
CS111 Fall 2025 Solutions for Midterm 1 Review Problems

These are solutions to the Fall 2025 Midterm 1 Review Problems. You should solve a problem before you
look at its solution!

Table of Contents

Python Basics
Python Basics 1: Python Calisthenics
Python Basics 2: Python basics
Python Basics 3: Python built-in functions
Python Basics 4: Python built-in functions
Python Basics 5: Python built-in functions

Simple Functions
Simple Functions 1: Defining a repeatIt function
Simple Functions 2: Functions with return and print
Simple Functions 3: Custom Functions
Simple Functions 4: Custom Functions
Simple Functions 5: Defining and calling functions
Simple Functions 6: Defining and calling functions
Simple Functions 7: Defining and calling functions
Simple Functions 8: Defining and calling functions

Booleans and Predicates
Booleans and Predicates 1: exactlyTwoEqual predicate
Booleans and Predicates 2: Age Predicates
Booleans and Predicates 3: Understanding and Defining Predicates
Booleans and Predicates 4: Predicates
Booleans and Predicates 5: Predicates

Conditionals
Conditionals 1: Understanding conditionals
Conditionals 2: Conditionals with whichName
Conditionals 3: Printing Time (Function with Conditionals & Booleans)
Conditionals 4: lmnop
Conditionals 5: Implementing a program based on a flow chart

Understanding while Loops
Understanding while Loops 1: mystery while loop
Understanding while Loops 2: While Loops with user input
Understanding while Loops 3: Using an iteration table to understand a loop
Understanding while Loops 4: Tracing loops and conditionals
Understanding while Loops 5: Tracing loops and conditionals
Understanding while Loops 6: Flow diagrams, iteration tables, and while loops

Understanding for Loops
Understanding for loops 1: Tracing conditionals
Understanding for loop 2: Conditionals in loops in getScore
Understanding for loops 3: Tracing for loops and conditionals
Understanding for loops 4: Tracing for loops and conditionals

https://docs.google.com/document/d/1lg_r9pXVUn-BfSTHT9iNa1lQGH_05K5-_1jF-b1_DQA/edit?tab=t.0#heading=h.tdxy30z6q3ri

Understanding for Loops 5: Tracking variables
Understanding for loops 6: Debugging a loop

Defining functions with loops
Defining functions with loops 2: Duplicating odd characters
Defining functions with loops 3: Shouting a string
Defining functions with loops 4: Swapping case in a string
Defining functions with loops 5: Laughing strings
Defining functions with loops 6: Converting a tracking variable to an index loop
Defining functions with loops 7: replaceVowelSequences [tests writing a complex loop]
Defining functions with loops 8: firstDigits [tests writing a complex loop]

Python Basics

Python Basics 1: Python Calisthenics
Part 1a: Examine each snippet of code below to find the value of the variable a and state its type. Write the value in
the second column and the type in the third column. If the code evaluates to an error, write the kind of error and use
the third column to briefly explain the error. The first two have been done as examples for you.

Please write only within the table below:

Code:

What is the value of a​
(or Error)?

What type is a?​
 (or Error explanation)

a = 3 + 4 7 int

a = float('3.4.5') Value Error Although float can work on some

strings, it doesn’t work on '3.4.5'

a = (17 // 3) * 3 + 17 % 3 17 int

b = 'cat'
a = b[2] + b[3]

Index Error Index 3 does not exist in
'cat'

b = 'dog'
a = b[-1] + b[1]

'go' str

b = len('3.5' * 3)
a = b * 2

18 int

def joy():
 print(3)

a = joy() + 17

Type Error joy() returns None, which
cannot be used as an operand

for +.

Part 1b: In the box below to the right, show what is printed by the following code. Note that the sing function is

nonsense and should not be assumed to produce a meaningful result.

def sing(coda):

 song = 3.1

 print(round(song) % 2)

 lyric = str(song)

 for i in lyric:

 print(i)

 lyric = lyric + coda

 print(lyric)

print(sing("hello"))

Show printed output here
1
3
.
1
3.1hello
None

Python Basics 2: Python basics
Part 2a For each program, show the printed output from the final program statement. If executing the program
causes an error, write (1) the kind of error and (2) why it occurs (briefly!).

a = 4
b = str(a) * a
b + '!'
print(b)

 x = 4
y = 2 * x
z = y + 1
x = 5
print(x, y, z)

 animal = "cat"​
print(animal[1], animal[3])

Printed output:

4444

 Printed output:​
5 8 9

 Printed output:​
Index Error (b/c 3 is
not a valid index)

i = int(5.9)
f = float("3")​
print(i * f)

 s= "watermelon"
print(s[:3] + s[-1:-5:-2])

 c = 8
d = 3
r = round(c / d)
print(r, (c // d))

Printed output: ​
15.0 # a float, not an int

 Printed output:

watnl

 Printed output:

3 2

Part 2b: In the box below to the right, show the printed output from the following code.

num = 4

def show(num):

 saved = num

 double = num * 2

 num = 12

 half = num / 2

 both = double + half

 print('n', num)

 print('dtb', double, half, both)

 print('s', saved)

show(10)

print('z', num)

Show printed output here

n 12
dtb 20 6.0 26.0
s 10
z 4

Python Basics 3: Python built-in functions
Part 3a For each program, show the output printed by the final program statement. If executing the program
causes an error, write (1) the kind of error and (2) why it occurs (briefly!).

a = "23"
b = int(a) - len(a)
b*2
print(b)

 s1 = "a"
s2 = "b"
s3 = s1 + s2*3
s1 = "c"
print(s3 + s1)

 city = "Newton"​
print(city[3], city[6])

Printed output:

21

 Printed output:​
abbbc

 Printed output:​
Index Error (b/c 6 is
not a valid index)

i = int(3.7)
f = float("5")​
print(i + f)

 s = "4.9"
print(int(s) + float(s))

 c = 14
d = 5
print(c//d, c%d,​
 int(c/d), round(c/d))

Printed output: ​
8.0 # a float, not an int

 Printed output:

Value error (b/c int
can’t work on "4.9")

 Printed output:

2 4 2 3

Part 3b: In the box below to the right, show what is printed by the following code. Note that the mystery function is

nonsense and should not be assumed to produce a meaningful result.

string = 'ABC'

def mystery(s):

 n = len(s)/2

 print(n)

 chars = str(n)

 i = int(chars[2])

 string = s.lower() + (s[1]*i)

 return string

print(mystery('DEF'))

print(string)

Show printed output here

1.5
defEEEEE
ABC

Python Basics 4: Python built-in functions
Part 4a For each program, show the output printed by the final program statement. If executing the program causes an error,
write (1) the kind of error and (2) why it occurs (briefly!).

a = 11
b = 2
print(a//b, a/b)

 f = float("five")
print(f+5)

 v1 = ""
v2 = " "
v3 = "cat"
print(len(v3+v2+v1))

Printed output:

5 5.5

 Printed output:​
ValueError: can’t
convert "five" to
float

 Printed output:

4

a = "b"
c = "d"
print(a+b+c)

 line1 = "a,b"
line2 = line1+"c"
print(line2)

Printed output: ​
NameError: b is
undefined

 Printed output:

a,bc

Part 4b: Professor Anderson is cutting strips of fabric to make a border around a quilt. In the box below, write a program (not a
function) that uses the input function (twice) to ask her for the height and width of the quilt, and then prints out the total length of
the fabric that she needs. Below is a sample execution of the program:​
​

Enter height in feet: 8

Enter width in feet: 6

You will need 28 feet of fabric.

The program calculates that 28 feet will be needed to cover all sides of the quilt (8+8+6+6).

You may assume that Professor Anderson enters valid dimensions when asked.

Write your Part 1b program in this box:

a = float(input("Enter height in feet: "))
b = float(input("Enter width in feet: "))
perimeter = 2 * a + 2 * b
print("You will need", perimeter, "feet of fabric.")

