Vector Calculus MAT226 Spring 2025
Professor Sormani

Lesson 1 Review of Vectors and Plotting Points in 3D

Please go to your email and make sormanic@gmail.com a contact so that
you will receive all my emails. Be sure
to read them all semester.

Carefully take notes on pencil and paper while attending class or watching the lesson
videos. You will cut and paste the photos of your notes and completed classwork and a
selfie taken holding up the first page of your work in a googledoc entitled:

MAT226S25-lesson1-lastname-firstname

Then share editing of that document with me sormanic@gmail.com. You will also put
photos of your homework in this googledoc. If you work with any classmates, be sure to
write their names on the problems you completed together.

Today’s Playlist 226F21-1 has 22 short videos and photos of the notes for them are
below.

Please watch all the videos if you missed class. If you attended class you may choose to
watch some videos that might help you understand anything you did not understand in
class.


https://sites.google.com/site/professorsormani/home/teaching/vector-calc-f25
https://sites.google.com/site/professorsormani/home
mailto:sormanic@gmail.com
mailto:sormanic@gmail.com
https://youtube.com/playlist?list=PLRHpZu30FKOVZYGDZJ0hBLRXFOwjhY0pd
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A chart you can print out and use as 3D graph paper:

2

NN
SN

XY

N
AN

NN

Li
AN

NN

SN

AN AN A7 b4
A0/
PaVaVavavava

NN

QN NNN]
\s\ N

NN N NN

QA7
VAL
WV Vv

x



A nice set of videos by RootMath about vectors

How to check if you have watched all the videos


https://youtube.com/playlist?list=PLA738885C1D6E75A4
https://youtu.be/TJfM8PcryHM

Homework from the department syllabus is

Read 11.1-11.2 and do odd problems in 11.1-11.2

I understand if you do not have time to do all of it. Focus on the ones similar to the
classwork that can be done quickly. Physics and engineering majors should read and do
the applications with forces and velocities but other students may skip these for now.

Submit the homework in the same googledoc as the classwork. Be sure to write out the
questions as well as the answers.

In case you have not purchased the book, today | include photos of the sections we
covered and the solutions:
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762 CHAPTER 11 Vectors and the Geometry of Space S 3
S SECTION 111 Vectors in the Planc 763

L Section L[ Vectors in the Plane
* Write the component form of a vector.
¢ Perform vector operations and interpret the resuts ge Metricay,

et geo
< Wiitea vector as a linar combination of standard gy vecty
* Use vectos 0 sove problems nvolving force o velgify (0%

is often the most

o R directed line segment Whose initial point is the origi

; SPINenient fepresentative of g ser of cquivalent directed line segments such as thos
shown in Figure 113, This Fepresentation of v is said to be in standard position. A

directed line segment whase ipjyag Point s the origin can be uniquely represented by I

the coordinates of its termina) POINt Q(v, v,), as shown in Figure 11.4. i

1)
o

e T — the Plane | {

Component Form of a Vector

I ¥ is 8 vectorin the plane whose initial point s the origin and whose terminal
Pointis (v, vy), then the component forms of v is given by

).
The coordinates v, and v, are called the components of v. If both the initial

2 Many quantiis in geometry and physics, such as areg, v
Y g olume, 1o,
and time,can be charaterized by a single real number souy.

'Per

Terminl 2l e

= point measure. These are called scalar quanfities, and the o] Number al""?m’i;;«

2 7 is called a scalar. O i
Other quantities, such as force, velocity, and acceleratiop, %y

positon ofa ector

il
point dnd direction nd camot be charctrized completly py TYOIe sntird B X « s
: : o byas 14 ERERd D terminal ool €l o et s Sal S e e etin
Adirected line segment directed line segment is used to represent such a quang Figure s denord by 0
Figure 11.1 The directed line segment PO has initial point P ap, S A Al
(or magnitude) is denoted by || PQ . Directed line. segi % |
nd ditecion arc equivalent, as shown i Figure 115, oy s s definion imples tht o vectors n = (1, sy and v = Gy, vy are equat fand
segments that are equivalent (0 a given directed line segment P only ity = v, and , = v,
plane and is denoted by v = PD. In typeset material, yorpars aus (o 2 followine procediree can e used o convert directed. e segments 1
lowercase, boldface letters such as u, v, and w. When Witen by ha,{ddt oty component form or vice vers. \
e e by el i s A ST, b R0 pollend 0G5 ) e the Ll and vl porets o & directod Tine
2o s il dvectot e plang $an be represented by many gl cCement the component form of the vector v represented by PG is )=
directed line segments—all pointing in the same direction and q) of the 5 NOTE. Itis Imy:vr:nn!’r:[u:dr:/::;nﬁ num G e L,
svector represents a set of directed line

e cach hvin the same ength =
camans M= Ve =)+ G = Lengthof a vctor |
e

SIS e o, o
e By )
sector and one of ls representatives.

Equivalent directed line segmens
12

Figure | i i i 3
igure EXAMPLE | Vector Representation by Directed Line Seg,

Let v be represented by the directed line segment from (0, 0) 1o (3, 2)
s tesented by the directed line segment from (1, 2) to (4,4) Show 1 210V = (9, 3), v can be represented by the directed line segment, in standard
cdlien! position, from P(0, 0) to O(v,, v,). |
The length of v is also called the norm of v. If ]| = 1, v is a unit vector

Moreover, [|v|| = 0, and only if v s the zero vector 0. \

Solution Let 2(0,0) and 0(3,2) be the iniial and terminal pojy
R(1,2) and 5(4, 4) be the initial and terminal Ppoints of u, as shown in Figy
a1 use the Distance Formula o show that 20 and RS have the same (o

