Semester 1 Final Exam Study Guide

<u>Unit 1 – Introduction to chemistry, matter & change</u>

SCIENTIFIC MEASUREMENT

1.	Al	I of the following measurements have three significant figures except
	a.	90800 kg
	b.	$1.02 \times 10^3 \text{mL}$
	C.	2.00 cm
	<mark>d.</mark>	0.002 mm (only 1 SF)
2.	All	of the following are true <i>except</i>
	a.	significant figures are digits in a measurement that have been measured, plus one estimated digit.
	b.	all non-zero digits in a measurement are significant
	C.	inexact numbers have an infinite number of significant figures
	<mark>d.</mark>	the estimated interval is the smallest position that you can read on an non-electronic
		measuring device (ELECTRONIC DEVICES USE SIG FIGS TOO!)
3.	W	hen multiplying or dividing measured quantities, the answer
	a.	can have no more significant figures than there are in the measurement with the smallest
		number of significant figures.
	b.	is always rounded to reflect the number of significant figures in the measurement with the
		smallest number of digits to the right of the decimal point.
	c.	can have no more digits to the right of the decimal point than there are in the measurement
		with the smallest number of digits to the right of the decimal point. this is the rule for
		addition and subtraction!
4.	W	hen 0.254 m (3 SF) is multiplied by 5.0 m (2 SF) the answer, with correct significant figures is .
	a.	1.27 m ²
	b.	1.3 m ² 1.27 \rightarrow 1.3 m ² (2SF)
	C.	1 m ²
	d.	1.2700 m ²
5.	W	hen 0.987 m (3 digits after the decimal) is added to 2.4 m (1 digit after the decimal) the
	answer, w	ith correct significant figures is
	a.	3.4 m $3.387 \rightarrow 3.4$ m (1 digit after the decimal)
	b.	3.387 m
	c.	3 m
	d.	3.3870 m

- 6. _____ The appropriate conversion for converting 15.2 mm into nm is ____.
 - $\left| \frac{15.2mm}{10^{3}m} \right| \frac{10^{3}m}{10^{9}m}$ base unit should be 1
 - $\begin{array}{c|c} |15.2mm| & 10^3 m \\ \hline & 10 & mm \\ \hline \end{array} \begin{array}{c|c} |10^9 nm| & base unit should be 1 \\ \hline \end{array}$
 - C.
 - d. $\begin{array}{c|c} 15.2mm & 1 m \\ \hline 10^6 mm & 1m \\ \end{array}$
- 7. _____ 2.87 km is equal to ____.
 - = 2870 m (nope!) a. 0.00287 m
 - b. $2.87 \times 10^6 \, \text{mm}$
 - = 2.87 x10¹² nm (nope!) c. $2.87 \times 10^9 \text{ nm}$
 - d. only a and b
 - e. a, b, and c
- $_$ What is the density of an object having a mass of 14 g and a volume of 37 cm 3 ?
 - a. $0.38 \text{ g/cm}^3 = 0.3783 \rightarrow 0.38 \text{ g/cm}^3$
 - b. 2.6 g/cm³
 - c. 5.3 g/cm^3
- The density of gold is 19.3 g/cm³. What would be the mass, in grams, of 25 cm³ of gold?
- a. $\frac{480 \text{ g}}{}$ $\frac{d=m}{v}$ $\frac{19.3 \times 25 = m}{}$
- 482.5 → 480 g

- b. 1.3 g
- c. 0.77 g
- d. none of the above
- 10. _____ A solid cube with a mass of 7.84 g has the following dimensions, 23.5 cm by 2.54 m by $6.25 \times$ 10⁻³ mm. Its density is
 - a. 0.476 g/cm^3
 - Volume of cube = LxWxH \rightarrow 23.5cm x 2.54m x 6.25x10⁻³ mm b. **2.10 g/cm³**
 - c. 21.0 g/cm³
- \rightarrow 23.5cm x 254cm x 6.25x10⁻⁴ cm = 3.730625cm³
- d. 2.14 g/cm^3 d=m/v 7.84/3.730625cm³ = 2.1015 \rightarrow 2.10g/cm³

Identify the following as true (T) or false (F). Place your answers on the lines provided to you.