Python Basics 5: Python built-in functions

Part 5a: For each program, show the output printed by the final program statement. If executing the program causes
an error, write (1) the kind of error and (2) why it occurs (briefly!).

a = 23
b = 4
print(a//b, a%b,
round(a/b))

 f = float("5.6")
i = str(37)​
print(f + i)

 x = "12"
y = int(x) - len(x)
y*2
print(y)

Printed output:

5 3 6

 Printed output:​
TypeError: can’t
add float & string

 Printed output:​
10

color1 = "blue"
color2 = "red"
color3 = 2 * color1 +
color2
color1 = "cyan"
print(color3 + color1)

 val1 = "one"
val2 = "two"
sum = int(val1) + int(val2)
print(sum)

Printed output: ​
blueblueredcyan

 Printed output:

ValueError: can’t
convert "one" to int

Part 5b: The harmonic mean of two numbers is calculated through the formula:

​ in other words, h is (2 times a times b), divided by (a plus b) ℎ = 2𝑎𝑏
𝑎+𝑏

In the box below, write a program (not a function) that uses the input function (twice) to prompt the user to enter

numbers for a and b, calculates the harmonic mean and stores it in a variable h, and then prints out the message:

The harmonic mean for a and b is h

where a and b are the values of the two numbers entered by the user and h is the calculated harmonic mean. Below

is a sample execution of this program:​
​

Enter number a: 10

Enter number b: 2.5

The harmonic mean of 10.0 and 2.5 is 4.0

You may assume that all inputs are numbers.

Write your harmonic mean program in this box:

a = float(input("Enter number a: "))
b = float(input("Enter number b: "))
h = 2 * a * b / (a + b)
print("The harmonic mean of", a, "and", b, "is", h)

Simple Functions
Simple Functions 1: Defining a repeatIt function

In the box below, define a function named repeatIt that takes a single parameter that is a string, calls the input

function to get an integer from the user, and returns the string repeated as many times as the user specified. You may
assume that the user will always enter an integer. You may also assume that when the function repeatIt is called

that the argument passed is a string.

def repeatIt(text):
 times = input("Enter an integer: ")
 return int(times)*text

Simple Functions 2: Functions with return and print

def red(word):

 newWord = 'red' + word

 print(word) # this is the only function with print in it

 return newWord

def blue(word):

 newWord = 'blue' + word

 return newWord

def green(word):

 newWord = 'green' + word

 return newWord

Part 5a. Given the function definitions above, what is printed by the following code?

newWord = 'grouch'

print(green(red(blue('oscar'))))

print(newWord)

Write what is printed in the box below

blueoscar # the argument, not the newWord
greenredblueoscar # the final result
grouch # nothing changes the global value of newWord

Part 5b. Suppose we remove the print invocation in the red function. Then all three functions above are very similar.

Write a function called addColor that captures the pattern in the red, blue and green functions above.
Your addColor function should have two string arguments and return a string (see examples below):

addColor('orange','cake') ⇒ 'orangecake'

addColor('purple','eyes') ⇒ 'purpleeyes'

Define your function in the box below

def addColor(color, word):
 return color + word

Simple Functions 3: Custom Functions
Part 3a Vocabulary

line 1 def swift(anti, hero):
line 2 ​ greet = "hi!" * anti
line 3 ​ refrain = "it's me"
line 4 return refrain + greet + hero
line 5
line 6 swift(3,"I")
line 7 swift(5,"you")

3a(i): Identify all function parameters above:

Parameter Line #

anti

hero

line 1

line 2

3a(ii): Identify all function arguments above:

Argument Line #

3
"I"
5
"you"

line 6
line 6​
line 7​
line 7

3a(iii) What is the difference between a parameter and an argument? (1-3 sentences)

A parameter is a variable name in the header of a function definition that is used in the function body to
stand for the argument value that is supplied when the function is called.

An argument is a Python value that will effectively replace the corresponding parameter name in the body
of the function when it is called.

In the function frame model, each parameter names a variable box whose contents are initialized to the
argument value in the call.

Part 3b Define the nameRow function
In the box below, define a function called nameRow that has no parameters and does not return anything. It should call

the input function twice: once to get the user's name, and once to get a number indicating how many times the name

should be repeated. It should print the name on one line the requested number of times.

Assume that the user will enter a positive integer when prompted. For full credit, your solution must not use any
loops. Example printed output when the user's name is Carolyn and the user requests a row of length 2:
CarolynCarolyn

def nameRow():

 name = input("Enter your name: ")

 repeats = int(input("Enter the number of times to repeat name: "))

 print(name*repeats)

Simple Functions 4: Custom Functions

 def someLaughter():
 print('LAUGHTER')
 print('LAUGHTER')
 print('LAUGHTER')
 print('LAUGHTER')
 print('LAUGHTER')

You are given the function someLaughter above that prints 'LAUGHTER' five (5) times. You must define two
zero-parameter functions, one of which is named megaLaughter and a helper function whose name you choose.
When called on zero arguments, megaLaughter should print 'LAUGHTER' one hundred (100) times.
For full credit, your solution must meet all these criteria:

●​ Define another helper function that calls someLaughter

●​ megaLaughter does not call someLaughter directly

●​ Neither megaLaughter nor the helper function may call print directly

●​ megaLaughter contains no more than 5 lines of code in the function body (not counting the def line)

●​ There are no loops anywhere in your solution, including in your helper function
You will receive partial credit if your code prints 'LAUGHTER' one hundred (100) times even if it doesn't meet all of

the criteria above.

Write your solution in this box

Solution #1
def moreLaughter():
​ someLaughter()
​ someLaughter()
​ someLaughter()
​ someLaughter()

def megaLaughter():
​ moreLaughter()
​ moreLaughter()
​ moreLaughter()
​ moreLaughter()
​ moreLaughter()

Solution #2
def moreLaughter():
​ someLaughter()
​ someLaughter()
​ someLaughter()
​ someLaughter()
​ someLaughter()

def megaLaughter():
​ moreLaughter()
​ moreLaughter()
​ moreLaughter()
​ moreLaughter()

Simple Functions 5: Defining and calling functions

Part 5a: Consider the following three functions:

def a():

 return 'a'

def b(s):

 return s + 'b'

def c(s):

 return s + 'c' + s

In the table below, fill in the results for each expression (write your answers as quoted strings).

Expression consisting only of calls to the​
three functions above

String that is ​
the value of the

expression

b(c(a())) 'acab'

c(b(b(a()))) 'abbcabb'

Part 5b: You are given the following function definition for printCombinations:

​

def printCombinations(x, y, z):

​ plus = x + y

​ times = y * z

​ print(plus, y, times)

In the box below, fill in the missing arguments to the printCombinations function calls so that printNums() prints

this output:

5 4 12

7 2 8

def printNums():

​ printCombinations(1, 4, 3)

​ printCombinations(5, 2, 4)

Part 5c : Define a function named pickNums that takes three integers and prints them right-justified with brackets to
their left as shown in these examples:

pickNums(3, 4, 15) prints
[] 3
[] 4
[] 15

pickNums(9231, 2, 950) prints
[] 9231
[] 2
[] 950

Your definition must not include any conditionals or loops and must include three invocations of the following
optRow function (in addition to other function calls):

​

def optRow(num, indent):

​ return '[] ' + (' ' * indent) + str(num)

Define your pickNums function in this box:

def pickNums(a, b, c):

 sa = len(str(a))

 sb = len(str(b))

 sc = len(str(c))

​ maxLen = max(sa, sb, sc)

​ print(optRow(a, maxLen - sa))

 print(optRow(b, maxLen - sb))

 print(optRow(c, maxLen - sc))

Simple Functions 6: Defining and calling functions

Part 6a: Consider the following three functions:

def one():

 return 1

def dbl(n):

 return 2*n

def incDbl(n):

 return 1 + (2*n)

It turns out that any positive integer can be expressed using nested calls to just these three functions. In the table
below, fill in the missing parts.