172 = vG=orF=op VKl Lengtior 7

ZXAMPLE?  Finding the Component Form and Length of aVector
=t

w4 Bl = ST —a
s I8|= vE=T7va=27- s v/ b
%] A =22 /15 Find the component form and length of the vector v that has initial point (3, 7) and
) Both line segments have the same direcrion, because they both are directed oy SRR (32
UBPEC right on lines aving the same slop. ;o
62,, 0 1 Solution [LeCR(3, =7) = (pi,p,) and 0(=2,5) = (g, 4) Then the componeats { H
St Ba0 = of v = (v, v,) are o
thl
. Vi=dqi=p =~ W
V=4 =py=5—(-7) !
FOTnnE e Slope of 25 PG R e e s
=3 3 |
L}:ﬂvxl;;;x]uuudvnmrqumlem, Because PO and g5 have the same length ang direction, you can conclude th i e ~/(<5)2 i
YECLOrS re equivalent, That s, y gng o are equivalent, N Componen form of z y = (=5, 12y = e !
ot =0 i
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Vectors and the Geomery of Space

764 cHAPTER 1)

SECTION 11.1 Vectors in the Plane 765
Vector Operations

EXAMPLE 3 Vector Operations

Given Yi=i(=5.5) and yim

| Definitions of Vector Addition and Scalar "llllt]p"qﬁon -~
[/ et = i nd v = (o, ) e Veotors i che %

3.4). find each of the vectors.

S, S ol e
< Vector sum of wand v is the ector 4 y - (1
et o Solution
2. The scalar mltiple of ¢ and u s the vector ¢y — e, oty Al
<<y
: e 3. The negative of v is the vector

Vtow=(

; ; ‘ Rl e SNy e Bemeal s o
4 ‘ % < Using 2w = (6,8). you have
| 4. The difference of w and v is
| ),
i
L

U=V =ut(=v) = (g,

1ty = 1y,

=(4,13),

The scalar mltiplication of v
ure 11,6

Geometrically, the scalar multiple of a vector v

I ¢ anda scalar ¢ g g
i lel times as long a5 v, as shown in Figure 116, It g 1 Positive, gy (Wt Vector additon and scalar muliplication share many properties of ordinary.
diretion as v.If ¢ i negative, ev has the opposite dirsgtig 2 the g arithmetic, as shown in the following theorem.
The sum of two vectors can be represented

geometric by
sectors (vithout changing teir magnitudes o directions) n.::,,yl l:,’,;’f“"“""in; %
o7 comcde with e eminl pointo e ke s s 170 g
1 . called the resultant vector,is th dingonal of Paralclograr o 1Sty
as it adjacent sides ing gy

THEOREM I1.1 Properties of Vector Openﬁ

B0, and W be Vectors in the plane, and let ¢ and d b scaars,
Lutv=viy

Commutative Property
2+ +w=ut (v + ) Associuive Property
Juto=y

dut(-u=o
5. cldu) = (cd)u
6. (e +du=cu+du Disibutive Property
7o clut V) =cut ey Distsibuive Property
8. 1(w) = u.0(u)

Addiive lemity Properry

Additye Inverse Property

Tofindu + v, ve the inil i i
o fnd u oo e ot Proaf The proof o the Associtive Property of vestor addition uses the Associtive
Figure 117 ey Property of addition of real numbers
| S 4y, 1y, {8 + (wy, w;
e Figure 118 shows the cquivalence of the geometrig and algebrai B s s DT G
S yector addition and scalar multiplication, g presents (at far righy =t v+ ) + vy
Someof the sl wark wih vetor was interpretation of u — v 4
donty the Ik mthemti

Rovan Hamilo, |

anilton spent many
| s deloping a system of etk |
| uantis calld guotenions, lhaugl
anilton was comviced o the benefits of
stternions, the opertions b definedid o
producegood modes orphysical phenomeny.
s i e Lt i of e ity
<entury (ht he Scotih plysic Jaes
Maswell (1831-1879) nstrcyreg
Hamilon’ quaternons i form ey o
EPIESning pySicalguaiiis s s o,
selocity, and aceertio Vector a
U, 4nd aceleraion, ;.C,,L:r\ AI/I’JHBIUH Sealar multiplication

(s +v,) + w,)
O )+ (v + 1))
= G t) (v, o

ut(v+w

Similarly,theproof of the Distibutive Property of vectors depends on the Distibative
Property of real numbers.

(e + du= (c + d)uy 1)
(e + d)uy, (e + d)usy
= e + duy cuy + du)
{em. ciy) + (duy, dity) = cu + du

‘The other properties can be proved in a similar manner,

e

766 CHAPTER Il Vectors and the Geomelry of Space

Any set of vectors (with an accompanying set of scalry)

properies given in Theorem 1 L1is a vector space.4 gy s

yector space axioms So s theorem siaes tha th gey o'y

a the set of real numbers) forms a vector space.

propch EXAMPLE 4 Finding a UnitVector |
e
b

ctor i o
i

Find a unit vector in the direction of v = (2, 5) and verify that it has length 1. 8

i = S S
i | 'THEOREM I1.2 Length of a Scalar Multiple

SECTION 1.1 Vectors in the Plane 767 | \
|
1

Solution  From Theorem 113, the unit vector in the direction of v is

oSl ez =) it
3 | Let v be a vector and let ¢ be a scalar. Then m’fqblﬂ_ o 1 |
i I levli= el vl fel isthe absolute value of This vector has length 1, because 1 |
g | |
© e S2 04 5 4 25 2 |
: | G- veEee .

[ —— Proot Because v = vy s, i Follows that 7 2 \UB) TN BtV

One person who contributed t0 our knawl. llevil = Ier, vl = Vi) +(evy)2

it Generall
edee of asiomatic systems was the German = /HET o

b the length of the Sum of two vectors is not equal to the sum of Ih;if |
mathemaican Einmy Noetber Nocther s & Jengths. To see this, consider the vectors w a3 oo shown in Figure 11.9. By consid-
enersly recognizedas the eading woman = i) £ring U and v as two sides ofa triangle, You can see that the length of the third side is
mathematican in ecent history: Jel oEE 2 la + V], and you have
s |
= e [+ S, lu+v) < ] + v,
— = Equality occurs only if the vectors u and v have the same direction. This re_sllhgl; i
FOR FURTHER INFORMATION For In many applications of vectors, it is useful (o fing 8 unit vector gy e inequality. called the triangle inequality for Vectors. (You are asked to prove this in Exercise 89, i
more information on Emimy Noether, diretion as  given vector. The folloving theorem givee - Procedure f; ""‘,’he'q,,' gl e Section 113,) |
sce the article “Emmy Noether, Greates. urf“’{'!&ﬂ:ix Figure \
Woman Mathematician” by Clark T IR S Lt
W = Standard Unit Vector:
Kimbeting in e Mathenarics eacher, | THEOREM 113 Unic Vector in the Direction'ary ectors . \
o view this atcl, 0 10 the website % The unit vectors (1, 0) and (0, 1) are called the standard unit veetors in the plane
s mathartcles com, Iy is a nonzero vector in the plane, then the vector e e
| i=(L0) ©.1) Standart it vectors
has length 1 and the s cti A 3
e 2 S m”f’i"iv y 25 shown in Figure 11.10. These vectors can be used to represent any vector uniquely,
{ as follows.