- 11. True zeros that begin a number are never significant
- 12. <u>True</u> zeros between two non-zero numbers are always significant
- 13. True zeros that end a number and are to the right of a decimal are always significant
- 14. False zeros that end a number and are to the left of a decimal are always significant
- 15. **True** all non-zero numbers are always significant
- 16. The mass and volume of various objects of the same substance were graphed. A best-fit line was drawn in. Calculate the slope using two points from the best fit line (i.e. not the origin (0,0)). Could the objects be made of cork (0.295 g/cm3)? Explain your answer.

Slope of a line:
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{Rise}{Run} = \frac{Mass}{Volume} =$$
density

Pick two points on the graph and plug them into the slope equation:

(26.00mL, 8.000g) and (5.000mL, 1.500g)

$$\frac{8.000g - 1.500g}{26.00mL - 5.000mL} = \frac{6.500g}{21.00mL} = \mathbf{0.309523809} \to \mathbf{0.3095g/mL}$$

Yes! This substance could be cork. The density of cork is 0.295 g/cm³. The slope of the line (the density) was calculated to be 0.3095 g/mL, this is close enough to assume that the material is cork.

- 17. Write 500 m with 3 significant figures. 5.00 x 10² m OR 500. m
- 18. An object has a mass of 3.1 g and a volume of 0.25 mL. Calculate its density.

$$\mathbf{d} = \frac{m}{v} = \frac{3.1 \, g}{0.25 \, mL} = \underline{12.4} \rightarrow 12 \, g/mL$$

19. What is the sum 30.8 cm (1 digit after the decimal) and 9.20 cm (2 digits after the decimal)?

$$30.8 \text{ cm} + 9.20 \text{ cm} = 40.00 \rightarrow 40.0 \text{ cm}$$

20. Convert 123.6 kg to µg. This is a two-step conversion.

Here are the factors your would need to use: $(1 \text{ kg} = 10^3 \text{ g})$ and $(1 \text{ g} = 10^6 \text{ µg})$

123.6 kg
$$\left(\frac{10^{-3}g}{1 kg}\right) \left(\frac{10^{-6} \mu g}{1 g}\right) = 1.236 \times 10^{11} \mu g$$

21. Convert 4.7 nm to mm. This is a two-step conversion.

Here are the factors your would need to use: $(1 \text{ m} = 10^9 \text{ nm})$ and $(1 \text{ m} = 10^3 \text{ mm})$

4.7 nm
$$\left(\frac{1 m}{10^{-9} nm}\right) \left(\frac{10^{-3} m}{1 m}\right) = 4.7 \times 10^{-6} mm$$

22. A state record holder ran the 100 meter dash at a rate of 0.9 m/s. What is this in miles per hour?

This is a three-step conversion with complex units (like density) and conversion factors that you are not entirely familiar with.

Here are the conversion factors your would need to use:

First: (1 mile = 1609.34 m) to convert meters to miles.

Then convert seconds to hours: (60 sec = 1 min) (60 min = 1 hr)

$$\left(\frac{0.9 \text{ m}}{1 \text{ sec}}\right) \left(\frac{1 \text{ mile}}{1609.34 \text{ m}}\right) \left(\frac{60 \text{ sec}}{1 \text{ min}}\right) \left(\frac{60 \text{ min}}{1 \text{ hr}}\right) = \underline{2.01} \rightarrow 2 \text{ mi/hr}$$

23. Convert 9.08 mg/kL to ng/L. This is a 3-step conversion with complex units.

Here are the conversion factors you need to use:

First: $(1 \text{ g} = 10^3 \text{ mg}) \text{ then } (1 \text{ g} = 10^9 \text{ ng})$

Second: $(10^3 L = 1 kL)$

$$(\frac{0.9 mg}{1 kL})(\frac{1 g}{10^{-3} mg})(\frac{10^{-9} ng}{1 g})(\frac{1 kL}{10^{-3} L}) = 9080 \text{ ng/L}$$

Unit 2 – Atomic Structure and Counting Particles

COMPOUND VS. ELEMENT

- 24. _____ What is one difference between a compound and an element?
 - a. Compounds consists of more than one phase
 - b. Compounds only contains one type of atom
 - c. Compounds can be separated by chemical means
 - d. Compounds are located on the Periodic Table
- 25. Identify the following pure substances as elements (E) or compounds (C). Place your answers on the line provided to you.
 - C carbon dioxide, CO₂
- C caffeine, $\mathsf{C}_8\mathsf{H}_{10}\mathsf{N}_4\mathsf{O}_2$

