CS111 Fall 2025 Solutions for Midterm 1 Review Problems

These are solutions to the Fall 2025 Midterm 1 Review Problems. You should solve a problem before you
look at its solution!

Table of Contents

Python Basics
Python Basics 1: Python Calisthenics

Python Basics 2: Python basics
Python Basics 3: Python built-in functions
Python Basics 4: Python built-in function
Python Basics 5: Python built-in functions
Simple Functions
Simple F . . Defini Itf .
Simple Functions 2: Functions with return and print
Simple Functions 3: Custom Functions
imple Functions 4: m Function
Simple Functions 5: Defining and calling functions
Simple Functions 6: Defining and calling functions
imple Functions 7: Defining an lling function
Simple Functions 8: Defining and calling functions
Booleans and Predicates
Booleans and Predicates 1: exactlyTwoEqual predicate

Booleans and Predicates 2: Age Predicates
Booleans and Predicates 3: Understanding and Defining Predicates

Booleans and Predicates 4: Predicates

Booleans and Predicates 5: Predicates
Conditionals

Conditionals 1: Understanding conditionals

Conditionals 2: Conditionals with whichName
nditionals 3: Printing Time (Function with

Conditionals 4: Imnop

Conditionals 5: Implementing a program based on a flow chart
Understanding while Loops

Understanding while Loops 1: mystery while loop
Understanding while Loops 2: While Loops with user input

nderstanding while L . Using an iteration tabl nderstand a |
Understanding while Loops 4: Tracing loops and conditionals
Understanding while Loops 5: Tracing loops and conditionals
nderstanding while L . Flow diagrams, iteration tabl nd while |
Understanding for Loops
Understanding for loops 1: Tracing conditionals
Understanding for loop 2: Conditionals in loops in getScore

Understanding for loops 3: Tracing for loops and conditionals
Understanding for loops 4: Tracing for loops and conditionals

https://docs.google.com/document/d/1lg_r9pXVUn-BfSTHT9iNa1lQGH_05K5-_1jF-b1_DQA/edit?tab=t.0#heading=h.tdxy30z6q3ri

Understanding for Loops 5: Tracking variables
uUnd ling for | 5: Del . I
Defining functions with loops
Defining functions with loops 2: Duplicating odd characters
Defining functions with | : Shoutin rin
Defining functions with loops 4: Swapping case in a string
Defining functions with loops 5: Laughing strings
Defining functions with loops 6: Converting a tracking variable to an index loo

Defining functions with loops 7: replaceVowelSequences [tests writing a complex loop]
Defining functions with loops 8: firstDiqgits [tests writing a complex loop]

Python Basics

Python Basics 1: Python Calisthenics

Part 1a: Examine each snippet of code below to find the value of the variable a and state its type. Write the value in
the second column and the type in the third column. If the code evaluates to an error, write the kind of error and use
the third column to briefly explain the error. The first two have been done as examples for you.

Please write only within the table below:

Code: What is the value of a What type is a?
(or Error)? (or Error explanation)
a=3+14 1 int

a = float('3.4.5") value Error Ql’rhouﬁh float can work on some

strings, it doesnt work on '3.4.5"

a=(17//3) *3+17 %3 17 int

b = 'cat’ Index Error Index 3 does not exist in

a = b[2] + b[3] lcatl

b = 'dog’ 'go' str

a = b[-1] + b[1]

b = len('3.5" * 3) 18 int

a=>b*2

def joy(): Type Error joy () returns None, which
print(3) cannot be used as an operand

a = joy() + 17 for +.

Part 1b: In the box below to the right, show what is printed by the following code. Note that the sing function is
nonsense and should not be assumed to produce a meaningful result.

def sing(coda): Show printed output here

song = 3.1 1

print(round(song) % 2) 3

lyric = str(song) .

for i in lyric: 1

print(i) 3.1hello

lyric = lyric + coda

print(lyric) None
print(sing("hello"))

Python Basics 2: Python basics

Part 2a For each program, show the printed output from the final program statement. If executing the program
causes an error, write (1) the kind of error and (2) why it occurs (briefly!).

a =4 X
b = str(a) * a y
z
X

b+ "I
print(b)

print(x, y, z)

4
2 * X
y +1
5

animal = "cat"
print(animal[1], animal[3])

Printed output:

Printed output:

Printed output:

4444 589 Index Error (b/c 3 is
not a valid index)

i = int(5.9) s= "watermelon" c =28

f = float("3") print(s[:3] + s[-1:-5:-2]) d =3

print(i * f) r = round(c / d)

print(r, (c // d))