Proof Because 1/]v]is positive and u = /]vlhv.

You can conclude
same direction as v. To see that Jlull = 1, note that

V= ) = (0,0) + (0.,) = wi(1,0) + (0, 1) =

The vector v = v,i + v, j is called a linear combination of i and j. The scalars v,
and v, are called the horizontal and vertical components of v.

e

i inati f Unit Vectors.
EXAMPLES  Writing a Linear Combination of Un

Let u be the vector with initial POint (2, =5) and terminal point (=1,3), and let
! V= 20 = . Write each vector as a linear combination of § and i

u b. W =2u -3y

Standard unit veetors i and
Figure 11.10

S0 u has length | and the sgme direction as v,

Solution

In Theorem 1

3, s called
multiplying v by 1/

4 unit vector in the direction of
I¥]/ o geta un

; 2 u=(q~p.g,~ p)
i vector s called normalzati

5 G125 Cs)

=(-3.8) = ~3i + §j
baW = 2u — 3v = 2(=3i + 8j) ~ 3(2i - j)
= =61+ 16j - 6i + 3j

0 0% informarion aoug

Larson, Edvards, ang gy

VCtor spaces, se
(Boston: Houghye,

Elementary Linear Algeby
" Miffin Company, 2004).
i
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I is a unit vector and 0 is the angle (measureq OUnepg,
posive -axis o u,then(he terminal point of u les gy (g el

terlocky
i i) and)y;::n J

and navigay

5 le

n surveying ", bearing is a dircction that measures the gt

Ahat 2 path offine of sight makes wifh 5 fixed north-south line. In air navigation,

u = (cos 8, sin 6) = cos bi + sin 6j Uy Ings are measured in degrees cloc]

it eetor

ss shown in Figure 11.11. Moreover, it follows thay

kwise from north.
tany ofher
i nze, X i .
an angle 0 with the positive x-axis has the same directjon sy n..d";;':%rv% 5P EXAMPLE 3 inding a Velocity
¥ = lIvlieos 0.5in 0) = [v]|cos 6i + [lv[sin g5 Sy

An airplane is traveling at a fixed altitude with a negligible wind factor. The an‘r:vlz\::
I8 traveling ata specd of 500 miles per hour with . bearing of 330°, as shown nFieu
1113G). As the airplanc reaches a periagn point, it encounters wind with a vel il
79 miles per hour i the direction N 45° E (43° east of north, s shown in Figs

iting a Vector of Given Magp;
EXAMPLE 6 Writing Enitude ang 1,

The vector v has a magnitude of 3 and makes an a

nele of 300 )

11:130). Whatare the resultant specd and direstion of the sirplane?
i e uni 6 wig

The angle 0 fom the ositve s (0 the s Wit vas a lnar combinaion of the unit vetory g i e o 6

ectoru

Figure 11,11 Solution Because the angle between v and

Figure 1. 13(a). represent the velocity of the airplane (alone) as
the positive

500 cos(120i + 500 sin(120°);.

axis is g o
write the following. /6,

You g,

avithout wind

o Dirction

v = [[¥llcos i + [[v] sin 6}

The velocity of the wind is represented by the vector

Y2 = 70 cos(457)i + 70 sin457);

The resultant velocity of the airplane (in the wind) is

Y= Vit va = 500c0s(120°)i + 500 sin(120°)] + 70 cos(45%)i + 70 sin(45 )]
~ —200.51 + 48255,

To find the resultant speed and direction, write v =_\\vu(cns 0i + sin ). Because
Applications of Vectors vl ~ V(=200.57 + (482.5) = 5225, you can write
pplicaf J
Vectors have many applications in physics and engineerin

3

=200.5 ) z: °)i + sin(112.6%)j].
7 =~ 522.5,[cos(112.6°)i + sinl i
5 e o zﬁ One exampje G 522,5( 525 251 [
veetor can be used to represent force because force has b magnitude gy i 5 223 il
IFtwo or more forces are acting on an object, then the resultant force op : pirection with wind The new speed of the airplane, as altered by lah: wind, is. approximately $22.5 m
the vector sum of the vector forces. % s hourin a path that makes an angle of 112.6° with the positive x-axis. _—
fgure 1113

EXAMPLE7 Finding the Resultant Force
—_—T1

lises for Section

v GalcChal com for worked-out solutions o odd:numbered exercises

Two tugboats are pushing an ocean
exerting a force of 400 pounds, What i

er a5 shown in Figure {118
s the resultant force on the ocean

I Bxercises 14, (a) find the component form of the vector v In F;
and (0] sketch the vector with its initial point at the origin.

reises 3-8, find the vectors u and v whose initial and
terminal points are given. Show that u and v are equivalent.