- E mercury, Hg
- C methane, CH₄

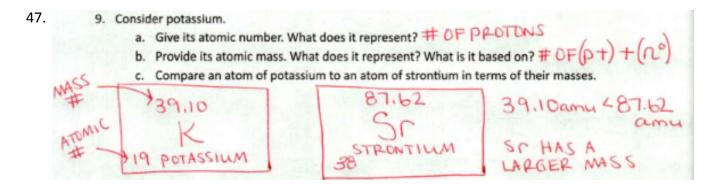
E hydrogen, H

ATOMIC STRUCTURE

- 26. _____ The mass number of an atom is equal to the number of ____.
 - a. electrons only (mass is too small)
 - b. neutrons only
 - c. protons only atomic #
 - d. protons plus neutrons
- 27. _____ The atomic number of an atom is equal to the number of ____.
 - a. electrons only
 - b. neutrons only
 - c. protons only
 - d. protons plus neutrons mass #
- 28. _____ What does the number 1 in hydrogen-1 represent
 - a. protons
 - b. neutrons

	ι.	electrons
	<mark>d.</mark>	mass number
29.		_Which of the following statements best summarizes the subatomic structure of an atom?
	a.	electrons occupy a dense nucleus, protons and neutrons surround the nucleus
	b.	protons reside in the nucleus and have a negative charge p+ are positive
	c.	neutrons are not very massive and occupy the region surrounding the nucleus no have mas
	<mark>d.</mark>	protons and neutron occupy a dense nucleus, electrons surround the nucleus
30.		_ All atoms of the same element have the same
		number of protons (atomic #)
		number of neutrons
	C.	mass number
_		_Dalton hypothesized that all atoms of the same element are identical. However, due to the
(nce of this statement had to be modified.
		ions
		isotopes same # but diff # of n°
		electrons
	d.	neutrons
32.		_If 23 grams of compound A reacts with 17 grams of compound C to form compound AC, you
:	should	expect to receive of compound AC.
	a.	23 grams
	b.	17 grams
	C.	40 grams
	d.	6 grams
33.		_ The isotope ¹⁴ ₆ C has
	a.	14 electrons
	b.	<mark>8 neutrons</mark>
	c.	14 protons
	d.	6 neutrons
34.		_ The isotope ¹³¹ ₅₃ I has
	a.	53 electrons
	b.	53 protons
	C.	78 neutrons
	<mark>d.</mark>	all are true
35.		_ The standard isotope notation for Uranium-238 is
	a.	⁹² ₂₃₈ U
	b.	¹⁴⁶ ₀₂ U

c. ²³⁸₉₂U


- 36. _____ Which of the following are isotopes?
 - a) 7438A, 7539A, 7437A 7 PIFF ATOMIC # = PIFF ELEMENTS
 - b) ⁷⁴₃₈A, ⁷⁵₃₉A, ⁷⁹₃₇A
 - c) ⁷⁴₃₈A, ⁷⁵₃₈A, ⁷⁷₃₈A
- 37. Which of the following is NOT a part of Dalton's atomic theory?
 - a) All elements are composed of atoms.
 - b) Atoms are always in motion.
 - c) Atoms of the same element are identical.
 - d) Atoms that combine do so in simple whole-number ratios.
- 38. _____ Element A consists of two isotopes. Isotope 1 has an abundance of 90% and a mass of 10 amu. Isotope 2 has an abundance of 10% and a mass of 12 amu. The atomic mass for this element is .
 - a) **10.2 amu**
- (0.90)(10amu) + (0.10) (12amu) = 10.2amu
- b) 1020 amuc) 10.8 amu
- c) 10.8 ame
- 39) _____ Which of the following representative particles is an atom?
 - a) CO₂
- b) NaCl
- c) Ag
- d) I
- 40) _____ Which of the following representative particles is an ion?
 - a) CO₂
- b) NaCl
- c) Ag

d) <mark>I</mark>-

Directions: Identify the following as true (T) or false (F). Place your answers on the lines provided to you.