Printed output:
15.0 # a float, not an int

Printed output:
watnl

Printed output:

32

Part 2b: In the box below to the right, show the printed output from the following code.

num = 4
def show(num):
saved = num
double = num * 2
num = 12
half = num / 2
both = double + half
print('n', num)
print('dtb', double, half, both)
print('s', saved)

show(10)
print('z"', num)

Show printed output here

n 12

s 10
z 4

dtb 20 6.0 26.0

Python Basics 3: Python built-in functions

Part 3a For each program, show the output printed by the final program statement. If executing the program
causes an error, write (1) the kind of error and (2) why it occurs (briefly!).

a = "23" sl = "a" city = "Newton"
b = int(a) - len(a) s2 = "b" print(city[3], city[6])
b*2 s3 = sl + s2*3
print(b) sl = "c"
print(s3 + s1)
Printed output: Printed output: Printed output:
21 abbbc Index Error (b/c 6 is

not a valid index)

i=1int(3.7) s = "4.9" c =14
f = float("5") print(int(s) + float(s)) d=5
print(i + f) print(c//d, c%d,

int(c/d), round(c/d))

Printed output: Printed output: Printed output:
8.0 # a float, not an int Value error (b/c int 2423
can’t work on "4.9")

Part 3b: In the box below to the right, show what is printed by the following code. Note that the mystery function is
nonsense and should not be assumed to produce a meaningful result.

string = 'ABC' Show printed output here
1.5
def mystery(s): defEEEEE
n = len(s)/2
print(n) ABC

chars = str(n)

i = int(chars[2])

string = s.lower() + (s[1]*i)
return string

print(mystery('DEF"))
print(string)

Python Basics 4: Python built-in functions

Part 4a For each program, show the output printed by the final program statement. If executing the program causes an error,
write (1) the kind of error and (2) why it occurs (briefly!).

a =11 f = float("five") vli = ""
b =2 print(f+5) v2 =" "
print(a//b, a/b) v3 = "cat"
print(len(v3+v2+vl))
Printed output: Printed output: Printed output:
5 5.5 ValueError: can’t 4
convert "five" to
float
a ="b" linel = "a,b"
c = "d" line2 = linel+"c"
print(a+b+c) print(line2)
Printed output: Printed output:
NameError: b is a,bc
undefined

Part 4b: Professor Anderson is cutting strips of fabric to make a border around a quilt. In the box below, write a program (not a
function) that uses the input function (twice) to ask her for the height and width of the quilt, and then prints out the total length of
the fabric that she needs. Below is a sample execution of the program:

Enter height in feet: 8

Enter width in feet: 6

You will need 28 feet of fabric.

The program calculates that 28 feet will be needed to cover all sides of the quilt (8+8+6+6).

You may assume that Professor Anderson enters valid dimensions when asked.

Write your Part 1b program in this box:

a = float(input("Enter height in feet: "))

b = float(input("Enter width in feet: "))

perimeter = 2 * a + 2 * b

print("You will need", perimeter, "feet of fabric.")

Python Basics 5: Python built-in functions

Part 5a: For each program, show the output printed by the final program statement. If executing the program causes
an error, write (1) the kind of error and (2) why it occurs (briefly!).

a =23 f = float("5.6") x = "12"
b=14 i = str(37) y = int(x) - len(x)
print(a//b, a%b, print(f + i) y*2
round(a/b)) print(y)
Printed output: Printed output: Printed output:
536 TypeError: can’t 10

add float & string

colorl = "blue" vall = "one"

color2 = "red" val2 = "two"

color3 = 2 * colorl + sum = int(vall) + int(val2)
color2 print(sum)

colorl = "cyan"

print(color3 + colorl)

Printed output: Printed output:
blueblueredcyan ValueError: can’t
convert "one" to int

Part 5b: The harmonic mean of two numbers is calculated through the formula:

2ab
h = a+b

In the box below, write a program (not a function) that uses the input function (twice) to prompt the user to enter
numbers for a and b, calculates the harmonic mean and stores it in a variable h, and then prints out the message:

in other words, h is (2 times a times b), divided by (a plus b)

The harmonic mean for ag and b is h

where a and b are the values of the two numbers entered by the user and h is the calculated harmonic mean. Below
is a sample execution of this program:

Enter number a: 10
Enter number b: 2.5
The harmonic mean of 10.0 and 2.5 is 4.0

You may assume that all inputs are numbers.