Solution  Using Figure 11,12,

2.
. You can represent the forces exerted ;

5w (3.2), (5.6) 6w (—4,0). (1.8)
L v (=14, (1,8) v (2, -1), (1.7)
second tughoats as 4L S 7. ui 0.3), (6. ~2) u (=4, -1), (11, -4)
F, = 400(cos 207, sin 207) v e e
2 e § = 400 cos(20°)i + 400 sin(207)j )

400(cos(—20°), sin(~20°))
400 cos(20°%); ~ 400 sin(209);
The resultant force

In Exercises 916, the initial and terminal points of a vector v
are given. (a) Sketeh the given directed line segment, (b) write
the vector in component form, and (¢) sketch the veetor with its
4 5

on the ocean liner js

initial point at the origin.

o g Terminal

F-F+F, y - . il Poins Tegninal il Poini ST
: i % . 59
= [400 cos(20%)i + 400 sin(20°9j] + [400 c0s(20%)i — 400 & i & ot o
- = 800 cos(207)i i &

T rsulant force onthe e fer g i 5 ; -
xerted by the o tyghgs e
Figure 11,12

" 11. (10,2) 6.-1) 12. (0,-4) s, =)

. 2
Sr‘"h”“’ resulant force on the ocean finer fs approximately 752 pound > indicates that in the HM mathSpace® CD-ROM and the online Eduspace® system
©f the positive x-axs. Jor this text, you il find an Open Exploration, which further explores this example. using the
P algebra systems Maple, Mathcad, Mathematica, and Derive.

T
(st O o
2 ort s Pl
16605321666 ::u‘,.‘.:o‘,,sa :
208eW0 oot
o

L
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Nercises 41-44, f

: Terminal Terminat

SECTION IL1  Vectors in the Plane 771
i the ooy,

& lull nd @ and b such that v = qy 4 5] ; o vith magnitudes
@ [ul ) [y 5 find v where B8 81, Numerical and Gre hical Analysis  Forces with mag
e o sl ol ol - Sl A m?“.m“usud w= b= ©f 180 newtons and {75 newtons act on a hook (see figure). The
15 (3.9) (3) (RS0 (ORnbiom) /‘Uﬁ/’ © ﬂﬁﬂ o [ =02 AnBle between the 1o forces is 0 degrees.
S i Mu\wﬂ = @) I£0/= 30", find the direction and magnitude of the resultant
Tn Exercises 17 and 18, sketch cach scalar multiple of v, # force.
17.v=(23) sl b ®) Write the magniude o1 and diection a of the resuliant
: ! g i3 force as functions of 6, where 0° < 180%
W2 ®) =3y & @y e 3) g 9-74, find & it vector () parate 10 g functions of 0, where 0° < ¢
18 v=(-15) g%,

@O v ©ov ) e

s 6 F
o BT the Braph f /) ot (he given pot, Than'

(€) Use a graphing wility to complete the table.
M he vectors and the function,
o

aph o
In Exercises 45 and 46,skotcy g g y
In Exercises 19-2

Point
ks Phory, P
? e the figure o sketch a graph of the  demonstrate the rangle incquatey o 4o andy G.9)
PRt a0 entarged copy ofthe graph, go t the webite = o) en (1.9
vww.mathgraphs.com e A 460u = (0 12
iheraphseom, 32,

R
and the ne direction as y, e Bivey

{4) Use a graphing wiliy t0 graph the two functions M and a.

9 Explain why one of the functions decreases for increasing
Magnitud Di vl of 0 whereas the other does not
Magnitude Yt
v a7 =4 u=( 1440 = nx 5

48. v =4 u

e 75 and 76, find the component form of  given (e
s . [v]=2 u [ ereses

s0.v] =3

15—y

u=(0,3)

itudes of 0 and u v and.the angles that u a5 -

Au—y

54, find the co

- 2 lul = 1.0 45° 76. [lufl = 4,0 = 307
onent g, B 7 °
ol i tho angle t makes it e O UERIC o vl = V20 = - vli=6.0= 120
In Exercises 23 an fin H ¢) 5y et ¥
7 vl 23 a0d 24 0 ) u, () = 1, () 204 5 0=0° 5 b= 7 progamming You axe given the magnitdes of wand v ang
P St et 0= i S0, o= the angles u and v make with the positve +-axis, Wrte o poa: e (0ot Figure for 82
: i o L 0=35 ‘eraphing utility in which the outputis the ollowing,
5 (8.25) " e 1 B Ol 82 Resultant Force _Forces with magnitudes of 500 pounds and
P ’ engths ot sog . the componen gy ofuty g ULt iy < 200 pounds act on a machine part at angles of 30° and —as°,
n Exercses 2526, ind the veetor ¥ where = (2~ 1) ang 244> o w and v and the angles gy and v magg s angle u v makes with the positve x-axis Tespectively, with the x-axis (see figure). Find the dircetion and
" = (1. 2). Dlustrate the vector aperatigps Eeometrically. L Eis, . rogramming  Use the program you wioe in Exeeise 77 o
25, 26.v=u+y A
e,

56. Jufl =4, 3 ‘;f Aw‘rvum.-ynnm:md
Ivi=2, 3

magnitude of the resultant for
28 v=5u- 3,

<tion of the resultant of the vectors

420 pounds, and 125 pounds act on an abject at angles of 30°.
S fu] ) 45° and 1207,
el - luf =5, '
apnsles 29 and 30, he vecor v and is i point are i
£iven. Find the terminal po,

spacvely. il e st o P \
e

direction and magnitude of the resultant force.

84 Resultant Force, Three forces with magnitudes of 400 1l
o 280 newvions, and 350 newtons act on an object a1 |
I0Eles of =30, 459, and 1357, respectively, with the positive |
x-axis. Find the direction and m

~1.3); Inital point: (4, )
30.v= (4~

2! Weriting About Concepts

9): Inital point. (3,3

Initial point: (3, 7) [/59. 10y ur o words,
anda vector, Giye

In Exercises 313,

state the difference pey
find the magnituge of y,

agnitude of the resula s |
85. Think About It Consider two forces of equal magnitude |
examples of each, i i |
| 0. riptions of the operat piet o
3ov= 43 2ov=(12 5, LD S ope (@) If the magnitude of the resulant s the sum of the magni-
o 4 = and multplicarion ofa vecior py B i Frcrcises 79 g 80, use a graphing ity (o find the maga.
3 Hov=—io4 g 61, Identify the quantity as a scalar or as a veego {ack and g
5. v Tt | reasoning, i

tudes of the two forces,
ction of the resultant of the vectors,

|
make a conjecture about the angle
In Exercise

|
betveen the forces, | |
; 5 (00 IF the resultant of the forces is 0, make 4 conjecture about A
it e ) The muzzle veloity of  gun the angle between the forces. |
2 Thd e unityector in the ireeign ops < b -
VR hat b e e ditection ofy 3 ®) The price o a companys sroek © Can the magnitude of the resultan be greater than the sum l
S 62 ldenity the quangiy g 3 s of the magnitudes of the two forces? Explain.
5 'y 3= (s 5 feasoning

u= (13
. u=(=6 34 @) The air temperstur iy  ppom

() The

Weight of a car.
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86. Graphical Reasoning  Consider two forces
)

(@ Find [F, + |

(b) Determine the magnitude of the resultant as a function of 0.
Use a graphing wtility (o graph the fonction for
0<0<am

(€9 Use the graph in pant (b) to determine the range of the
function. Whats its maximum and for what value of 0 docs
itoceur? Whatis its minimum and for what value of 0 does
it occur?.