- 41. **True** An atomic mass unit is defined as exactly 1/12th the mass of a carbon-12 atom
- 42. False The atomic mass is the arithmetic mean of the naturally occurring isotopes weighted average
- 43. True Rutherford used indirect evidence to propose a model of the atom gold foil experiment
- 44. False Isotopes differ by atomic number only
- 45. **True** The mass number of an atom is equal to the number of protons plus neutrons
- 46. **True** The protons in the nucleus of an atom are given by the atomic number

UNIT 2 SHORT ANSWER: (use a separate sheet of paper for your answers, if needed)

48.	. Calculate the number of n	eutrons in silver-108.
	108 Ag	108-47 = 61 NEUTRONS
49.	. What is the symbol for the	e isotope, carbon-14?
	14C	
50.	. Copper has two isotopes. has a mass of 64.93 amu a data. Show your math.	Copper-63 has a mass of 62.93 amu and is 60.06% abundant. Copper-65 and is 39.94% . Calculate the atomic mass of copper from this $(62.93 \text{ amu})(60.06) + (64.93 \text{ amu})(39.94)$
		100
		= 63.73 amu

Unit 3 - El	ectr	ons in the Atom				
		ECHANICAL MODEL, ELEC	CTRON CONI	FIGUR	ATION, & ORBITAL D	OIAGRAMS
		ow does the energy of an ele	ctron change	when	the electron moves clo	oser wes closer to the nucle
to the nuc						
	•	It decreases	c) It stays t		ne	(n=1
	b)	It Increases	d) It double	es		n=2
52	_ Ho	ow many energy sublevels ar	e in the secor	nd prin	cipal energy level?	., 3
	a)	1	c) 3	}		
	b)	2 s+p sublevels	d) 4	1		
53	_ Sta	able electron configurations	are likely to c	ontain		
	a)	filled energy sublevels			c) unfilled s orbita	als
	b)	fewer electrons than unstal	ble configurat	ions	d) electrons with	a clockwise spin
54.	Th	e outer orbital of the Bohr d	liagram for ca	lcium v	will have elect	rons
	— а)		_		2 OPBITAL	
	b)	4			ENCE E-	
ELECTRO	<i>OMA</i>	GNETIC WAVES, ENERGY,	& LIGHT			
55	_ Wh	nich color of light has the sho	ortest wavele	ngth?		
	a)	Yellow	c) Blue	1	2 - 10	
	b)	Green	d) Violet	V	人一一丁	
56	Er	mission of light from an elect	tron occurs w	hen an	electron	
	a)	drops from a higher to a lo	wer energy le	<mark>evel</mark>		
	b)	jumps from a lower to a hig	her energy le	vel		EP
	c)	moves within its atomic orb	oital		FLOM EXCITED T	D GROWN
	d)	falls into the nucleus			TOM Exercises	STATE

57	_ Wh	at is the approximate fr		aving an energy of 5 x 10 ⁻²⁴ J?
	a)	8 x 10 ⁹ Hz	c) 3 x 10 ⁻⁵⁸ Hz	F=hf
	b)	3 x 10 ⁻⁵⁷ Hz	d) 1 x 10 ⁻¹⁰ Hz	E = h f $5 \times 10^{-24} J = 6.626 \times 10^{-31} f$
58	In ·	which of the following s	ets is the symbol of the	element, the number of protons, and the
number o	felec	trons given correctly re	presenting a neutral ato	om? SAME # OF P+
	a)	<mark>ln, 49 p, 49e</mark>	c) Cs, 55p, 132.9e	1 e-
	b)	Zn, 30p, 60e	d) F, 19p, 19e	
UNIT 3 SI	HORT	Γ ANSWER: (use a separ	rate sheet of paper for you	ur answers, if needed)
59. Giver	n a fre	equency of 3.08 x 10 ¹⁴ Hz	z, calculate the wavelen	gth in nanometers (nm). Is this radiation
C =	λf	the naked eye? Why or w	3.00 x 10 ⁸ m/s 3.08 x 10 ¹⁴ H ₂	gth in nanometers (nm). Is this radiation N VISIBLE LIGHT WAVELENGTH 9.74×10 ⁻⁷ 1 m = 974 nm
Unit 4 - Pe	eriodi	ic Table and Trends		
PERIODIO				
60	_ Hov	w does the atomic radiu	s change across a chem	nical period in the Periodic Table?
	a)	It tends to decrease	c) It first i	ncreases, then decreases
	b)	It tends to increase	d) It first o	decreases, then increases
61	_ Hov	w does the electronegat	ivity change across a ch	nemical period in the Periodic Table?
	c)	It tends to decrease	c) It first i	ncreases, then decreases
	d)	It tends to increase	d) It first o	decreases, then increases
62	_ Hov	w does the ionization er	ergy change across a cl	hemical period in the Periodic Table?
	a)	It tends to decrease	c) It first i	ncreases, then decreases
	b)	It tends to increase	d) It first o	decreases, then increases
63	_ Wh	at determines whether	an element is a metal?	
	a)	the magnitude of its cha	arge c) when it	is a Group A element
	b)	the molecules that it for	rms <mark>d) its pos</mark> i	ition in the Periodic Table
64	_ Wh	ich of the following eler	ments has the smallest	atomic radius?
	a)	sulfur	c) bromine	
	b)	selenium	d) chlorine	
65	_ Wh	ich of the following eler	ments has the smallest	electronegativity?
	c)	sulfur	c) bromine	
	d)	<mark>selenium</mark>	d) chlorine	