Expression consisting only of calls to the​
three functions one, dbl, and incDbl

Positive integer that is ​
the value of the

expression

incDbl(dbl(dbl(one()))) 9

dbl(incDbl(incDbl(one()))) 14

Part 6b: You are given the following function definition for printPatternLine:

​

def printPatternLine(char1, char1Repeat, char2, chunkWidth, chunkRepeat):

​ chunk = (char1*char1Repeat) + (char2*(chunkWidth - char1Repeat))

​ print(chunk*chunkRepeat)

In the box below, fill in the missing arguments to the printPatternLine function calls so that printPattern()

prints this output:

Y.....Y.....Y.....

ZZZZ-----ZZZZ-----

def printPattern():

​ printPatternLine('Y', 1, '.', 6, 3)

​ printPatternLine('Z', 4, '-', 9, 2)

Part 6c: In the box below, define a function named box3 that takes three strings and prints them left-justified inside a
rectangular box made of +, -, and | characters, as shown in these examples:

box3('apple', 'banana', 'pear') prints
+------+
|apple |
|banana|
|pear |
+------+

box3('two', 'roads', 'diverged') prints
+--------+
|two |
|roads |
|diverged|
+--------+

Your definition must not include any conditionals and must include three invocations of the following
printBoxLine function (in addition to invocations of print):

​

def printBoxLine(word, numSpaces):

​ print('|' + word + (' '*numSpaces) + '|')

Define your box3 function in this box:

def box3(s1, s2, s3):

​ maxLen = max(len(s1), len(s2), len(s3))

​ line = '+' + '-' * maxLen + '+'

​ print(line)

​ printBoxLine(s1, maxLen-len(s1))

​ printBoxLine(s2, maxLen-len(s2))

​ printBoxLine(s3, maxLen-len(s3))

​ print(line)

Simple Functions 7: Defining and calling functions

Part 7a: Define a function rectangle that takes four parameters — two strings that are characters (a border

character and a filler character) and two integers (the width and the height of the rectangle) — and prints rectangles
like the ones shown below.

●​ Assume that each of the width and the height is 2 or greater.
●​ Recall that * can be used to repeat a string.
●​ For full credit, your function must use a while loop (but substantial partial credit will be awarded if it uses

a correct for loop).

rectangle('#', '.', 5, 4)

#...#
#...#

rectangle('@', '-', 6, 3)

@@@@@@
@----@
@@@@@@

rectangle('&', '+', 4, 6)

&&&&
&++&
&++&
&++&
&++&
&&&&

Define your rectangle function in this box.

def rectangle(border, filler, width, height):
 # Top border
 print(border * width)

 # Middle
 middleReps = height - 2;
 while middleReps > 0:
 print(border + filler * (width - 2) + border)
 middleReps -= 1
 # for loop version:
 # for _ in range(height - 2):
 # print(border + filler * (width - 2) + border)

 # Bottom border
 print(border * width)

Part 7b: (You do not have to define rectangle correctly in part 3a in order to answer this part.)

In the box below, write an invocation of the rectangle function that will display the pattern

shown in the box to the left (assuming rectangle is correctly defined).​

????????
? ?
? ?
? ?
????????

Write your invocation of rectangle in this box:

rectangle('?', ' ', 8, 5)

Simple Functions 8: Defining and calling functions

Define a function buildSandwich that takes three parameters: bread (a string), filling (a string), and layers (an integer). Your

function should print lines of text to form a sandwich: the bread string appears on the top and bottom with the filling word in the
middle. The total number of lines should be the number of layers requested by the user. Your function should use the printFilling
helper function defined below to do this, and should NOT include any loops.

def printFilling(f,n):

 for i in range(n):

 print(f)

> buildSandwich('pita','falafel',3)

pita
falafel
pita

> buildSandwich('toast','butter',5)

toast
butter
butter
butter
toast

> buildSandwich('rye','tuna',4)

rye
tuna
tuna
rye

Define your buildSandwich function in this box.

def buildSandwich(bread, filling, layers):
 print(bread)
 printFilling(filling, layers-2)
 print(bread)

Booleans and Predicates

Booleans and Predicates 1: exactlyTwoEqual predicate

In the box below, define a function named exactlyTwoEqual that takes three numbers and returns True if exactly two

or them are equal and False otherwise. For example:

exactlyTwoEqual(6, 8, 6) ⇒ True exactlyTwoEqual(6, 8, 5) ⇒ False

exactlyTwoEqual(7, 7, 4) ⇒ True exactlyTwoEqual(5, 5, 5) ⇒ False

exactlyTwoEqual(8, 9, 9) ⇒ True

Solution 1

def exactlyTwoEqual(n1, n2, n3):

 return ((n1 == n2 and n2 != n3) # can also be written (n1 == n2 != n3)

 or (n1 == n3 and n1 != n2) # can also be written (n2 != n1 == n3)

 or (n2 == n3 and n1 != n2) # can also be written (n1 != n2 == n3)

)

Solution 2

def exactlyTwoEqual(n1, n2, n3):

 return (((n1 == n2) or (n2 == n3) or (n1 == n3))

 and not ((n1 == n2) and (n2 == n3))

 # can also be written (n1 == n2 == n3)

)

Booleans and Predicates 2: Age Predicates

In this problem you will define and use predicates, which are functions that return booleans. You are NOT allowed
to use if/else statements in any of your definitions. Instead, you should combine booleans with and/or/not.

Part 7a: Define a predicate isTeenager that has one parameter for age (an integer) and returns true when the age is

in the teen years (thirteen to nineteen). For example, isTeenager(13) and isTeenager(19) should both return

True, but isTeenager(12) and isTeenager(20) should both return False.

def isTeenager(age):

 return age >= 13 and age <= 19 ​
 # or: 13 <= age <= 19

Part 7b:: Assume that you have been given correct definitions for the following two predicates:

●​ isMinor(age): returns True if age <= 15, and False otherwise.

●​ canRetire(age): returns True if age >= 67, and False otherwise.

Define a predicate isWorkingAge that has one parameter for age and returns True if a person with that age is of

working age (between the ages of 16 and 66, inclusive) and False otherwise. Your definition must not contain any
numbers. Instead, it must call both the isMinor and canRetire functions to determine the answer. For example,

isWorkingAge(16) and isWorkingAge(66) should both return True, but isWorkingAge(15) and

isWorkingAge(67) should both return False.

def isWorkingAge(age):​
 return not(isMinor(age) or canRetire(age))

 # or: return not isMinor(age) and not canRetire(age)

Part 7c:: Define a predicate isNonWorkingAge that has one parameter for the age and returns True if a person with

that age is not of working age (as defined above) and False otherwise. Your definition must not contain any
numbers and must *not* call isWorkingAge. Instead must call both the isMinor and canRetire functions to
determine the answer. For example, isNonWorkingAge(15) and isNonWorkingAge(67) should both return

True, but isNonWorkingAge(16) and isNonWorkingAge(66) should both return False.

Part 7d: Define a predicate isWorkingTeenager that has one parameter for the age and returns True if a person

with that age is a teenager who is of working age and False otherwise. Your definition must not contain any
numbers and must *not* call isMinor or canRetire. Instead it must call both isTeenager and isWorkingAge

(which you can assume are correct). For example, isWorkingTeenager(16) and isWorkingTeenager(19) should

both return True, but isWorkingTeenager(15) and isWorkingTeenager(20) should both return False.

def isNonWorkingAge(age):​
 return isMinor(age) or canRetire(age)

def isWorkingTeenager(age):​
 return isTeenager(age) and isWorkingAge(age)

Booleans and Predicates 3: Understanding and Defining Predicates
Part 3a: The following mysteryPred predicate takes three boolean arguments and returns a boolean result.

​

def mysteryPred(bool1, bool2, bool3):

 return ((bool1 or bool2 or bool3)

 ​ and (not (bool1 and bool2 and bool3))

Fill in the following table to show the results of calls to the mysteryPred function:

Function call Result Function call Result

mysteryPred(False, False, False) False mysteryPred(True, False, True) True

mysteryPred(True, False, False) True mysteryPred(True, True, True) False

Part 3b: Define a predicate named isShortIn that takes two string arguments s1 and s2 and returns True only if all

three of the following conditions are satisfied:
1.​ s1 is a substring in s2

2.​ s1 has at most three characters.