Figure for 92
() Explain why the magnitude of the resultant is never 0.

87. Three vertices of a paraflelogram are (1, 2), (3, 1), and (8, 4).
Find the threc possible fourth vertices (see figure).

94. Navigation A plane flies
(8.4)

2

G

0 e e ]
IR R
True or False? In Exer
statement is true or false,
example that shows it is false,

88. Use vectons o find the points of riscction of the line scement
with endpoints (1, 2) and (7, 5).

Cable Tension In Exercises 89 and 90, use the figure to

s 95. 1fuand y have.
determine the tension in each cable supporting the given load.

v are equivalent,
9. Ifui

90.

thenu +y =
101. Prove that u

0.

les of a

S1- Projectte Motion A gun with a muzal velociy of 1200 e

103. Geometry Using vectors,
per second i fired at an angle of G°

above the horizontal. Find
the vertical and horizontal components of the velo

92. Shared Load

104, Prove that the vector w
2 100-pound cylindrical weight, two B o
of short ropes tied 10 an eyef 105 Consider the vecior u

(x.y) such that Ju]

let on the

10p center of the cylinde;
{rom the vertical and the

(5
5.
other makes
(@) Find cach rope’s tension if the ey
(b) Fi

ultant force s yertica]
nd the ertical component of each worker's

foree.
106, A

0° and 90°

neglected and the muzzle velocit

T e was oo b
O Maberia At

L
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Many ofthe formulas established for the two-diney
be extended to three dimens

in space, you can use the Pythagorean Theorem
doing this, you will obtain the formula for the.
and

o)

d=m=x)+ =y it )2

‘The distance between two points in space: !
re 11,17 The distance between the points (2, 1, 3) and (1, 0,

d=VI=2P+ 0O+ P+ (-2=3¢

VIFT+35
=
=33

A sphere with center at (v, 3o, <) and radius -is defi

(33, 2) such that the distance between (v, y, 2) and (x,,

; Distance Formula to find the standard equal
| (o, Yor 20)- If (¥, v, 2) is an arbitrary point on

)’ e CoxP =yl + =)= 2

as shown in Figure 11.18. Moreover, the.

POINS (51,31, 2,) and (s, 3, 2,) has coordinatos

(x, fhytyngts

2R 2 e 3

Figure 111§

EXAMPLE? Finding the Equation of a Sphere

Find the standard equation of the s
as endpoints of a diameter.

Solution By the Midpoint Rule,

the center of the sphere js

i+072+43—3 5
et s, )

By the Distance Formula, the radius is

Vo

Therefore,

i

5¢
z) @12+ (-3 gp
the standard equation of the sphere js

(,E’ 97
5 9

the plane’ alitude s from the s
hour (see figure). Whal is
what s its speed With respeet to

i5es 95100, defermy
103t is false, expi,

the same magnitude ang g

t vector in the direction of y, then:
ai + bj is a unit vector, then g2 + b

Ba.
¥ have the same magaitude

half the length of, the third side,

prove tha |
parallelogram bisect each ther,

coastarillery gun can fire at any angl,
in a fixed vertical plane,

 Commitie an the Pu
of America. Al rights

5 e eodimensiony
s, FOr example, o find th
st
i tance

€, a5 shoy,
Stance beyyeg

EXAMPLE | Finding the Distance Between Tyo Polned

e 10 be e g
: Yor 29)
tion of a sphere of 1
the sphere, the equaign

idpoint of the line segn,

phere that has the points (5, 3, 3)

73
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Space Coodinates and Vectors in Space
Space Coordinates and Vectors

* Understand the three-dimg
* Analyze vectors in space.
© Use three-dimensional vectors to solve real-ife problems.

Space

ensional rectangular coordinate system.

Coordinate:

: Up o this point in the text,

Space

you have been primarily concerned with lh(;
two-dimensional coordinate sysiem, Much of the remaining part of your study of
caleulus will involve the three-dimensional coordinate system. I

Before extending the concep of a veetor to three dimensions, you must be able

seplane

10 1entity. points in the three-dimensional coordinate system, You can construct

E ibis system by passing a z-axis perpendicular to both the . and y-axes at the origin.

© (e i Figure 114 shows the positive portion of cach coordinate axis, Taken as Ty

the proungsy the axes determine three coordinate planes: the xy-plane, the xz-plane, and the
ataco, ’

Jz-plane. These three coordinate planes separate. three-space into eight octants.
The first octant is the one for which all three coordinates are. positive. l\:\ this three-
dimensional system, a point P in space is determined by an ordered triple (x, y. 2)
Where x, y. and z are as follows,

al coordinate system
dinensiontl coor
etiress

] x = directed distance from yz-plane to P

: rected distance from xz-plane to P
 SXplain iy o

directed distance from xy-plane to P

Several points are shown in Figure 11,15,

b,

i

6.0
4332
Points in the three-dimensional coordinate system are

represented by ordered riples.
Figure 11.15

4 ree-dimensional coordinate system cun have either a eft-handed or  right-
handed orfentation. To determine the orientation of a system, imagine that you are |
standing at the orgin, with your ams pointing in the direction of the positive . and It
J-axes, and with the caxis pointing up, as shown in Figure 11.16. The system i
rightchanded or left-handed depending on which hand points along the x-axie, Iy thic

ext you will work exclusively with the right-handed system.

i

Rihlfungeg Left-handed
e system

NOTE_The thrce-dimensional rotatable graphs that are available in the HM mathSpace®
Fiaure 11,16 CD-ROM and the online Editspace® system for this text will belp you visualize points or

objects in a three-dimensional coordinate system.