66	W	hich of the following ele	ements has the largest ionization energy?
	a)	sulfur	c) bromine
	b)	selenium	d) chlorine
67	W	hich of the following ele	ements has the smallest ionic radius?
	a)	sulfide (S ²⁻)	c) bromide (Br ⁻)
	b)	nitride (N³-)	d) oxygen (O)
68	Ho	ow does the shielding ef	fect change across a chemical period in the Periodic Table?
	a)	It tends to decrease	c <mark>) It doesn't change at all</mark>
	b)	It tends to increase	d) It first decreases, then increases
69	Но		clear charge change across a chemical period in the Periodic Table?
	a)	It tends to decrease	c) It first increases, then decreases
	b)	It tends to increase	d) It first decreases, then increases
ORGA!	NIZATI	ON OF THE PERIODIC	TABLE
70	W	hich of the following ele	ements is in the same period as phosphorus on the periodic table?
	a)	nitrogen(N)	c) oxygen (O)
	b)	carbon (C)	d) magnesium (Mg)
71	W	hich of the following ele	ements is in the same group as manganese (Mn)on the periodic table?
	a)	radium (Ra)	c) Rhenium (Re)
	b)	Sulfur (S)	d) Calcium (Ca)
72	W	hich of the following ele	ements is in the alkaline earth family?
	a)	nitrogen(N)	c) oxygen (O)
	b)	Sodium (Na)	d) magnesium (Mg)
73	W	hich of the following ele	ements is in the halogen family?
	a)	bromine (Br)	c) boron (B)
	b)	Xenon (Xe)	d) Sodium (Na)
74	W	hat is the charge of the	nucleus of a cobalt (Co) atom?
	a)	27	c) 0
	b)	31.93	d) 58.93

UNIT 4 SHORT ANSWER: (use a separate sheet of paper for your answers, if needed)

75. Why does the number of shielding electrons remain constant left to right across a period?

As you move from left to right across a period, you are adding electrons, but you are adding them to the same energy level, so the number of core electrons never changes.

76. Why is fluorine (F) more electronegative than oxygen (O)?

The effective nuclear charge of F is larger than O.

77. Why does ionization energy increase from left to right on the periodic table?

The effective nuclear charge increases -- As you move across a period you add valence electrons to the atom's outermost energy level. The more electrons you add, the closer the atom is to filling its outer shell, making it more difficult to remove the electrons.

78. Rank the following elements in order of INCREASING atomic radius: Oxygen (O), Fluorine(F), Chlorine (Cl), Sulfur (S)

F < O < CI < S

79. Rank the following elements in order of DECREASING electronegativity: Barium (Ba), Calcium (Ca), Magnesium (Mg), Strontium (Sr)

80. Rank the following in order of INCREASING radius: Chloride (Cl⁻), Argon (Ar), Potassium Ion (K⁺)

81. How does the effective nuclear charge, shielding effect, ionization energy, atomic radius, and electronegativity change down a group and across a period on the Periodic Table?

 How does the effective electronegativity change 						adius, and
cicci onegativity onar	ENC	SE	TE	AP	EN	1
L->P PERIOD	1	CONSTANT	1	1	1	
T-78 GROUP	1	1	1	11	1	1