3.​ s2 does not begin with the substring s1. (You can use string slicing to test this!)

For example:

Function call Result Function call Result

isShortIn('war', 'toward') True isShortIn('it', 'kitty') True

isShortIn('ward', 'toward') False isShortIn('kit', 'kitty') False

isShortIn('to', 'toward') False isShortIn('dog', 'kitty') False

For full credit, your definition should not use any conditionals (if statements).

Define your isShortIn predicate in this box:

def isShortIn(s1, s2):
 return ((s1 in s2)
 and len(s1) <= 3
 and not s1 == s2[:len(s1)])

Booleans and Predicates 4: Predicates
Part 4a: Define a predicate named outsideRange that takes three numbers (num, lo, and hi), where you may

assume that lo is less than or equal to hi. It returns True when num is outside the range between lo and hi

(inclusive) and False otherwise. For example:

outsideRange(1, 3, 5) ⇒ True outsideRange(2, 3, 5) ⇒ True outsideRange(3, 3, 5) ⇒ False
outsideRange(4, 3, 5) ⇒ False outsideRange(5, 3, 5) ⇒ False outsideRange(6, 3, 5) ⇒ True

Below, complete the two different function definitions for outsideRange so that they both behave correctly.

def outsideRange(num, lo, hi):

 return num < lo or hi < num

def outsideRange(num, lo, hi):

 return not (lo <= num and num <= hi)

Part 4b(i): The three most frequent letters in English texts are e, t, and a. In the box below, define a predicate named

isFrequentLetter that takes a single string argument. It returns True if the string is a lower-case or upper-case

version of one of these three letters, and False otherwise. For example:
​

isFrequentLetter('e') ⇒ True isFrequentLetter('T') ⇒ True isFrequentLetter('a') ⇒ True

isFrequentLetter('x') ⇒ False isFrequentLetter('B') ⇒ False isFrequentLetter('eta') ⇒ False

Recall that if s is a string, then s.lower() returns the lower-case version of the string.

In this definition, you must *not* use any conditional (if/else) statements

def isFrequentLetter(char):

​ low = char.lower()

​ return low == 'e' or low == 't' or low == 'a'

 # or: return len(char) == 1 and char.lower() in 'eta'

Part 4b(ii): In the box below, define a predicate named containsAllFrequentLetters that takes a single string

argument. It returns True if the string contains all of the letters e, t, and a in any case (lower or upper) and False

otherwise. For example:
​

containsAllFrequentLetters('cattle') ⇒ True containsAllFrequentLetters('eagle') ⇒ False

containsAllFrequentLetters('TEAM') ⇒ True containsAllFrequentLetters('CS111') ⇒ False

In this definition, you must *not* use any conditional (if/else) statements

def containsAllFrequentLetters(word):

​ low = word.lower()

​ return 'e' in low and 't' in low and 'a' in low

Booleans and Predicates 5: Predicates
In this problem you will define and use predicates, which are functions that return booleans. You are NOT allowed to use
if/else statements in any of your definitions. Instead, you should combine booleans with and/or/not.

Part 5a [2 pts]: Define a predicate isCurrentStudent that has one parameter for class year (an integer) and returns True when

the year is the graduation date of a current college student (2024-2027). For example, isCurrentStudent(2023) and

isCurrentStudent(2028) should both return False, but isCurrentStudent(2024) and isCurrentStudent(2027) should

both return True.

def isCurrentStudent(classYear):

 return 2024 <= classYear <= 2027​
 # or return 2024 <= classYear and classYear <= 2027

Part 5b [2 pts]: Define a predicate isRedClass that has one parameter for class year and returns True if that class year's color

is red and False otherwise. The class color of 2024 is red; class colors rotate on a 4 year cycle.

For example, isRedClass(2020), isRedClass(2024) and isRedClass(2028) should all return True, but

isRedClass(2025) should return False.

def isRedClass(classYear):

 return classYear%4 == 0 i

Part 5c [4 pts]: Assume that you have been given correct definitions for the following two predicates:

●​ isPurpleClass(year): returns True if the class year was a purple class (2014, 2018, 2022, 2026 …) and False

otherwise.
●​ isAlum(year): returns True if the graduation year is before 2024 and False otherwise.

Define a predicate isPurpleAlum that has one parameter for year and returns True if a person with that graduation year is an

alum from a purple class and False otherwise. Your definition must not contain any numbers. Instead, it must call both the
isPurpleClass and isAlum functions to determine the answer. For example, isPurpleAlum(2022) and

isPurpleAlum(2018) should both return True. isPurpleAlum(2026) and isPurpleAlum(2023) should both return False.

def isPurpleAlum(classYear):

 return isPurpleClass(classYear) and isAlum(classYear)

Part 5d [2 pts]: Define a predicate isNotPurpleAlum that has one parameter for the class year and returns True if a person

with that class year is not of a purple class alum and False otherwise. Your definition must not contain any numbers and must
not call isPurpleAlum. It must call both the isAlum and isPurpleClass functions to determine the answer. For

example, isNotPurpleAlum(2026) and isNotPurpleAlum(2023) should both return True, but isNotPurpleAlum(2022)

and isNotPurpleAlum(2018) should both return False.

def isNotPurpleAlum(classYear):

 return (not isPurpleClass(classYear)) or (not isAlum(classYear))

Conditionals

Conditionals 1: Understanding conditionals

In the table below, show what is printed for various calls of this analyze function:

def analyze(word):​
 if len(word) <= 4:​
 print('S')​
 else: ​
 print('L')​
 if isVowel(word[0]):

 print('V0')

 if not isVowel(word[1]):

 print('C1')

 elif isVowel(word[1]):

 print('V1')

 else:

 print('C01')​
 if isVowel(word[-1]): # last letter of word ​
 print('VU')​
 if not isVowel(word[-2]): # next to last letter of word ​
 print('CP')

def isVowel(char):

 return len(char) == 1 and char.lower() in 'aeiou'

Function call Printed Output Function call Printed Output

analyze('cat') S
V1

 analyze('spree') L
C01
VU

analyze('oats') S
V0

 analyze('apple') L
V0
C1
VU
CP

Conditionals 2: Conditionals with whichName
Define a function named whichName, which takes two parameters that represent potential cat names and returns

which one is best. The function whichName must return the best cat name indicated as the string '#1' or '#2' given

the following rules:
●​ Names with titles ("Mr. Biggles") are the best. Any string that includes a period contains a title.
●​ If both names have a title or neither name has a title, the longer name is best.
●​ If the length of the names are the same, choose the name that is alphabetically last.

Examples:

In[]: whichName("Ms. Piggy","Whiskers")

Out[]: '#1'

In[]: whichName("Fancy Feast","Giganotosaurus")

Out[]: '#2'

In[]: whichName("Tuna","Foxy")

Out[]: '#1'

In[]: whichName("Ms. Piggy","Ms. Puffy")

Out[]: '#2'

You must not use loops for this problem. Hint: < and > can be used to compare strings.

Define your whichName function in this box

def whichName(name1, name2):
 # First, choose a title over a non-title:
 if '.' in name1 and '.' not in name2:
 return '#1'
 elif '.' not in name1 and '.' in name2:
 return '#2'

 # Get here only if both names are titles or neither is a title.
 # In this case find the longer one.
 elif len(name1) > len(name2):
 return '#1'
 elif len(name1) < len(name2):
 return '#2'

 # Get here only if there's no answer yet and both names
 # have the same length. In this case return the one that's ​
 # alphabetically last.
 elif name1 > name2:
 return '#1'
 else:
 return '#2'

Conditionals 3: Printing Time (Function with Conditionals & Booleans)

In the box at the bottom of this problem, define a function printTime that takes three arguments:

1.​ day: a day of the week, which is one of the strings 'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'

2.​ hour: an integer between 1 and 12, inclusive

3.​ ampm: one of the strings'AM' or 'PM'

printTime prints exactly one word as specified below. It does not return anything.

●​ For a weekend day (Sat or Sun), it prints weekend.

