105. 109.


- 19. Within three units of the xy-plane, to the right of the xz-plane in front of the yz-plane, or three units below the xy-plane and behind the yz-plane in front of the yz-plane, or three units below the left of the xz-plane, and behind the yz-plane
- 23. 1. Above the xy-plane and (a) to the right of the xz-plane or (b) to the left of the xz-plane or (b) to the left of the xz-plane or (c) to the left of the xz-plane or (d) to the left of the xz-plane or (e) the xz-plane or (e) to the xz-plane or (e) the Above the xy-plane or (b) to the left of the xz-plane or
 - 2. Below the xy-plane and (a) to the right of the xz-plane or (b) to the left of the xz-plane or (b) to the xz Below the xy-plane or (b) to the left of the xx-plane or (b) to the left of the xx-plane
- **25.** $\sqrt{65}$ **27.** $\sqrt{61}$
- **29.** $3, 3\sqrt{5}, 6$ **31.** 6, 6, $2\sqrt{10}$ Right triangle Isosceles triangle
- **33.** (0, 0, 5), (2, 2, 6), (2, -4, 9)
- **33.** (0, 0, 0), $(x 0)^2 + (y 2)^2 + (z 5)^2 = 4$
- **39.** $(x-1)^2 + (y-3)^2 + (z-0)^2 = 10$
- **41.** $(x-1)^2 + (y+3)^2 + (z+4)^2 = 25$ Center: (1, -3, -4)

Radius: 5 43. $\left(x - \frac{1}{3}\right)^2 + (y + 1)^2 + z^2 = 1$ Center: $(\frac{1}{3}, -1, 0)$

Radius: 1


- **45.** A solid sphere with center (0, 0, 0) and radius 6
- **47.** Interior of sphere of radius 4 centered at (2, -3, 4)
- **49.** (a) $\langle -2, 2, 2 \rangle$

- **53.** $\mathbf{u} = \langle 1, -1, 6 \rangle$
 - $\|\mathbf{u}\| = \sqrt{38}$
- **57.** (a) and (c)
- **55.** $\mathbf{u} = \langle -1, 0, -1 \rangle$
 - $\|\mathbf{u}\| = \sqrt{2}$
 - $=\frac{1}{\sqrt{2}}\langle -1,0,-1\rangle$ u
 - **59.** (3, 1, 8)
- (b) (4, 1, 1)

(d) Proof (e) 30 in.

- **65.** $\langle 6, 12, 6 \rangle$ **67.** $\langle \frac{7}{2}, 3, \frac{5}{2} \rangle$
- 63. (-1, 0, 4)69. a and b 71. a 73. Collinear 75. Not collinear
- 77. $\overrightarrow{AB} = \langle 1, 2, 3 \rangle$

the

and the

and in

lin

- $\overrightarrow{CD} = \langle 1, 2, 3 \rangle$
- $\overrightarrow{BD} = \langle -2, 1, 1 \rangle$
- $\overrightarrow{AC} = \langle -2, 1, 1 \rangle$

Since $\overrightarrow{AB} = \overrightarrow{CD}$ and $\overrightarrow{BD} = \overrightarrow{AC}$, the given points form the vertices of a parallelogram.

- 79. 0 81. $\sqrt{14}$ 83. $\sqrt{34}$
- 85. (a) $\frac{1}{3}\langle 2, -1, 2 \rangle$ (b) $-\frac{1}{3}\langle 2, -1, 2 \rangle$
- 87. (a) $(1/\sqrt{38})(3, 2, -5)$ (b) $-(1/\sqrt{38})(3, 2, -5)$
- 89. (a)-(d) Answers will vary. 91. $\pm \frac{5}{3}$
- **93.** $(0, 10/\sqrt{2}, 10/\sqrt{2})$ **95.** $(1, -1, \frac{1}{2})$
 - **99.** (2, -1, 2)

 $\langle 0, \sqrt{3}, \pm 1 \rangle$

(b) a = 0, a + b = 0, b = 0(c) a = 1, a + b = 2, b = 1(d) Not possible

- 103. x_0 is directed distance to yz-plane.
 - y_0 is directed distance to xz-plane.
- z_0 is directed distance to xy-plane.
- 105. $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 = r^2$ 107. 0
- 109. (a) $T = 8L/\sqrt{L^2 18^2}$, L > 18

(4)	L 20 25 30 35 4						T =0		
(b)	I	20	25	30	35	40	45	50	
	-	20			0.0	0.0	87	86	
	T	18.4	11.5	10	9.3	9.0	0.7	0.0	

- 111. $(\sqrt{3}/3)(1, 1, 1)$
- 113. Tension in cable AB: 202.919 N
 - Tension in cable AC: 157.909 N
- Tension in cable AD: 226.521 N 115. $\left(x \frac{4}{3}\right)^2 + \left(y 3\right)^2 + \left(z + \frac{1}{3}\right)^2 = \frac{44}{9}$