82. Explain the periodic trends of atomic radii and ionic radii down a group and across a period.

Unit 5: Covalent Bonding and IMFs MOLECULAR NOMENCLATURE

83.	TI	he correct nam	e for the comp	ound SF ₆ is	•					
	a)	monosulfide h	nexafluoride	c)	sulfur	hexafluorid	<mark>e</mark>			
	b)	sulfur (IV) fluc	oride	d)	sulfur	fluoride				
84.	Th	ie Lewis dot str	ucture for pho	sphorus wil	I have _	dots arou	nd P			
	a)	15		c) 3						
	b)	<mark>5</mark>		d) 17						
85.	In	naming a bina	ry molecular co	ompound, tl	ne num	ber of atoms	s of eac	:h e	lement	present in the
mo	lecule is in	dicated by								
	a)	roman numer	als	c) <mark>prefixes</mark>						
	b)	superscripts		d) suffixes						
86.	Bi	nary molecular	compounds ar	e formed fr	om	<u>.</u> .				
	a)	a cation and a	n anion	c) two me	tals					
	b)	two metalloid	S	<mark>d) two no</mark>	nmetal	<mark>s</mark>				
VSI	EPR THEO	PRY & POLARI	TY <mark>Yellow highli</mark> g	ghts = answer	to the qu	<mark>iestion.</mark> Other o	colors =	ansi	wers to q	uestions 93-95
87.	Which cor	npound below	has a linear mo	olecular stru	ıcture?					
	a. OF ₂ (s	see #95)	b. CC	<mark>)</mark> 2(see #95)	c.	PF ₃ (see #94)		d.	SO ₂ (see	#94)
88.		mpound below			cture?				-1	CII
	a. (NO ₂) ¹⁺ (see #95)	D. (N	H ₄) (see #95)		c. SCI ₂	(see #94)		a.	CH ₄ (see #95)
89.	Which cor	npound below		-	olar mo	olecule?				
	a. CH ₄ (s	see #95)	b. H ₂	O	C.	N ₂ (see #95)			d.	CO ₂ (see #95)
90.		npound below	· · · · · · · · · · · · · · · · · · ·							
Ω1	a. CO₂	npound below	b. CH ₄ (see #95)		NH ₃ (see		d. HF	see #	94)	
91.	a. NF ₃	= = = = = = = = = = = = = = = = = = =	b. CS ₂ (see #94)	or electron		BF ₃ (see #95)		d.	CH ₄ (see ‡	‡95)
92.		npound below		_						
	a. CCI ₄ (see #95)	b. BH	l ₃	C.	H ₂ O		d.	(NH ₄) ¹⁺	(see #95)

UNIT 5 SHORT ANSWER (use a separate sheet of paper for your answers, if needed)

93) Place a blue circle around the compounds listed in questions 87-92 that are completely soluble in water (H₂O)

"Like dissolves like" means that any substance that has identical IMFs to water will be soluble. Water has LDFs, dipole-dipole forces and hydrogen bonds. The following compound from #87-92 have identical IMFs to water: NH₃

- 94) Place a red circle around the compounds listed in questions 87-92 that are <u>partially</u> soluble in water (H₂O)

 Partially soluble would be a compound that has some of the same IMFs as water but not identical to water... these would be: PF₃, SO₂, SCl₂, HF, and CS₂ (these are molecules that have LDFs and dipole-dipole forces)
- 95) Place a box around the compounds listed in questions 87-92 that are soluble in oxygen gas (O₂)

"Like dissolves like" means that any substance that has identical IMFs to oxygen gas will be soluble. O₂ has LDFs only. The following compound from #87-92 have identical IMFs to O₂: OF₂, CO₂, NO₂¹⁺, NH₄¹⁺, CH₄, N₂, BF₃, CCl₄, and BH₃. It is important to note that the answer would identical if I had asked "which molecules are insoluble in water" because these molecules all have unlike IMFs compared to H₂O.

UNIT 5.5 - CALCULATING FORMULAS

SHORT ANSWER (use a separate sheet of paper for your answers, if needed)

- 96) What is the molar mass of NaCl? **58.44 g/mol**What is the molar mass of carbon tetrachloride (CCl₄)? **153.81 g/mol**
- 97) What is the percent composition of carbon (C) in carbon dioxide (CO₂)?
- 98) What is the percent composition of hydrogen (H) in sulfuric acid? (H₂SO₄)
- 99) A compound is found to consist of 2.89 g of calcium and 5.11 g of chlorine. What is the percent composition of calcium in the compound?
- 100) A 36.14 gram sample of ethanol (a compound) contains 34.8% of oxygen. What mass of oxygen is present in this sample of ethanol?
- What is the empirical formula of a substance that consists of 0.910 g calcium, 0.636 g nitrogen, and 1.453 g oxygen?
- What is the empirical formula of a substance that contains 3.09% hydrogen, 31.60% phosphorous, and 65.31% oxygen?
- 103) What is the molecular formula of a compound with the empirical formula CH₂O and molar mass of 60.06 g?
- 104) A compound with the empirical formula NO was found to have a total mass of 61.00 g. What is the molecular formula?