●​ For a weekday (Mon through Fri):

○​ It prints evening from 5PM up to and including 11PM

○​ It prints sleep from midnight (12AM) up to and including 8AM. ​
Note that midnight is considered the beginning of a new day, not the end of a previous day.

○​ It prints class for all other times — i.e., from 9AM up to and including 4PM. ​
This range includes noon (12PM).

Here are some examples:

Function call Printed Output Function call Printed Output

printTime('Sat',12,'AM') weekend printTime('Mon',12,'AM') sleep

printTime('Sat',10,'AM') weekend printTime('Wed',3,'AM') sleep

printTime('Sun',11,'PM') weekend printTime('Fri',8,'AM') sleep

printTime('Mon',5,'PM') evening printTime('Tue',9,'AM') class

printTime('Thu',8,'PM') evening printTime('Wed',12,'PM') class

printTime('Fri',11,'PM') evening printTime('Thu',4,'PM') class

In your definition you do not need to handle cases where an input is an unexpected value (e.g., an invalid day or ampm

string or an hour that is not an integer in the range 1 to 12 inclusive).

(Please keep all your code within the box)

def printTime(day, hour, ampm):

 if day == "Sat" or day == "Sun":

 print("weekend")

 elif ampm == "PM" and 5 <= hour and hour <= 11:

 # Alternatively can write: 5 <= hour <= 11:

 print("evening")

 elif ampm == "AM" and (hour == 12 or hour <= 8): # 12AM is special case

 print("sleep")

 else:

 # Although it's not needed (since ELSE catches everything else)

 # we could use this explicit test instead for this case:

 # ((ampm = "AM" and 9 <= hour <= 11)

 # or (ampm = "PM" and (hour == 12 or hour <= 4)))

 print("class")

Conditionals 4: lmnop
Define a function named lmnop that takes a single letter and returns an integer according to these rules:

●​ If the letter is one of the five letters in l, m, n, o, or p (either lower or upper case) then 5 is returned

●​ If the letter comes before the l in the alphabet (letter “el”, not the digit 1!) in the alphabet, 1 is returned

●​ If the letter comes after p in the alphabet, then 3 is returned

lmnop should treat upper and lower case letters the same way. You may assume the input is a string consisting of a

single alphabetic letter; you should not handle input strings whose length is not 1, nor nonalphabetic characters like
digits, punctuation or spaces. Below are some sample invocations. Recall that characters can be compared
alphabetically using < and >, e.g. ('a' < 'b') is True because 'a' comes before 'b' in the alphabet.

 In[]: lmnop('a')

Out[]: 1

 In[]: lmnop('p')

Out[]: 5

 In[]: lmnop('L')

Out[]: 5

 In[]: lmnop('T')

Out[]: 3

 In[]: lmnop('C')

Out[]: 1

Define your lmnop function in this box

def lmnop(letter):
 lowerLetter = letter.lower()
 if lowerLetter in 'lmnop':
 return 5
 elif lowerLetter < 'l': # this is the letter l
 return 1 # this is the number 1
 else: # letter comes after 'p'
 return 3

Conditionals 5: Implementing a program based on a flow chart
Define a function called stringExplorer that implements the flow chart shown to the right. Your function should have one

parameter, s.

Define your stringExplorer function in this box:

def stringExplorer(s):
 if s[0] == 'A'​
 print('Apple')
 if len(s) < 3:
 print(s)
 else:
 print('big')
 return len(s)
 else:
 return s

Understanding while Loops
Understanding while Loops 1: mystery while loop

Study the mystery function below, which uses the provided isVowel function.

def isVowel(char):

 return len(char) == 1 and char.lower() in 'aeiou'

def mystery(word, bound):

 """Docstring withheld."""

 result = ''

 i = 0

 while len(result) < bound and i < len(word):

 if (not isVowel(word[i])) and word[i] not in result:

 result += word[i]

 i += 1

 if result == '':

 return 'No result'

 return result

Predict the outcome of the following invocations of the mystery function:

Function call Value returned by function call

mystery('pineapple', 1) 'p'

mystery('pineapple', 4) 'pnl'

mystery('guava', 2) 'gv'

mystery('oooooh', 2) 'h'

mystery('ooooo', 2) 'No result'

Understanding while Loops 2: While Loops with user input

Consider this askForFruit function:

def askForFruit():

 name = ''

 while len(name) <= 6:

 name = input('Fruit? ')

 print('Done')

Select all the valid possible outcomes consistent with
executing askForFruit()

✅ Choice A
Fruit? Apple
Fruit? Strawberry
Done

✅ Choice B​
Fruit? LightBlue
Done

❌ Choice C
Fruit? Apple
Done

❌ Choice D
Fruit? Banana
Fruit? Fofana
Done

❌ Choice E
Fruit? Watermelon
Fruit? Apple
Fruit? Grapes
Done

✅ Choice F
Fruit? Apple
Fruit? Orange​
Fruit? Cantaloupe
Done

Understanding while Loops 3: Using an iteration table to understand a loop

You are given this definition of a mysteryLines function.

def mysteryLines(c, h):

 i = 1

 while i < h + 1:

 s = h - i

 if i == 1 or i == h:

 m = 2 * i - 1

 line = ('-' * s) + (c * m) + ('-' * s)

 else:

 m = 2 * i - 3

 line = ('-' * s) + c + ('-' * m) + c + ('-' * s)

 # In the iteration table, show the values of state variables at this point

 print(line)

 i += 1

For the invocation mysteryLines('*', 4), in each row of the iteration table below, show the values of the state

variables in each execution of the body of the for loop right before the call to print.

●​ The iteration table has more rows than needed, so at least one will be blank
●​ Unlike some other iteration tables you have seen in class. this iteration table should not have any row

containing the values of state variables before the loop is entered.

Fill in this iteration table for mystery('*', 4)

i h s m line

1 4 3 1 '---*---'

2 4 2 1 '--*-*--'

3 4 1 3 '-*---*-'

4 4 0 7 '*******'

Understanding while Loops 4: Tracing loops and conditionals
Below is a function doSomething that contains a while loop and conditional statements. Trace the execution of

invoking the doSomething function with different arguments by showing what is printed and what is returned for

each invocation.

def doSomething(n):

 # n is an *integer*

 answer = '' ​
 # answer is a *string*

 while n > 2:

 answer = answer + str(n)

 if n%2 == 0:

 print(n, 'E')

 elif n % 9 == 0:

 print(n, 'T')

 # early return

 return answer

 if n == 10:

 print(n, 'R')

 elif n >= 7:

 print(n, 'H')

 if n <= 12:

 print(n, 'L')

 else:

 print(n, 'M')

 else:

 print(n, 'S')

 # update n in loop:

 n = n - 4

 # return result after loop

 if len(answer) >= 3:

 return '#' + answer

 else:

 return '!' + answer

>>> doSomething(10)

Show what is printed:

10 E
10 R
6 E
6 S

Show what is returned:​
'#106'

>>> doSomething(13)

Show what is printed:

13 H
13 M
9 T

Show what is returned:​
'139'

>>> doSomething(7)

Show what is printed:

7 H​
7 L
3 S

Show what is returned:

'!73'​
D*'

Understanding while Loops 5: Tracing loops and conditionals
Below is a function process that contains a while loop and conditional statements. Trace the execution of invoking

the process function with different arguments by showing what is printed and what is returned for each invocation.

def process(n):

 # n is an *integer*

 answer = '' ​
 # answer is a *string*

 while n > 0:

 answer = answer + str(n)

 if n%2 == 0:

 print(n, 'E')

 if n > 9:

 print(n, 'G')

 elif n == 8:

 print(n, 'R')

 # early return

 return answer

 elif n >= 5:

 print(n, 'H')

 if n <= 7:

 print(n, 'L')

 else:

 print(n, 'M')

 else:

 print(n, 'S')

 # update n in loop:

 n = n - 5 ​

 # return result after loop

 if len(answer) >= 3:

 return '#' + answer

 else:

 return '!' + answer

>>> process(10)

Show what is printed:

10 E
10 G
5 H
5 L

Show what is returned:​
'#105'

>>> process(9)

Show what is printed:

9 H
9 M
4 E
4 S

Show what is returned:​
'!94'

>>> process(8)

Show what is printed:

8 E
8 R

Show what is returned:​
'8'D*'

Understanding while Loops 6: Flow diagrams, iteration tables, and while loops
This problem involves a function named halvesAndDecs, which has a single integer parameter n and returns a string.

