1. Basic constructions: Make and describe

G-CO.A (1, 2), G-CO.D (12) 

G-CO.D: Make Geometric Constructions

2. Rigid motion transformations: construct, describe, notate

G-CO.A (3), G-CO.D (12, 13) 

G-CO.A

Experiment with transformations in the plane

3. Polygons/quadrilaterals: transformations, constructions, symmetries

G-CO.A (3), G-CO.D (12, 13) 

G-CO.A Experiment with transformations in the plane

4. Congruent figures: proof using rigid motions, CPCTC (for triangles)

G-CO.A (2, 4, 5), G-CO.B (6, 7), G-CO.D (12)

G-CO.B Understand congruence in terms of rigid motions

5. Congruent Triangles 1: proof by mapping, SSS, SAS, ASA, AAS

G-CO.A (5), G-CO.B (6, 7, 8), G-CO.C (10), G-CO.D (12)

G-CO.B Understand congruence in terms of rigid motions

6. Parallel lines and transversals: proofs involving angles, problem solving with angles, construction of parallel lines

G-CO.C (9), G-CO.D (12) 

G-CO.C Prove Geometric Theorems

7. Triangles: interior and exterior angle problems and proofs

G-CO.B (7), G-CO.C (9, 10), G-CO.D (12)

G-CO.C Prove Geometric Theorems

8. Congruent triangles 2: more formal proofs, extend to quadrilaterals and polygons

G-CO.B (7),  G-CO.C (10),  G-CO.D (12, 13), G-SRT.B (5)

G-CO.C Prove Geometric Theorems

9. Quadrilaterals: classification by diagonals

G-CO.C (9, 10, 11), G-CO.D (12, 13), G-SRT.B (5)

G-CO.C Prove Geometric Theorems

10. Similarity: define, minimum conditions for triangles

G-CO.A (2, 5), G-CO.B (6, 7), G-CO.D (12), G-SRT.A (1, 2, 3), G-SRT.B (5)

G-SRT.A Understand similarity in terms of similarity transformations

11. Similar triangles: proof, midsegment

G-CO.A (5), G-CO.C (10), G-CO.D (12), G-SRT.A (2), G-SRT.B (4, 5)

G-SRT.B Prove theorems involving similarity

12. Points of concurrency: construct and apply

G-CO.C (10),  G-CO.D (12), G-SRT.B (4, 5)

G-SRT.B Prove theorems involving similarity

13. Pythagorean theorem: similarity leads to PT, geometric mean triangles

G-SRT.B (4, 5), G-SRT.C (8), G-MG.A (1, 3)

G-SRT.C Define trigonometric ratios and solve problems involving right triangles

14: SOHCAHTOA

G-SRT.C (6, 7, 8), G-MG.A (1, 3)

G-SRT.C Define trigonometric ratios and solve problems involving right triangles

15. 3D-perimeter, area, volume formulas and problems

G-GMD.A (1, 3), G-MG.A (1, 3)

G-GMD.A Explain volume formulas and use them to solve problems

16. Modeling with geometry

G-GMD.A (3), G-GMD.B (4), G-MG.A (1, 2, 3)

G-MG.A Apply geometric concepts in modeling situations

17. Coordinate Plane 1: Distance, midpoint, slope

G-CO.B (6), G-SRT.A (1, 2), G-GPE.B (5, 6)

G-GPE.B Use coordinates to prove simple geometric theorems algebraically

18. Coordinate Plane 2: Polygons and Proof

 G-CO.B (6), G-CO.C (10, 11), G-SRT.A (1, 2), G-GPE.B (4, 5, 6, 7)

G-GPE.B Use coordinates to prove simple geometric theorems algebraically

19. Circles 1: Define, describe, coordinate plane, equation

G-CO.D (12), G-SRT.B (5), G-C.A (1), G-GPE.A (1), G-GPE.B (4)  

G-GPE.A Translate between the geometric description and the equation for a conic section circle

20. Angles in Circles: sector, arc, radians, circum/inscribed

G-CO.D (12), G-SRT.B (5), G-C.A (2), G-C.B (5)

G-C.B Find arc lengths and areas of sectors of circles

21. Segments in Circles: tangent, secant, chord, polygons

G-CO.D (12, 13), G-SRT.B (5), G-SRT.C (8), G-C.A (2, 3), G-MG.A (1, 3) 

G-C.A Understand and apply theorems about circles