Unit 6: Ionic Compounds *IONIC NOMENCLATURE*

105	V	Vhat type of ions have –id	de endings?
	a)	only polyatomic ions	
	b)	only monatomic ions	
	c)	only metal ions	
106	Ar	n –ate or –ite at the end of a	compound name usually indicates that the compound contains
	a)	fewer electrons than pro	otons
	b)	neutral molecules	
		only two elements	
	d)	a polyatomic anion	
107	v	Which of the following co	mpounds contain the Mn³+ ion?
	a)	MnS	<mark>c) Mn₂O₃</mark>
	b)	MnBr ₂	d) MnO
108	v	Vhich element, when con	nbined with oxygen is most likely to form an ionic compound?
	a)	<mark>sodium</mark>	c) phosphorus
	b)	carbon	d) chlorine
109	v	When a elements in the a	Ikali metal family form ions they
	a)	lose one electron	c) gain one electron
	b)	lose two electrons	d) gain two electrons
110		stoms that gain electrons	to achieve a full outer orbital of their Bohr diagram form while
atoms th	at los	se electrons to achieve a f	full outer level form
	a)	cations, anions	c) isotopes, ions
	b)	anions, cations	d) ionic bonds, ionic bonds
111	т	he chemical formula of a	compound indicates
	a)	the type of atoms in the	compound only
	b)	how the atoms are bond	led together
	c)	how the atoms are arrar	nged in 3-dimensional space
	d)	the type and amount of	each atom in the compound
112	V	/hich of the following con	npounds is not ionic?
	a)	NaOH	c) CO ₂
	b)	K_3PO_4	d) K ₃ N

		/hich of the following of Mn(OH)₂	compounds will need a roman numeral when named? c) SF_6
	-	K ₃ PO ₄	d) K ₃ N
114	_ T	he correct name for th	he compound HI is
	a)	iodic acid	
	b)	hydroiodic acid	
	c)	hydrogen monoiodid	e
115	_ T	he correct name for th	he compound $Ti(SO_4)_2$ is
	a)	titanium (II) sulfate	
	b)	titanium (IV) sulfate	
	c)	titanium disulfate	
	d)	titanium sulfate	
116	_w	hich of the following	shows correctly an ion pair and the ionic compound the two ions form?
	a)	Sn^{4+} , N^{3-} , $Sn_{4}N_{3}$	c) Cr³+ , l¹- , Crl
	b)	Cu^{2+} , O^{2-} , Cu_2O_2	d) Fe ³⁺ , O ²⁻ , Fe ₂ O ₃

Units 3, 5, and 6 - Mole Concept Calculations

117	The is the lowest	whole-number ratio of atoms of th	e elements in a compound.
	a) molar mass		
	b) empirical formula		
	c) molecular formula		
	d) percent composition	ı	
118	The molar masses of t	wo different elements contain the	same number of
	a) grams		
	b) atoms		
	c) molecules		
119	The molar masses of t	wo different compounds contain t	he same number of
	a) grams		
	b) atoms		
	<mark>c) molecules</mark>		
120	How many atoms of ca	arbon are in 4 molecules of C_2H_6 ?	FACH MOLECULE
	a) <mark>8</mark>	c) 30	CONTAINS 2 ATOMS
	b) 4.8×10 ²⁴	d) 2	OF C
121	How many moles of H	e are in 4.25×10 ²⁵ atoms of He?	
	a) 2.56×10 ⁴⁹ moles	1	140
	b) 7.25×10 ²³ moles	4.25 X 1025 ATOMS HE	IMDI HE
	c) 70.6 moles	4.25 × 1025 ATOMS He (6.1	ATOMS HE
122	How many moles of A	l are in 6.25 moles of Al ₂ O ₃ ?	
	a) 12.5 moles of Al	1-	
	b) 3.13 moles of Al	6.25 mol A 1203 (2 mol A	11
	c) 6.25 moles of Al	6.25 mol A1203 (2 mol A	203/

Mixed Short Answer. Show your math where appropriate.