The function counts the number of halves (n//2 operations) and decs (n-1 operations) performed in a loop within the
body of the function. (“dec” is short for “decrement”, which means to subtract 1 from a number.)

The body of the halvesAndDecs function is expressed by this flow diagram:

Part 6a [10 pts]: For the function invocation halvesAndDecs(10) , fill in the missing values in the rows of the

iteration table below. Each row shows the values of the variables n, halves, and decs right before the loop condition ​
n > 0 is tested. The iteration table has more rows than needed, so at least one will be blank.

Number of times
loop body has
been executed

n halves decs

0 10 0 0

1 5 1 0

2 4 1 1

3 2 2 1

4 1 3 1

5 0 3 2

Part 6b [8 pts]: In the box below, complete the body of the halvesAndDecs function in Python so that it correctly

expresses the meaning of the flow diagram (copied below). Make sure that your indentation is clear!

def halvesAndDecs(n):

 if n <= 0:

 return str(n) + ' is not positive'

​ else:

 halves = 0

 decs = 0

 while n > 0:

 if n%2 == 0:

 halves += 1

 n = n//2

 else:

 decs += 1

 n = n-1

 return (str(halves) + ' halves and ' ​

 + str(decs) + ' decs')

Here is a copy of the flow diagram for reference:

Understanding for Loops

Understanding for loops 1: Tracing conditionals

Given the function calcPoints below, show what is (1) returned and (2) printed by the following invocations.

Assume that lmnop works correctly, as described above in Conditionals 4: lmnop.

def calcPoints(word):

 points = 0

 for char in word:

 if char == 'y':

 points = 10 # =, not +=

 elif char in 'aeiou':

 points = points * 2

 elif char in '0123456789':

 # early return

 return points + int(char)

 points += lmnop(char)

 print(char, points)

 return points

In[]: calcPoints('bye')
Out[]: Show what is returned:

27

Show what is printed:
b 1
y 13
e 27

In[]: calcPoints('iou')
Out[]: Show what is returned:

17

Show what is printed:
i 1
o 7
u 17

In[]: calcPoints('R45ot')
Out[]: Show what is returned:

7

Show what is printed:
R 3

Understanding for loop 2: Conditionals in loops in getScore

This problem involves the following getScore function:

def getScore(word):
 score = 0
 for char in word:
 if char.isdigit():
 score = score + int(char)
 print(char, 'return1', score)
 return score
 elif char == 't':
 score = 10 # note: this uses =, not +=
 elif char in 'aeiou':
 score = score * 2
 else:
 score = score + 1
 print(char, 'if1', score)
 if char < 'i': # compare by dictionary order
 if char > 'c': # compare by dictionary order
 score += 5
 score += 3
 print(char, 'if2', score)
 print(char, 'return2', score)
 return score

For each of the following calls of getScore, show the output of all the print statements and what is returned.

Call What is printed What is returned

getScore("show") s if1 1
s if2 1
h if1 2
h if2 10
o if1 20
o if2 20
w if1 21
w if2 21
w return2 21

21
​

getScore("pots") p if1 1
p if2 1
o if1 2
o if2 2
t if1 10
t if2 10
s if1 11
s if2 11
s return2 11

11

getScore("cat32") c if1 1
c if2 4
a if1 8
a if2 11
t if1 10
t if2 10
3 return1 13

13

Understanding for loops 3: Tracing for loops and conditionals
Given the function wordScore, show what is (1) returned and (2) printed by the following function calls.

If nothing is printed, write “nothing.”

The predicate isVowel returns True for vowels (any letter in the string "aAeEiIoOuU") and False otherwise.

def wordScore(word):

 result = 0

 if word[1] == word[0]:

 result += 1

 for char in word:

 if char in "!?":

 result += 100

 return result

 if isVowel(char):

 print('+',char)

 result += 2

 else:

 print('++', char)

 print('Finished!')

 return result

In[]: wordScore('et&c')
Out[]: Show what is returned:

2

Show what is printed:​
+ e
++ t
++ &
++ c
Finished!

In[]: wordScore('eek')
Out[]: Show what is returned:

5

Show what is printed:
+ e
+ e​
++ k
Finished!

In[]: wordScore('z?y!')
Out[]: Show what is returned:

100

Show what is printed:
++ z

Understanding for loops 4: Tracing for loops and conditionals
You are given the function string_inspector that contains conditional statements. Trace the execution of invoking

this function with different arguments by showing what is printed and what is returned for each invocation.
●​ char.upper() returns the uppercase version of char if it’s a letter; otherwise it just returns char.

●​ char.isupper() returns True if char is an uppercase letter and False otherwise

def string_inspector(s):

 result = '$'​
 for char in s:

 result += char.upper()

 if char.isupper():

 print("P")

 if char == 'a':

 if 'd' in s:

 print("Q")

 else:

 print("R")

 elif char == 'b':

 if s[-1] == 'd':

 print("S")

 else:

 print("T")

 elif char in 'cdef':

 print("U")

 if s[0] == 'z':

 return result

 else:

 print("W")

 ​

 if len(s) >= 4:

 return result + "!"

 else:

 return result + "*"

>>> string_inspector("Abba")

Show what is printed:

P
W
T
T
R

Show what is returned:​
'$ABBA!'

>>> string_inspector("zemor")

Show what is printed:

W
U

Show what is returned:​
'$ZE'

>>> string_inspector("bad")

Show what is printed:

S
Q
U

Show what is returned:​
'$BAD*'

Understanding for Loops 5: Tracking variables

This problem involves the following function definition that uses the tracking variable prev to keep track of the

previous letter in the word while the for loop is executed. You may assume that isVowel correctly returns True if its

string argument is a lower or upper case version of the letters a, e, o, i, u, and is otherwise False.

def process(word): # line 1

 newWord = '' # line 2

 prev = '' # line 3

 for letter in word: # line 4

 if isVowel(letter) or isVowel(prev): # line 5

 newWord += letter # line 6

 # print('prev', prev, 'letter', letter, 'newWord', newWord) # line 7

 prev = letter # line 8

 return newWord # line 9

Part a: [6 pts] Suppose the debugging print on line 7 is uncommented. Fill in the underlined parts in the following

printed output to show what is printed when process('purple') is called. if the empty string is printed, leave the

underlined part blank.
​

prev ____ letter p___ newWord _____________

prev p___ letter u___ newWord u____________

prev u___ letter r___ newWord ur___________

prev r___ letter p___ newWord ur___________

prev p___ letter l___ newWord ur___________

prev l___ letter e___ newWord ure__________

Part b: [3 pts] Show the result returned by the following three calls to process. Assume that line 7 is commented

out, so that nothing is printed. Write the result value after the arrow ⇒, remembering to quote all string values.

process('length') ⇒ 'en' process('odious') ⇒ 'odious' process('bcd') ⇒ ''

Understanding for loops 6: Debugging a loop

This problem involves a function hasThreeConsecutiveVowels that should return True when called on a string
that contains at least three consecutive vowels and False for any other string. For example, it should return True
for strings like "bureau", "precious" , and "queue" and False for strings like "cat", "nation", and "evoke".

Below is a buggy version of hasThreeConsecutiveVowels that does not work correctly.

def buggyHasThreeConsecutiveVowels(string): # line 1

 counter = 0 # line 2

 for letter in string: # line 3

 if isVowel(letter): # line 4

 counter += 1 # line 5

 if counter == 3: # line 6

 return True # line 7

 return False # line 8

Assume that the function isVowel correctly returns True when its single argument is a vowel (a single letter in
aeiouAEIOU) and False otherwise.