SECTION 112 Space Coordimates and Vectors in Space 775

Vectors in Space

’ In space, vectors are denoted py
B denoted by ¢ = (0,0, )

and k = (0, 0, 1) in the dire
notation for y js

N the p,

< tor is
ordered triples . ). The zero vt

Using the unit vectors i = (1,0,0), j = (0,1,0).
tion of the positive z-axis, the standard unit vector

O
ko
ing,

Y=vit vtk

as shown in Figure 11.19. 1p
Ploupapy) 10 0(q,. gy,
given by subtracting the

¥ IS represented by the dirceted line segment from
45). 85 shown in Figure 11.20, the component form of v is
<oordinates of the initial point from the coordinates of the

terminal point, as follows,
v

ivav) = (g,

T Pe% =Py = py)

Vectors in Space

Letu = (u;, 4
scalar

22140 30 ¥ = (v, v, v,) be vectors in space and let ¢ be a

L. Equality of Vectars:

2 Component Form; IF v is represented by the directed line segment from
P(P1.P2:P3) 10 0(g, 43, 45). then

u = vifand only if i,

Vipty = vy, and g = vy,

IS i

uation of

Y= 0w =g = pigi = pgy — py)

Lengih: |[v]| = V577 vz

Unit Vector in the Direction of v:

o

3.

4.

L 1 )

i = ) Gevavs), v=0
v (HvH Lt

Vector Addition: v+ w = (v, + 1y, v, + iy v, + 15)

Sealar Multiplication: ev = (cv, e cvy)

V= =Py TP 93—

5.
6.

Figure 11.20

NOTE The properties of vector

addition and scalar muldplication given in Theorem 11.1 are
also valid for vectors in space.

indi f a Vector in Spac
EHED EXAMPLE 3 Finding the Component Form of a Vector in pace

Find the component form and magnitude of the vector v having initial point (2, 3, 1)
and teminal point (0, =4, 4). Then find a unit vector in the direction of v.

Solution  The component form of v is

v

$01 = P14 = gy = py)

0—(=2),-4-3,4—1)
=@ =75

which implies that its magnitude is
IMl=v2+E=r+%- /&

‘The unit vector in the direction of v is

1

v
M Jﬁ—z(z' S0)

u
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Exercises for Section [1.2

In Exercises 14, plot the points on the same three-dimensional
m.

coordinate systr

| L@@y ® 121
2@6-29 @ @a-2)
L0622 m)G-2-2
4@04-5 @03

In Exercises 5 and 6, approximate the coordinafes of the poins.

In Exercises 7-10, find the coordinates of the point.
7. The point is located three units behind the yz-plane, four units
{0 the right of the xz-plane, and five units bove the sy-plane.
8. The point is located seven units in front of the y=-plane, two
nits o theleft of the xz-plane, and one unitbelow the xy-plane.
9. The point i located on the x-ais, 10 unit in front of the
yeplane.
10- The point is located in the ye-plane, three units o the right of
the z-plane, and twa units above the xy-plase.
UL Think About It What s the -
-planc?
12. Think About It
e-plane?

ordinate of any point in the

What s the x-coordinate of any point in the

In Exercises 13-24, determine

the location of a point (x, y, z)
that satsfies the condition(s),

B.:=6 4.y =

15 =4 16.2=
7y<0 18 r<o
1. hls3 20, x| > 4
2 y>0, 2= 3 2.y <0,
2.5:<0 2oes0

n Exerciss 25-28, ind the distance between (he points.
25.(0.0,0), (5,2,6)

26.(=23.2) (5 )

27.(1.=2.4). (6,2,

2.(2,2,3), (4,-5,6)

Vectors and the Geometry of Space

. < .

In Exercises 29-32, find the e, 4
with the indicated verlices, g §
s righ triangle, an fsoseen

29 (0.0,0).(2.2.1), (2,
0. (5,3.4,0.1.3.6,5.3)
30 (123,220 6 ~1,2) (1, 1
32. (5,0,0). (0.2, 0, (0,0, -3)

4.4

356, fnd the Comporent orm and magitude of
. Thiak Abour 1| The tiangie o g 0 o PRI i the given niial and Ceminal point. Then
ive units upward along the ¢ e et the direetion of u,
of the transiatd triangle. Detemning Junitvecor

Terminal Point
34. Think About It The !

pont
0Ll in g o el 2ot
e unis 0 the gt along ey 30 o oo
nates of the ranslated triangle. iy ) (-1,7,-3)
o). 5,30
In Bxercises 35 and 36, find the coordingyes - s (=42 (2.4,-2)
helin sekment Joning he e M90S o

35 (5,297 (~2,3.9 rcises 57 and 58, the intll and terminal poinis of o
5697259 e e e
e yponent Form 0F the Yector, and (o) sketeh the veetor i
1 point at the origin.

1,23
il points (=120
7 s o )

36. (4,0, —¢

et

8. Tnital point: (2, 1, )
Terminal point: (4,3, 7)

o Bxccises 59 and 60, (he vector v and its intil point are
b
H.v=(3.-5.6)

nital point: (0,6,2)

i Exercses 414, completethe square oy
the sphere i standard form. Find the ceng

60 v = (1, -3 1

ran

il pont: (0,2,3)
ALty 42— et Gy 4 g

42 2424 2 tor — gy o

InExercses 61 and 62, ind each scalar multiple of v and sketch
9392+ 992 4 22— Gr g gy i g

i graph.

uuﬂwy’uguu-;zyﬂg-‘f 6lv=(1,2,2) 62 v=(2,-21)
A w2 b=y ® v ®2
i Exercises 4545, describe the sold satisyi @ @ov © @i

456 453 + 22 < 36

In Excrises 63-68, ind the vector 2, given that u = (1,2,3),
V= (2,2, 1), and w = (4,0, —d),

0, —4).
Sz=u-y

In Exercises 49-52, (2) find the component formyy Sl =
1 (b) sketch the vector with it nitial point at hel (

Hz=u—yiay
66. 2= Su—3y — Ly
6.2ty —wt3 =0

2 du=w

In Excrises 69-72, determine which of the veetors is (are)
paralll 2. Use a graphing tility to confirm your results,

SECTION 112

‘Space Coordinates and Vectors in Spoce 779,

7 2 has niia poin (1, = 1,.3) and terminal point (~2.3. 5.
@ 61 4 8] + ak ) 4+ 2%

72 2 has iniial point (5,4, 1) and terminal point (~2, 4, 4).
@ (1.6,2) ®) (14,16, -6)

In Exercises 73-76, use vectors to determine whether the points
are collinear,

5).(6.4,4).2.2,1)

2.7),(-2,0.3), 7, ~3.9)
.(2.5,0).(0.1,5)

76. (0.0.0,(1,3, 2), (2. ~6.4)

In Exercises 77 and 78, use veetors o show that the points form
the vertices of a parallelogram.