- Calculate the mass of 1.00 mole (*Hint: molar mass*) of each of the following substances. What is the specific name for these quantities?
 - a) H_3PO_4

Phosphoric acid; Molar mass = 98.00 g/mol

b) $(NH_4)_2SO_4$

Ammonium sulfate; Molar mass = 132.17 g/mol

c) B_4O_8

Tetraboron Octaoxide; Molar mass = 171.24 g/mol

d) SeI₃

Selenium Triiodide; Molar mass = 459.67 g/mol

e) Pb_3N_2

Lead (III) Nitride; Molar mass = 649.60 g/mol

- 124) Find the number of particles in each substance:
 - a) 3.00 mol tin

$$3.\ 00mol\ Sn\left(\frac{6.02x10^{23}\ atoms\ Sn}{1\ mol\ Sn}\right) =\ 1.\ 81x10^{24}\ atoms\ Sn$$

b) 6.25 g Cd

6.
$$25g \ Cd\left(\frac{1 \ mol \ Cd}{112.41 \ g \ Cd}\right)\left(\frac{6.02x10^{23} \ atoms \ Sn}{1 \ mol \ Sn}\right) = \frac{3.34}{71221...x10^{22}} \rightarrow 3.35x10^{22} \ atoms \ of$$

c) 43.5 g gold (II) phosphate

$$43.5g Au_{3}(PO_{4})_{2} \left(\frac{1 \, mol \, Au_{3}(PO_{4})_{2}}{780.85 \, g \, Au_{3}(PO_{4})_{2}}\right) \left(\frac{6.02 \times 10^{23} \, atoms \, Au_{3}(PO_{4})_{2}}{1 \, mol \, Au_{3}(PO_{4})_{2}}\right) = \underbrace{3.35}_{3}365...\times 10^{22} \rightarrow 3.35 \times 10^{22} \, atoms \, of \, Au_{3}(PO_{4})_{2}$$

125) What is the formula for hydrophosphoric acid? H_3P

Phosphoric acid? H₃PO₄

Molecular chlorine? Cl₂

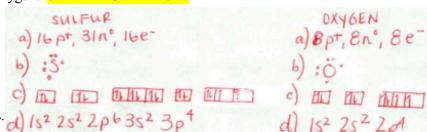
Chloride?Cl

- Name Cl₂O₇. Classify its bonding type: ionic or molecular/covalent (polar/nonpolar, if applicable)

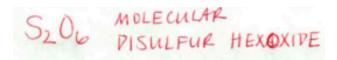
 Dichlorine heptoxide; molecular bond cannot determine polarity
- What is the formula for tin (IV) phosphate? Classify its bonding type. $Sn_3(PO_4)_4$; ionic bond
- 128) Consider an atom of aluminum vs an aluminum ion? **SEE IMAGE BELOW**
 - a) Draw their Bohr models (include electrons, protons, and neutrons).
 - protons, and neutrons).b) Draw their Lewis electron dot structures. (Hint: valence electrons only)
 - c) Write the ion symbol. Is it a cation or anion?
 - d) Write both of their orbital diagrams
 - e) Write both of their electron configurations.
- Aluminum

 Aluminum ion

 a) 13pt, 14n°, 13eb) Al (LOSES 3 VAL e-)


 c) 27Al NELTEAL
 d) 1522522pt3523pl
 e) IV IV IVIII IV III e) IV IVIIII
- 129) Consider an atom of chlorine vs an ion of chlorine. **SEE IMAGE BELOW**
 - a) Draw their Bohr models (include electrons, protons, and neutrons).
 - b) Draw their Lewis electron dot structures. (Hint: valence electrons only)
 - c) Write the ion symbol. Is it a cation or anion?
 - d) Write both of their orbital diagrams
 - e) Write both of their electron configurations.
- CHLORINE CHLORINE ION

 a) BOHRMOPEL ~ 17 pt, 18 n°, 17e a) 17pt, 18 n°, 18e b) : ci:


 b) : ci:
 c) \$\frac{1}{5}C1 NEUTRAL}

 c) \$\frac{35}{5}C1 \frac{1}{5}C1 \frac{1}{5}C

- 130) Predict the compound that results from the combination of the substances in #3 and #4.
 - a) Show the Lewis dot structure for this compound
 - b) Name the bond type. (ionic, acidic, molecular/covalent)
 - c) Write the chemical name and formula for this compound. Aluminum chloride; AlCl₃
- 131) Consider an atom of sulfur and an atom of oxygen. **SEE IMAGE BELOW**
 - a) Draw their Bohr models (include electrons, protons, and neutrons).
 - b) Draw their Lewis electron dot structures. (Hint: valence electrons only)
 - c) Write both of their orbital diagrams
 - d) Write both of their electron configurations.

- 132) Predict the compound that results from the combination of the substances in #6.
 - a) Name the bond type. (ionic, acidic, **molecular/covalent**)
 - b) Write the chemical name and formula for this compound.