Part 3a Are there any counterexample strings for which buggyHasThreeConsecutiveVowels returns True when
hasThreeConsecutiveVowels returns False?

●​ If yes, give an example of such a counterexample string, and explain in English the structure of such
counterexample strings.

●​ If no, explain why such counterexample strings are not possible.=

Yes. buggyHasThreeConsecutiveVowels returns True for any string that contains at least
three vowels, even when there are not three consecutive vowels. E.g. 'nation', 'abei',

'hahaha', 'soup du jour'

Part 3b Are there any counterexample strings for which buggyHasThreeConsecutiveVowels returns False when
hasThreeConsecutiveVowels returns True?

●​ If yes, give an example of such a counterexample string, and explain in English the structure of such
counterexample strings.

●​ If no, explain why such counterexample strings are not possible.

No. buggyHasThreeConsecutiveVowels returns True for every string that contains at least
three vowels, so it will never return False for any string that has three consecutive vowels.

Part 3c It is possible to add code between two consecutive lines of buggyHasThreeConsecutiveVowels so that
the modified function behaves like the correct hasThreeConsecutiveVowels. Specify the two lines between
which the new code should be added and what the new code is.

Between lines 7 and 8, add the code:

 else: # matches the outer if, not the inner if

 counter = 0

Defining functions with loops

Defining functions with loops 1: Hiding characters

Define a function named hide that takes a string and replaces certain characters with a '*'. The hide function will

take two parameters: (1) a string and (2) a string of characters such that if any of them occur in the first string

parameter, they are to be hidden (replaced) by a '*'. For full credit, hide should contain one for loop.

Below are some sample invocations.

Invocation Result

hide('apple', 'p') 'a**le'

hide('apple', 'pa') '***le'

hide('coffee', 'oe') 'c*ff**'

hide('coffee', 'xyz') 'coffee'

hide('winter is coming', 'coming') 'w**ter *s ******'

Define your hide function in the box below:

def hide(string, charsToHide):
​ result = ''
​ for char in string:
 ​ if char in charsToHide:
 result += '*'
 ​ else:
 result += char
​ return result

Defining functions with loops 2: Duplicating odd characters
Define a function duplicateOddChars that takes a string as its single argument and returns a string containing all

the characters of the given string in order except that each character at an odd index is duplicated.
●​ Recall that indexing starts at 0.
●​ For full credit, your function must use a while loop (but substantial partial credit will be awarded if it uses

a correct for loop).

Below are shown some examples of invoking the function.

>>> duplicateOddChars('Omaha, NE')

'Ommahha,, NNE'

>>> duplicateOddChars('ba')
'baa'

>>> duplicateOddChars('yes!')
'yees!!'

>>> duplicateOddChars('I')

'I'

>>> duplicateOddChars('')
''

Define your duplicateOddChars function in this box.

while loop solution
def duplicateOddChars(word):
 result = ''
 index = 0
 while index < len(word):
 if index % 2 == 1:
 result += word[index] * 2
 else:
 result += word[index]
 index += 1
 return result

for loop solution
def duplicateOddChars(word):
 result = ''
 for index in range(len(word)):
 if index % 2 == 1:
 result += word[index] * 2
 else:
 result += word[index]
 return result

Defining functions with loops 3: Shouting a string
Define a function shout that takes a string as its single argument and returns a version of the string in which

●​ all alphabetic characters and spaces are kept but all other non-space non-alphabetic characters have been
removed;

●​ all alphabetic characters have been capitalized.

Below are some sample invocations of shout:

>>> shout('{one}, (two), [three]')

'ONE TWO THREE'

>>> shout('!@Foo#$BAR%^baz&*')
'FOOBARBAZ'

>>> shout('You say "Goodbye!", and I say "Hello!"')

'YOU SAY GOODBYE AND I SAY HELLO'

>>> shout('')
''

●​ In your shout definition, you may use either a for loop or a while loop, whichever you find easier.
●​ If s is a string, then s.isalpha() returns True if all the characters in s are alphabetic, and False otherwise.

●​ You can test for a space character using ==.

●​ If s is a string, then s.upper() returns a version of s in which all alphabetic characters are capitalized.

Define your shout function in this box. Make sure that your indentation is clear!

while loop version
def shout(text):
 result = ''
 index = 0
 while index < len(text):
 char = text[index]
 if char == ' ' or char.isalpha():
 result += char.upper()
 index += 1
 return result

for loop version
def shout(text):
 result = ''
 for char in text:
 if char == ' ' or char.isalpha():
 result += char.upper()
 return result

Defining functions with loops 4: Swapping case in a string
Define a function swapCase that takes a string as its single argument and returns a version of the string in which

●​ all alphabetic characters and spaces are kept, but all other non-space non-alphabetic characters have been
removed;

●​ all lower-case alphabetic characters have been upper-cased and all upper-cased alphabetic characters have
been lower-cased. (An upper-case letter is just a capital letter; a lower-case letter is not a capital.)

Below are some sample invocations of swapCase:

>>> swapCase('lower Capitalized UPPER')
'LOWER cAPITALIZED upper'

>>> swapCase('I am NOT shouting but TALKING!')
'i AM not SHOUTING BUT talking'

>>> swapCase('Happy Birthday! You're the *BEST*') =>
'hAPPY bIRTHDAY yOURE THE best'

●​ In your swapCase definition, you should use a for loop to get full credit

●​ If s is a string, then
○​ s.isalpha() returns True if all the characters in s are alphabetic, and False otherwise.

○​ s.islower() returns True if all the alphabetic characters in s are lower case, and False otherwise.

(s.isupper() is similar for upper case , but it’s not necessary in this problem.)

○​ s.lower() returns a version of s in which all letters are lower-cased.

○​ s.upper() returns a version of s in which all letters are upper-cased.

●​ You can test for a space character using ==.

Define your swapCase function in this box. Make sure that your indentation is clear!

def swapCase(string):
 result = ''
​ for char in string:
 if char.isalpha():
 if char.islower():
 result += char.upper()
 ​ else:
 ​ result += char.lower()
 ​ elif char == ' ':
 ​ result += char
 return result

Defining functions with loops 5: Laughing strings
Part 8a: Define a function named laughStretch with four parameters — two strings (a word and a filler character)

and two integers (maxReps and length) — that prints stretched words like the ones shown below. The function
repeats the word until it reaches the target length or runs out of allowed repetitions, and then fills any leftover space
with the filler character.

●​ maxReps is the maximum number of times that word can be repeated in the final string

●​ length is the minimum length of the final string

●​ You can assume that the filler argument will contain a single character.

●​ Recall that * can be used to repeat a string.
●​ For full credit, your function must use a while loop (but substantial partial credit will be awarded if it uses

a correct for loop).
Below are shown some examples of invoking the function.

>>> laughStretch("ha","~",10,6)

hahaha

>>> laughStretch("ha","~",2,6)
haha~~

>>> laughStretch("teehee","!",1,10)
teehee!!!!

>>> laughStretch("ha","w",2,7)

hahawww

>>> laughStretch("ha","w",4,7)
hahahaha

Define your laughStretch function in this box.

while loop solution
def laughStretchWhile(word, fillerChar, maxReps, targetLength):
 resultSoFar = ''
 while (len(resultSoFar) < targetLength) and maxReps > 0:
 resultSoFar += word
 maxReps -= 1
 charsNeeded = targetLength-len(resultSoFar)
 if charsNeeded > 0:
 resultSoFar += fillerChar*charsNeeded
 print resultSoFar

for loop solution
def laughStretchFor(word, fillerChar, maxReps, targetLength):
 resultSoFar = ''
 for _ in range(maxReps):
 resultSoFar += word
 if len(resultSoFar) >= targetLength:
 break
 charsNeeded = targetLength-len(resultSoFar)
 if charsNeeded > 0:
 resultSoFar += fillerChar*charsNeedednsdfsdfd rp
sdfprint resultSoFarv

Part 8b: (You do not have to define laughStretch correctly in part 4a in order to answer this part.) In the box below, write an

invocation of the laughStretch function that will display the pattern below if laughStretch is correctly defined:

teehee!teehee!!!