77 (2.9.1).3. 11,4). 0,10,2), (1. 12, 5)
78 (1.1.3),0. =1, ~2), (11,2, ~9), (3,4, —4)

In Exercises 79-84, find the magnitude of v.

9. v=(0,0,0) 80. v = (1,0.3)
BLov=i-2j 3k 82 v = —4i +3j + Tk
83. Inital point of v: (1, —3,4)

Terminal point of v: (1,0, 1)
4. Initial point of v: (0, 1, 0)
Terminal point of v: (1,

2)

In Exercises 8588, find a unit veetor (a) in the direction of u
and (b) in the direction opposite of u.

86. u = (6,0.8)

88. u = (3,0,0)

L e it st given the component forms of the
eelors u and v, Wite a progra for a graphing utility in which.
the output is (a) the companent form of u + v, (b) u + v||,
(© [lull and (@) v[.

90. Programming - Run the program you wrote in Exercise §9 for.
the vectors u = (=1,3,4) and v = (5, 4.5, ~6).

In Excreises 91 and 92, determine the values of ¢ that satisfy the
Cquation. Letw = i +2§ + 3k and v = 2i + 2§ — k.

9L, Jev

92. lcul

In Exercises 93-96, find the vector v with the given magnitude
and direction u.

93. 10,
94.3
95,3
96. /5.

Direction

u=(-4,62)
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APTER 11 Vectors and the Geom! y
780 CH.

o mpo
I ises 97 9. v v and write its col 2
ises 97 and 98, sketch the ector
In Exerci

i akes an ar gle Of f %
e h has magnitude 2, and males s (c) Use a graphing utility to gra
97. it i VZ-] I'zme, S

.V lies in the Y

€ fupe,
i ! termine the asymptotes of the
30° with the positive y-axis. e of De > e : .
itude 5, and m: Confirm the asymptotes of graph i
ies in the xz-plane, has magni %) ol .
98. v lies in tﬂe XZ P'[ive it o T(‘u)
45° with the posi g-axis. . : . 1
find the point that lies (e) Determine the minimtiicusi SEEg Caby
ises 99 and 100, use vectors to fu designed to carry a maximum |gaq of 19, ify
Exercises ),
::0-::“115 ep e 6,8,2) 110. Think About It Suppose the length of €ach ¢,
= 100. P(1,2,5), 26,8, 109 has a fixed length L = g, ang e e
o(1, —3,3)
99. P(4,3,0), 5 =oh inches. Make a conjecture abou he limit i
101. Letu = i + j, v =j + kand w = au + bv. g
. Letu = 8

To>a~
4 Find
ik b t both be zero 111. Diagonal of a Cube Find the o
and b must bo .
(b) If w = 0, show that a an

mPOnem_
c =i+ 2j+ i i i e dia,
vector v in the direction of the
Fi w=1i k.
i h that i )
(c) Find a and b suc

gonal of the
the figure.
(d) Show that no choice of a and b yields w = i + 2j + 3k.

z
riting T al a rmina i ¢ vector v are
it initial ¢ | points of th Cl
102. Writ he initial and termin e :
. ( ; Z;) and (x, y, z). Describe the set of all points (x, Z)
Y1
such that [lv“ =4.

Writing About Concepts

103. A point in the three-dimensional coordinate system has

coordinates  (x,, . z). Describe what each coordinate
measures.

5

vl =1
Figure for 111

104. Give the formula for the distance between the points
(e, 31, 2) and (x5, 3, 2,).

105. Give the standard equation of a sphere of radius r, 112. Tower Guy Wire The 8uy wire to 3 100

centered at (x;, y, tension of 550 pounds. Using the distan
figure, write the component form of the
the tension in the wire.

).
106. State the definition of parallel vectors.

113. Load Supports Find the tension in eac
107. Let A, B, and C be vertices of a wiangle. Find AB + BC + CA. cables in the figure if the Wweight of the cra
108. Let r = (x, y, z) and o = (L, 1, 1). Describe the set of all
points (x, y, z) such that P =mil=2
Numerical, Graphical, and A
an auditorium are 24-pound
disc is supported by three e
inches long (see figure).

Al

7 109, nalytic Analysis  The lights in
discs of radius 18 inches, Each
qually spaced cables that are £,

(a) Write (he ten

sion 7' i eac
Determine the

h cable as a fy

i exerted on the iti i
; nctio PIN at position A, The ¢
domain of the funetiop, o are 420 pounds and 650 pounds
(b) Use 4 &r4phing utifiry oy g thogrin r 3. Write 4 4 o
complete he gy, etion.in parg @) to Pl duation whose

9 that are tyjee
,0).

uter?
veeto!
circle:
sever
the a7
usedj
relati¢
of tW!
the V€



Solutions from back of text:
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Al120 Answers to Odd-Numbered Exerci

73. (a) £4(-4,3) 5. (=202 /212

(b) +1(3, 4)

8253
77. (a)—(c) Answers will vary. 79. 1.33, 1

81. (a) Direction: a = 11.8%
Magnitude: 4402 N

(b) M = /@75 + 180cos O + (180sin 0%
180 sin 6 )
i “’C“‘"(ﬂs + 180 cos 0

Cf ) ERNE ) 120"]
[[;féxss,o [ 4402 [ 306.9 [ 3287 | 2419 |
B o [usar]En]lan
D
S TR

(d) s» 50

180 0 180
0

(€) M decreases because the forces change from acting in the

same direction to acting in opposite directions as @ increases
from 0° to 180°.

