
 
 

 
Annapurna Labs Hacker Starter Pack 

CalHacks 2025 / October 24-26, 2025 
  

Amazon's AI systems, developed by the Annapurna Labs division, are backed by 
custom hardware and software solutions including machine learning chips and the AWS 
Neuron SDK. These components are designed to accelerate AI workloads in cloud 
environments and support development across various computing platforms, including 
open-source implementations. 
  
The Challenge 
Transform a basic language model into an efficient AI system using open-source 
implementations of popular models. Consider applying optimization techniques inspired 
by AWS Neuron's public documentation to improve model performance and 
computational efficiency. Your focus should be on measurable improvements such as 
reduced inference latency, optimized memory usage, enhanced throughput, or improved 
model accuracy while maintaining functionality. 
 

Competition Requirements: 

●​ Use only open source tools and documentation 
●​ Address real-world AI optimization challenges 
●​ Include complete documentation and setup instructions 
●​ Host all code on GitHub with open source license (Apache 2.0 recommended) 
●​ Make code publicly available without additional permissions required 
●​ Demonstrate measurable performance improvements with reproducible 

benchmarks (see evaluation criteria below) 

  

Getting Started 
  

1.​ Review the AWS Neuron documentation 
  

●​ AWS Neuron SDK GitHub Repository 
●​ AWS Neuron Documentation 
●​ Neuron Kernel Interface (NKI) Guide 

  
2.​ Explore example implementations in the samples repository 

 
 

 

https://github.com/aws-neuron
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://aws.amazon.com/about-aws/whats-new/2024/09/aws-neuron-nki-nxd-training-jax/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx).


 
 

 
3.​ Choose your technical track (below) and start hacking!  

  

 
Technical Tracks 

  
1.​ Model Performance Optimization 

This track focuses on implementing measurable improvements to language 
model computational efficiency through specific optimization techniques: 

●​ Quantization and pruning implementation: Apply weight quantization 
(INT8/FP16) and structured/unstructured pruning to reduce model size 
and inference latency 

●​ Inference pipeline optimization: Develop efficient batching strategies, 
memory management, and compute graph optimizations for production 
deployment 

●​ Architecture modifications: Implement attention mechanisms, layer 
reduction, or knowledge distillation techniques that maintain accuracy 
while improving throughput 

●​ Resource optimization: Optimize memory usage patterns, CPU/GPU 
utilization, and I/O operations for target hardware constraints 

 

Evaluation Criteria: Projects will be measured on quantifiable metrics such as 
inference latency reduction (ms), memory footprint decrease (MB/GB), 
throughput improvement (tokens/second), and model accuracy retention (%). 
Participants should benchmark their optimizations against baseline 
implementations using standard evaluation datasets. 

 

What We're Looking For: 

●​ Demonstrable performance improvements with clear before/after metrics 
●​ Creative optimization techniques that maintain model quality while 

improving efficiency 
●​ Well-documented benchmarking methodology and reproducible results 
●​ Understanding of trade-offs between different optimization approaches 
●​ Implementation that can be applied to various model architectures 

  
2.​ System Architecture & Integration 

 
 

 



 
 

 
This track focuses on building production-ready deployment and monitoring 
systems for optimized language models using open-source tools and 
frameworks: 

●​ API integration frameworks: Implement RESTful APIs using FastAPI, 
Flask, or Django; containerization with Docker; orchestration with 
Kubernetes or Docker Compose for scalable model serving 

●​ Real-time inference optimization: Deploy models using open-source 
serving frameworks like TorchServe, TensorFlow Serving, or ONNX 
Runtime; implement load balancing and caching strategies 

●​ Performance monitoring and analytics: Build monitoring dashboards using 
Prometheus + Grafana; implement logging with ELK stack (Elasticsearch, 
Logstash, Kibana); track inference latency, throughput, and resource 
utilization 

●​ Cross-platform deployment solutions: Create deployment pipelines using 
GitHub Actions or GitLab CI/CD; support multiple environments (local, 
cloud, edge) using containerization and infrastructure-as-code tools like 
Terraform 

Evaluation Criteria: Projects will be measured on deployment reliability, API 
response times (ms), system scalability (requests/second), monitoring 
completeness, and successful multi-environment deployment. Participants 
should demonstrate working deployments with comprehensive monitoring and 
documentation. 

What We're Looking For: 

●​ Robust, production-ready systems that can handle real-world traffic 
patterns 

●​ Comprehensive monitoring and alerting capabilities with meaningful 
metrics 

●​ Scalable architecture that demonstrates understanding of distributed 
systems principles 

●​ Clean, maintainable code with proper documentation and testing 
●​ Evidence of performance under load with stress testing results 

  
3.​ Hardware-Aware AI Optimization & Deployment 

This track focuses on implementing hardware-aware optimization and 
deployment strategies for AI models using open-source tools and frameworks: 

 
 

 



 
 

 
●​ Hardware-aware model optimization: Implement quantization schemes 

optimized for specific chip architectures (INT8, FP16, BF16); develop 
pruning strategies that consider hardware memory hierarchies; create 
model compression techniques that leverage custom silicon capabilities 
using PyTorch, TensorFlow, and ONNX optimization tools 

●​ System-level performance monitoring: Build comprehensive monitoring 
systems for hardware utilization, memory bandwidth, compute efficiency, 
and thermal management using Prometheus, Grafana, and custom 
hardware profiling tools; implement real-time performance tracking for 
inference workloads 

●​ Infrastructure deployment optimization: Develop containerized deployment 
strategies using Docker and Kubernetes that optimize for 
hardware-specific configurations; implement auto-scaling solutions that 
consider hardware constraints and capabilities; create deployment 
pipelines optimized for custom silicon environments 

●​ Hardware-software co-design simulation: Build simulation frameworks to 
model the interaction between AI workloads and custom hardware 
architectures; implement performance prediction models for different chip 
configurations; create optimization algorithms that balance software 
efficiency with hardware capabilities 

 

Evaluation Criteria: Projects will be measured on hardware utilization efficiency (%), 
inference throughput improvements (ops/second), memory bandwidth optimization, 
energy efficiency gains, and successful deployment across different hardware 
configurations. Participants should demonstrate measurable performance 
improvements when optimizing for specific hardware architectures. 

 

What We're Looking For: 

●​ Deep understanding of hardware-software interactions and optimization 
opportunities 

●​ Innovative approaches to modeling and predicting performance across different 
hardware architectures 

●​ Practical solutions that demonstrate measurable improvements in hardware 
efficiency 

●​ Simulation or modeling frameworks that can guide real-world optimization 
decisions 

 
 

 



 
 

 
●​ Evidence of thinking beyond pure software optimization to consider the full 

system stack 
  
Have an idea that doesn't fit these categories? We welcome novel solutions to AI 
optimization challenges. If you've identified a technical opportunity in AI development 
that addresses real-world performance, deployment, or hardware-software integration 
problems, we want to see it! 

  
 

 
 

 


