

Annapurna Labs Hacker Starter Pack

CalHacks 2025 / October 24-26, 2025

Amazon's AI systems, developed by the Annapurna Labs division, are backed by
custom hardware and software solutions including machine learning chips and the AWS
Neuron SDK. These components are designed to accelerate AI workloads in cloud
environments and support development across various computing platforms, including
open-source implementations.

The Challenge
Transform a basic language model into an efficient AI system using open-source
implementations of popular models. Consider applying optimization techniques inspired
by AWS Neuron's public documentation to improve model performance and
computational efficiency. Your focus should be on measurable improvements such as
reduced inference latency, optimized memory usage, enhanced throughput, or improved
model accuracy while maintaining functionality.

Competition Requirements:

●​ Use only open source tools and documentation
●​ Address real-world AI optimization challenges
●​ Include complete documentation and setup instructions
●​ Host all code on GitHub with open source license (Apache 2.0 recommended)
●​ Make code publicly available without additional permissions required
●​ Demonstrate measurable performance improvements with reproducible

benchmarks (see evaluation criteria below)

Getting Started

1.​ Review the AWS Neuron documentation

●​ AWS Neuron SDK GitHub Repository
●​ AWS Neuron Documentation
●​ Neuron Kernel Interface (NKI) Guide

2.​ Explore example implementations in the samples repository

https://github.com/aws-neuron
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/
https://aws.amazon.com/about-aws/whats-new/2024/09/aws-neuron-nki-nxd-training-jax/
https://github.com/aws-neuron/aws-neuron-samples/tree/master/torch-neuronx).

3.​ Choose your technical track (below) and start hacking!

Technical Tracks

1.​ Model Performance Optimization

This track focuses on implementing measurable improvements to language
model computational efficiency through specific optimization techniques:

●​ Quantization and pruning implementation: Apply weight quantization
(INT8/FP16) and structured/unstructured pruning to reduce model size
and inference latency

●​ Inference pipeline optimization: Develop efficient batching strategies,
memory management, and compute graph optimizations for production
deployment

●​ Architecture modifications: Implement attention mechanisms, layer
reduction, or knowledge distillation techniques that maintain accuracy
while improving throughput

●​ Resource optimization: Optimize memory usage patterns, CPU/GPU
utilization, and I/O operations for target hardware constraints

Evaluation Criteria: Projects will be measured on quantifiable metrics such as
inference latency reduction (ms), memory footprint decrease (MB/GB),
throughput improvement (tokens/second), and model accuracy retention (%).
Participants should benchmark their optimizations against baseline
implementations using standard evaluation datasets.

What We're Looking For:

●​ Demonstrable performance improvements with clear before/after metrics
●​ Creative optimization techniques that maintain model quality while

improving efficiency
●​ Well-documented benchmarking methodology and reproducible results
●​ Understanding of trade-offs between different optimization approaches
●​ Implementation that can be applied to various model architectures

2.​ System Architecture & Integration

This track focuses on building production-ready deployment and monitoring
systems for optimized language models using open-source tools and
frameworks:

●​ API integration frameworks: Implement RESTful APIs using FastAPI,
Flask, or Django; containerization with Docker; orchestration with
Kubernetes or Docker Compose for scalable model serving

●​ Real-time inference optimization: Deploy models using open-source
serving frameworks like TorchServe, TensorFlow Serving, or ONNX
Runtime; implement load balancing and caching strategies

●​ Performance monitoring and analytics: Build monitoring dashboards using
Prometheus + Grafana; implement logging with ELK stack (Elasticsearch,
Logstash, Kibana); track inference latency, throughput, and resource
utilization

●​ Cross-platform deployment solutions: Create deployment pipelines using
GitHub Actions or GitLab CI/CD; support multiple environments (local,
cloud, edge) using containerization and infrastructure-as-code tools like
Terraform

Evaluation Criteria: Projects will be measured on deployment reliability, API
response times (ms), system scalability (requests/second), monitoring
completeness, and successful multi-environment deployment. Participants
should demonstrate working deployments with comprehensive monitoring and
documentation.

What We're Looking For:

●​ Robust, production-ready systems that can handle real-world traffic
patterns

●​ Comprehensive monitoring and alerting capabilities with meaningful
metrics

●​ Scalable architecture that demonstrates understanding of distributed
systems principles

●​ Clean, maintainable code with proper documentation and testing
●​ Evidence of performance under load with stress testing results

3.​ Hardware-Aware AI Optimization & Deployment

This track focuses on implementing hardware-aware optimization and
deployment strategies for AI models using open-source tools and frameworks:

●​ Hardware-aware model optimization: Implement quantization schemes

optimized for specific chip architectures (INT8, FP16, BF16); develop
pruning strategies that consider hardware memory hierarchies; create
model compression techniques that leverage custom silicon capabilities
using PyTorch, TensorFlow, and ONNX optimization tools

●​ System-level performance monitoring: Build comprehensive monitoring
systems for hardware utilization, memory bandwidth, compute efficiency,
and thermal management using Prometheus, Grafana, and custom
hardware profiling tools; implement real-time performance tracking for
inference workloads

●​ Infrastructure deployment optimization: Develop containerized deployment
strategies using Docker and Kubernetes that optimize for
hardware-specific configurations; implement auto-scaling solutions that
consider hardware constraints and capabilities; create deployment
pipelines optimized for custom silicon environments

●​ Hardware-software co-design simulation: Build simulation frameworks to
model the interaction between AI workloads and custom hardware
architectures; implement performance prediction models for different chip
configurations; create optimization algorithms that balance software
efficiency with hardware capabilities

Evaluation Criteria: Projects will be measured on hardware utilization efficiency (%),
inference throughput improvements (ops/second), memory bandwidth optimization,
energy efficiency gains, and successful deployment across different hardware
configurations. Participants should demonstrate measurable performance
improvements when optimizing for specific hardware architectures.

What We're Looking For:

●​ Deep understanding of hardware-software interactions and optimization
opportunities

●​ Innovative approaches to modeling and predicting performance across different
hardware architectures

●​ Practical solutions that demonstrate measurable improvements in hardware
efficiency

●​ Simulation or modeling frameworks that can guide real-world optimization
decisions

●​ Evidence of thinking beyond pure software optimization to consider the full

system stack

Have an idea that doesn't fit these categories? We welcome novel solutions to AI
optimization challenges. If you've identified a technical opportunity in AI development
that addresses real-world performance, deployment, or hardware-software integration
problems, we want to see it!