Write your invocation of laughStretch in this box:

laughStretch('teehee!', '!', 2, 16)

Defining functions with loops 6: Converting a tracking variable to an index loop

This problem is related to the one in Understanding for Loops 5: Tracking variables. It involves the following function
definition that uses the tracking variable prev to keep track of the previous letter in the word while the for loop is

executed. You may assume that isVowel correctly returns True if its string argument is a lower or upper case version

of the letters a, e, o, i, u, and is otherwise False.

def process(word): # line 1

 newWord = '' # line 2

 prev = '' # line 3

 for letter in word: # line 4

 if isVowel(letter) or isVowel(prev): # line 5

 newWord += letter # line 6

 # print('prev', prev, 'letter', letter, 'newWord', newWord) # line 7

 prev = letter # line 8

 return newWord # line 9

Below, show how to define an alternative version of process that uses an index loop expressed with a while loop

rather than a tracking variable expressed with a for loop to handle accessing the previous letter. The definition has

been started for you; you must complete it. You should *not* include the commented debugging print from line 7 in
your definition.

def process(word):
 """version of process with an index loop using while"""
 index = 0
 newWord = ''
 while index < len(word) :
 letter = word[index]

 if isVowel(letter) or (index !=0 and isVowel(word[index-1])):

 newWord += letter

 return newWord

Defining functions with loops 7: replaceVowelSequences [tests writing a complex loop]

Because vowels are more likely to change over time than consonants, linguists sometimes describe words in terms
of just their consonants, putting in a star (asterisk) for a sequence of consecutive vowels. So 'dog' would be

written 'd*g' and 'seafood' would be written as 's*f*d'.

In this problem you will write a function replaceVowelSequences that takes a word and returns a string that

replaces each sequence of vowels in the word with a single asterisk. Here are iteration tables that show the
function working on some examples:

Iteration Tables

Example 1: 'dog'

char result inVowelSequence

 '' False

d 'd' False

o 'd*' True

g 'd*g' False

Example 2: 'seafood'

char result inVowelSequence

 '' False

s 's' False

e 's*' True

a 's*' True

f 's*f' False

o 's*f*' True

o 's*f*' True

d 's*f*d' False

Define replaceVowelSequences in the box below using a for loop with the state variables shown in the above

iteration tables. Assume there is a correct isVowel predicate that you can use without defining it.

SOLUTION 1: A completely correct solution has the following properties:
* It uses a for loop with three state variables having exactly the names​
char, result, and inVowelSequence, as shown in the iteration tables.
* The code in the for loop body expresses the update rules for the result
result and inVowelSequence state variables that are implied by the iteration tables.
def replaceVowelSequences(word):​
 result = '' # initialize state variable for accumulating result string​
 inVowelSequence = False # initialize state variable that determines when to add '*'​
 for char in word: # iterate over each character in word, using char as iteration variable​
 if isVowel(char):​
 if not inVowelSequence: # add '*' only when previous char was not vowel​
 result += '*'​
 inVowelSequence = True # For next time, indicate previous char *was* a vowel​
 else: # use else rather than testing `not isVowel(char)`

 result += char # always add a nonvowel to result​
 inVowelSequence = False # For next time, indicate previous char was *not* a vowel​
 return result

SOLUTION 2:Observe that inVowelSequence needn’t actually be a state variable, since the value

of inVowelSequence is the result of the expression result != '' and result[-1] == '*'

Based on this observation, a simplified version of the function definition is:

def replaceVowelSequences(word):​
 result = '' # initialize state variable for accumulating result string​
 for char in word: # iterate over each character in word, using char as iteration variable​
 if isVowel(char):​
 if not (result != '' and result[-1] == '*') # add '*' only when previous char was not

vowel

 # if can be simplified to if (result == '' or result[-1] != '*')​
 result += '*'​
 else: # use else rather than testing `not isVowel(char)`

 result += char # always add a nonvowel to result​
 return result

Defining functions with loops 8: firstDigits [tests writing a complex loop]

Define a function named firstDigits that takes a string containing only spaces and digits and returns a string

containing the first digits from each group of digits. firstDigits has a single string parameter and returns a string.

If the string passed into firstDigits is not empty, it will always begin with a digit and end with a digit. If the string is

empty, the function should return the string "NOTHING!" You can assume the groups of digits are separated by single
spaces.

For full credit, firstDigits must contain exactly one while loop or for loop, and cannot use .split().
Here are some sample function calls:

Invocation Result

firstDigits('19 500 0') '150'

firstDigits('') 'NOTHING!'

firstDigits('34 34 34 34') '3333'

firstDigits('1 2 3') '123'

Write your firstDigits function in the box below:

def firstDigits1(string):
 ''' Version of firstDigits with value loop and tracking variable. '''
 if string == '':
 return 'NOTHING!'
 prevSpace = True
 digits = ''
 for char in string:
 if char == ' ':
 prevSpace = True;
 else:
 if prevSpace:
 digits += char
 prevSpace = False;
 return digits

def firstDigits2(string):
 ''' Version of firstDigits with while-based index loop. '''
 if string == '':
 return 'NOTHING!'
 digits = string[0] # guaranteed to be a digit ​
 index = 0
 while index < len(string) # don’t process last index of string!
 if string[index] == ' ' and string[index+1] != ' ':​
 # By assumption, string guaranteed not to *end* in a space,
 # so string[index+1] will never be out-of-bounds.
 # Alternatively, continuation condition can be: index < len(string)-1
 digits += string[index+1]
 return digits

	CS111 Fall 2025 Solutions for Midterm 1 Review Problems
	
	Python Basics
	Python Basics 1: Python Calisthenics
	
	Python Basics 2: Python basics
	
	Python Basics 3: Python built-in functions
	Python Basics 4: Python built-in functions
	Python Basics 5: Python built-in functions

	Simple Functions
	Simple Functions 1: Defining a repeatIt function
	Simple Functions 2: Functions with return and print
	Simple Functions 3: Custom Functions
	Simple Functions 4: Custom Functions
	
	Simple Functions 5: Defining and calling functions
	
	Simple Functions 6: Defining and calling functions
	
	Simple Functions 7: Defining and calling functions
	Simple Functions 8: Defining and calling functions

	Booleans and Predicates
	Booleans and Predicates 1: exactlyTwoEqual predicate
	Booleans and Predicates 2: Age Predicates
	Booleans and Predicates 3: Understanding and Defining Predicates
	Booleans and Predicates 4: Predicates
	Booleans and Predicates 5: Predicates

	Conditionals
	Conditionals 1: Understanding conditionals
	
	Conditionals 2: Conditionals with whichName
	
	Conditionals 3: Printing Time (Function with Conditionals & Booleans)
	Conditionals 4: lmnop
	Conditionals 5: Implementing a program based on a flow chart

	Understanding while Loops
	Understanding while Loops 1: mystery while loop
	
	
	Understanding while Loops 2: While Loops with user input
	
	
	Understanding while Loops 3: Using an iteration table to understand a loop
	Understanding while Loops 4: Tracing loops and conditionals

	
	
	Understanding while Loops 5: Tracing loops and conditionals

	
	Understanding while Loops 6: Flow diagrams, iteration tables, and while loops

	
	Understanding for Loops
	Understanding for loops 1: Tracing conditionals
	Understanding for loop 2: Conditionals in loops in getScore
	
	Understanding for loops 3: Tracing for loops and conditionals
	
	
	
	Understanding for loops 4: Tracing for loops and conditionals
	
	Understanding for Loops 5: Tracking variables
	
	Understanding for loops 6: Debugging a loop

	Defining functions with loops
	
	Defining functions with loops 2: Duplicating odd characters
	Defining functions with loops 3: Shouting a string
	Defining functions with loops 4: Swapping case in a string
	Defining functions with loops 5: Laughing strings
	Defining functions with loops 6: Converting a tracking variable to an index loop
	
	Defining functions with loops 7: replaceVowelSequences [tests writing a complex loop]
	Defining functions with loops 8: firstDigits [tests writing a complex loop]
	