83. 71.3°, 2285 1b
85. () 6=0° (b) 4= 180°
(¢) No, the resultant can onl
87. (=4, -1), (6, 3), (10,3)
89. Tension in cable AC = 1758.8 Ib
Tension in cable BC ~ 1305.4 1p
91. Horizontal: 1193.43 ft/sec
Vertical: (2543 ft/sec
95. True  97. True

y be less than or equal to the sum.

93. 38.3° north of west
882.9 kph

99. False. [ + pj = V2af
Yy =25

101-103. Proofs
Section ||
I

105. x2 + |2
-2 (page 778)

53. u = (1, -1, 6)

57. (a) and (c)

5. A(2,3.4)
B, —22)
13. Six units above the Xy-plane
15. Four units in front of the Yz
17. To the left of the xz-plane
xy-plane and either in fron¢ of,

19. Within three units of the xz-
21. Three units below the xy-pl )
in front of the yz-plane, oy thre

left of the xz-plane, and behj

23. 1. Above the xy-plane and
behind the yz-plane or (b
front of the yz-plane, o

2. Below the xy-plane and
front of the yz-plane or ((
behind the yz-plane

7 o

25. /65" =27 /6T

29. 3,3./5,6 31. 6,6,2
Right triangle ~ Isos:

33. (0,0,5).(2,2,6), (2, —4,9).

35, (3,=3) 5) S 708 ()

39. (b= 1P+ (y = 32 + (=

4l = 1P+ (5 + 32+ (o 4+
Center: (1, =3, —4)
Radius: 5

43— rlp L e
Center: (%, =l 2 O)
Radius: 1 :

45. A solid sphere with center (0,

47. Interior of sphere of radius 4

49.8(a) 8 (G228
(b)

il = /38

i
Tul = 755 )

6l- (a)

(c

© N
I53

®
hoed

<
i
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Answers to Odd-Numbered Exercises Al121

©) o [C=18 (d) Proof (e) 30 in.

4 0 100
o

1L (V3/3)(1, 1, 1)

113 Tension in cable AB: 202.919 N
Tension in cable AC: 157.909 N
Tension in cable AD: 226.521 N

NS (=4 4 (- 9+ (=%

Section 1.3 (page 787)

@ =6 (b) 25 (025 (d)(=12,18) (&) =12
67. (333 3.(a) —17 (26 (026 (@ (51,-34) () =34

65. (6,12, 6)

9. nzmib 27I3. a  73. Collinear 75. Not collinear 5.2 (by29 (c) 29 (d.) (0,12,10) (&) 4

L (1,2,3) T.@1 M6 ()6 Mi-—k (o2
= (123) 9.20 Il. 7/2 13. arccos(—1/5+/2) = 98.1°
B =(=2L1D I5. arccos(/2/3) = 619°  17. arccos(—8+/13/65) = 116.3°
A6 = (G2 TR 19. Neither ~ 21. Orthogonal ~ 23. Neither

25, Orthogonal 27. Right triangle; answers will vary.

since AB = CD and BD
29. Acute triangle; answers will vary.

= 4G, the given
vertices of a parallelogram. points form the

79.0 8l /14 83. /34 3|.c0sa—; 33. cosa =0
35, (1) 52 =1 2) SO O] cos p=3 cos = 3/2J/1—J3ﬁ
/ = COos =3 = -
) (1//58)3:2 =3 & =(1//5)6.2 -5 B s B~ Glcgiyyz 119.0°
89. (a)-(d) Answers will vary. 91, &3 37. o~ 100.5°, B = 24.1% y = 68.6°

9. (0, IO/JZ 10/~/2)  95. (1,— ,2) 39, Magnitude; 124.310 Ib
99. (2, —1,2) @~ 29.48°, B =~ 61.39° v ~ 96.53°
4l. o =90°, B =45°, y =45 43. (4, —1) 45. (2,1,1)
47. (@) G5 ) {53)
9. @ (023 ® (2-%%)
51. See “Definition of Dot Product,” page 781.
53. @) 0=m/2 B)0<Bh<m/2 (o) W2<O<m
55. See the definitions of direction cosines and direction angles on

page 784.
) a=0,a+tb=0,b=0 57. (a) The vectors are parallel. (b) The vectors are orthogonal.
@ w= a4 n=lln= 59. $12,351.25; Total revenue  61. (a)—(c) Answers will vary.
(d) Not possible 63. Answers will vary.  65. (0, 0)

67. Answers will vary. Example: (4, 3) and (=4, —3)
69. Answers will vary. Example: (2,0, 3) and (=2,0, =3)
71. (a) 8335.11b (b) 47,270.8 Ib 73. 425 ft-1b
75. False. For example, (1, 1) * (2,3) = 5 and
(1) - (1,4) = 5,but 2, 3) # (1,4).

103. 1, is directed distance to yz-plane.
, 1S directed distan YZ-D. 77, mccos(l/f)~547°

y, is directed distance to xz-plane. )
2, is directed distance to xy-plane. 79. () Toy : Xl/é;t (1,1): (= ff/s—ﬂf/f)—
105, (x — x,)2 + (y — )2+(z—z)z=r2 107. O Toy=x'"Pat(l,1): <+3 0/10, + 0/10>
: i s ¢ Toy = x2at (0,0): (x1,0)

109. (3) 7= 8r//I2 — 18 L > 18

s sl 0[]

Toy = x'/Aat(0,0): (0,%1)
(b) At(l, 1), 0 = 45°
At (0,0), 6 = 90°




You do not need to buy this textbook (although it costs less than $20 used. If you like
how it explains things, then it is a good idea to buy it. If you prefer to continue forward
using a calculus book you already own that is also ok.

You will cut and paste the photos of your notes and completed classwork and a selfie
taken holding up the first page of your work in a googledoc entitled:

MAT226S25-lesson1-lastname-firstname

and share editing of that document with me sormanic@gmail.com. You will also put
photos of your homework in this googledoc.
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