Write your harmonic mean program in this box:

a = float(input("Enter number a: "))
b = float(input("Enter number b: "))
h=2%*a*b / (a+b)

print("The harmonic mean of", a, "and", b, "is", h)

Simple Functions
Simple Functions 1: Defining a repeatIt function

In the box below, define a function named repeatIt that takes a single parameter that is a string, calls the input
function to get an integer from the user, and returns the string repeated as many times as the user specified. You may
assume that the user will always enter an integer. You may also assume that when the function repeatIt is called
that the argument passed is a string.

def repeatIt(text):
times = input("Enter an integer: ")
return int(times)*text

Simple Functions 2: Functions with return and print

def red(word):
newWord = ‘'red' + word
print(word) # this 1is the only function with print in it
return newhord

def blue(word):
newhWord = 'blue' + word
return newWord

def green(word):
newhord = 'green' + word
return newhord

Part 5a. Given the function definitions above, what is printed by the following code?

newWord = 'grouch'’
print(green(red(blue('oscar'))))
print(newWord)

Write what is printed in the box below

blueoscar # the argument, not the newWord
greenredblueoscar # the final result
grouch # nothing changes the global value of newWord

Part 5b. Suppose we remove the print invocation in the red function. Then all three functions above are very similar.
Write a function called addColor that captures the pattern in the red, blue and green functions above
Your addColor function should have two string arguments and return a string (see examples below):

addColor('orange', 'cake') = ‘'orangecake'

addColor('purple','eyes') = 'purpleeyes

Define your function in the box below

def addColor(color, word):
return color + word

Simple Functions 3: Custom Functions

Part 3a Vocabulary
line 1 def swift(anti, hero):
line 2 greet = "hil" * anti
line 3 refrain = "it's me"
line 4 return refrain + greet + hero
line 5
line 6 swift(3,"I")
line 7 swift(5,"you")
3a(i): Identify all function parameters above: 3a(ii): Identify all function arguments above:
Parameter Line # Argument Line #
anti line 1 3 line 6
hero line 2 "I line 6
5 line 7
"you" line 7

3a(iii) What is the difference between a parameter and an argument? (1-3 sentences)

A parameter is a variable name in the header of a function definition that is used in the function body to
stand for the argument value that is supplied when the function is called.

An argument is a Python value that will effectively replace the corresponding parameter name in the body
of the function when it is called.

In the function frame model, each parameter names a variable box whose contents are initialized to the
argument value in the call.

Part 3b Define the nameRow function

In the box below, define a function called nameRow that has no parameters and does not return anything. It should call
the input function twice: once to get the user's name, and once to get a number indicating how many times the name
should be repeated. It should print the name on one line the requested number of times.

Assume that the user will enter a positive integer when prompted. For full credit, your solution must not use any
loops. Example printed output when the user's name is Carolyn and the user requests a row of length 2:
CarolynCarolyn

def nameRow():
name = input("Enter your name: ")
repeats = int(input("Enter the number of times to repeat name: "))
print(name*repeats)

Simple Functions 4: Custom Functions

def somelLaughter():
print('LAUGHTER")
print('LAUGHTER")
print('LAUGHTER")
print('LAUGHTER")
print('LAUGHTER")

You are given the function someLaughter above that prints ‘'LAUGHTER" five (5) times. You must define two
zero-parameter functions, one of which is named megalLaughter and a helper function whose name you choose.
When called on zero arguments, megaLaughter should print ' LAUGHTER' one hundred (100) times.

For full credit, your solution must meet all these criteria:
e Define another helper function that calls someLaughter
e megalaughter does not call someLaughter directly

e Neither megalLaughter nor the helper function may call print directly

e megalaughter contains no more than 5 lines of code in the function body (not counting the def line)

e There are no loops anywhere in your solution, including in your helper function

You will receive partial credit if your code prints 'LAUGHTER' one hundred (100) times even if it doesn't meet all of

the criteria above.

Werite your solution in this box

someLaughter()
someLaughter()

moreLaughter()
moreLaughter()
moreLaughter()

Solution #1 # Solution #2
def moreLaughter(): def moreLaughter():
someLaughter() someLaughter()

someLaughter()
someLaughter()

someLaughter() someLaughter()
someLaughter()

def megalaughter():
moreLaughter() def megalaughter():
moreLaughter() morelLaughter()

morelLaughter()
morelLaughter()
morelLaughter()

Simple Functions 5: Defining and calling functions

Part 5a: Consider the following three functions:

def a(): def b(s): def c(s):

return 'a return s + 'b’ return s + 'c' + s

In the table below, fill in the results for each expression (write your answers as quoted strings).