Section 11.3 (page 787)

- 1. (a) -6 (b) 25 (c) 25 (d) $\langle -12, 18 \rangle$ (e) -12
- **3.** (a) -17 (b) 26 (c) 26 (d) $\langle 51, -34 \rangle$ (e) -34
- 5. (a) 2 (b) 29 (c) 29 (d) (0, 12, 10) (e) 4
- 7. (a) 1 (b) 6 (c) 6 (d) $\mathbf{i} \mathbf{k}$ (e) 2 9. 20 11. $\pi/2$ 13. $\arccos(-1/5\sqrt{2}) \approx 98.1^{\circ}$ **15.** $\arccos(\sqrt{2}/3) \approx 61.9^{\circ}$ **17.** $\arccos(-8\sqrt{13}/65) \approx 116.3^{\circ}$
- 19. Neither 21. Orthogonal 23. Neither
- 25. Orthogonal 27. Right triangle; answers will vary.
- 29. Acute triangle; answers will vary.
- **31.** $\cos \alpha = \frac{1}{3}$ 33. $\cos \alpha = 0$
 - $\cos \beta = 3/\sqrt{13}$ $\cos \beta = \frac{2}{3}$
 - $\cos \gamma = -2/\sqrt{13}$ $\cos \gamma = \frac{2}{3}$
- **35.** $\alpha \approx 43.3^{\circ}, \beta \approx 61.0^{\circ}, \gamma \approx 119.0^{\circ}$
- **37.** $\alpha \approx 100.5^{\circ}, \beta \approx 24.1^{\circ}, \gamma \approx 68.6^{\circ}$
- 39. Magnitude: 124.310 lb $\alpha \approx 29.48^{\circ}$, $\beta \approx 61.39^{\circ}$, $\gamma \approx 96.53^{\circ}$
- **41.** $\alpha = 90^{\circ}, \beta = 45^{\circ}, \gamma = 45^{\circ}$ **43.** $\langle 4, -1 \rangle$ **45.** $\langle 2, 1, 1 \rangle$
- **47.** (a) $\left\langle \frac{5}{2}, \frac{1}{2} \right\rangle$ (b) $\left\langle -\frac{1}{2}, \frac{5}{2} \right\rangle$
- **49.** (a) $\langle 0, \frac{33}{25}, \frac{44}{25} \rangle$ (b) $\langle 2, -\frac{8}{25}, \frac{6}{25} \rangle$
- 51. See "Definition of Dot Product," page 781.
- **53.** (a) $\theta = \pi/2$ (b) $0 < \theta < \pi/2$ (c) $\pi/2 < \theta < \pi$
- 55. See the definitions of direction cosines and direction angles on page 784.
- 57. (a) The vectors are parallel. (b) The vectors are orthogonal.
- **59.** \$12,351.25; Total revenue **61.** (a)–(c) Answers will vary.
- **63.** Answers will vary. **65.** $\langle 0, 0 \rangle$
- **67.** Answers will vary. Example: $\langle 4, 3 \rangle$ and $\langle -4, -3 \rangle$
- **69.** Answers will vary. Example: $\langle 2, 0, 3 \rangle$ and $\langle -2, 0, -3 \rangle$
- **71.** (a) 8335.1 lb (b) 47,270.8 lb **73.** 425 ft-lb
- **75.** False. For example, $\langle 1, 1 \rangle \cdot \langle 2, 3 \rangle = 5$ and $\langle 1, 1 \rangle \cdot \langle 1, 4 \rangle = 5$, but $\langle 2, 3 \rangle \neq \langle 1, 4 \rangle$.
- **77.** $\arccos(1/\sqrt{3}) \approx 54.7^{\circ}$
- **79.** (a) To $y = x^2$ at (1, 1): $\langle \pm \sqrt{5}/5, \pm 2\sqrt{5}/5 \rangle$ To $y = x^{1/3}$ at (1, 1): $\langle \pm 3\sqrt{10}/10, \pm \sqrt{10}/10 \rangle$ To $y = x^2$ at (0, 0): $(\pm 1, 0)$ To $y = x^{1/3}$ at (0, 0): $(0, \pm 1)$
 - (b) At (1, 1), $\theta = 45^{\circ}$
 - At (0, 0), $\theta = 90^{\circ}$

You do not need to buy this textbook (although it costs less than \$20 used. If you like how it explains things, then it is a good idea to buy it. If you prefer to continue forward using a calculus book you already own that is also ok.

You will cut and paste the photos of your notes and completed classwork and a selfie taken holding up the first page of your work in a googledoc entitled:

MAT226S25-lesson1-lastname-firstname

and share editing of that document with me <u>sormanic@gmail.com</u>. You will also put photos of your homework in this googledoc.