Expression consisting only of calls to the String that is
three functions above the value of the
expression
b(c(a())) ‘acab’
c(b(b(a()))) "abbcabb’

Part 5b: You are given the following function definition for printCombinations:
def printCombinations(x, y, z):
plus = x + vy
times =y * z
print(plus, y, times)

In the box below, fill in the missing arguments to the printCombinations function calls so that printNums () prints
this output:

54 12
7 2 8

def printNums():
printCombinations(1, 4, 3)
printCombinations(5, 2, 4)

Part 5c: Define a function named pickNums that takes three integers and prints them right-justified with brackets to

their left as shown in these examples:

pickNums(3, 4, 15) prints
[1 3
[1 4

pickNums (9231, 2, 950) prints
[] 9231

[1 2

[]15 [1 950

Your definition must not include any conditionals or loops and must include three invocations of the following
optRow function (in addition to other function calls):

def optRow(num, indent):
return '[1 " + (" " * indent) + str(num)

Define your pickNums function in this box:

def pickNums(a, b, c):

sa = len(str(a))
sb = len(str(b))
sc = len(str(c))

maxLen = max(sa, sb, sc)

print(optRow(a, maxLen - sa))
print(optRow(b, maxLen - sb))
print(optRow(c, maxLen - sc))

Simple Functions 6: Defining and calling functions

Part 6a: Consider the following three functions:

def one(): def dbl(n): def incDbl(n):
return 1 return 2*n return 1 + (2*n)

[t turns out that any positive integer can be expressed using nested calls to just these three functions. In the table
below, fill in the missing parts.

Expression consisting only of calls to the Positive integer that is
three functions one, dbl, and incDbl the value of the
expression
incDbl(dbl(dbl(one()))) 9
dbl(incDbl(incDbl(one()))) 14

Part 6b: You are given the following function definition for printPatternLine:

def printPatternLine(charl, charlRepeat, char2, chunkWidth, chunkRepeat):
chunk = (charl*charlRepeat) + (char2*(chunkWidth - charilRepeat))
print(chunk*chunkRepeat)

In the box below, fill in the missing arguments to the printPatternLine function calls so that printPattern()

prints this output:

YooooYeiiiYauo,
77277 -- - - - 77277 - - - -

def printPattern():
printPatternLine('Y', 1, ".', 6, 3)

printPatternLine('zZ', 4, '-', 9, 2)

Part 6¢: In the box below, define a function named box3 that takes three strings and prints them left-justified inside a
rectangular box made of +, -, and | characters, as shown in these examples:

box3('apple', 'banana', 'pear') prints box3('two', 'roads', 'diverged') prints
+------ + +----- - - +
|apple | | two I
|bananal| |roads |
|pear | |diverged|
R + e +

Your definition must not include any conditionals and must include three invocations of the following
printBoxLine function (in addition to invocations of print):

def printBoxLine(word, numSpaces):
print('|"' + word + (' '*numSpaces) + '|")

Define your box3 function in this box:

def box3(sl, s2, s3):
maxLen = max(len(sl), len(s2), len(s3))

line = '"+' + '-' * maxLen + '+’
print(line)

printBoxLine(sl, maxLen-len(sl))
printBoxLine(s2, maxLen-len(s2))
printBoxLine(s3, maxLen-len(s3))

print(line)

Simple Functions 7: Defining and calling functions

Part 7a: Define a function rectangle that takes four parameters — two strings that are characters (a border
character and a filler character) and two integers (the width and the height of the rectangle) — and prints rectangles
like the ones shown below.

e Assume that each of the width and the height is 2 or greater.

e Recall that * can be used to repeat a string.

e For full credit, your function must use awhile loop (but substantial partial credit will be awarded if it uses

a correct for loop).

rectangle('#', '.', 5, 4) rectangle('@', '-', 6, 3) rectangle('&', '+', 4, 6)
HittiH 0EEEEE &&&&
#...# @----@ &++&
#...# 0000EE@ &++8&
HHHH4H# &++&
&++&
&&&&

Define your rectangle function in this box.

def rectangle(border, filler, width, height):
Top border
print(border * width)

Middle

middleReps = height - 2;

while middleReps > ©:
print(border + filler * (width - 2) + border)
middleReps -= 1

for loop version:

for _ in range(height - 2):

print(border + filler * (width - 2) + border)

Bottom border
print(border * width)

Part 7b: (You do not have to define rectangle correctly in part 3a in order to answer this part.) | ????????
In the box below, write an invocation of the rectangle function that will display the pattern ? ?
shown in the box to the left (assuming rectangle is correctly defined).))
? ?
22222222

Write your invocation of rectangle in this box:

rectangle('?', ' ', 8, 5)

Simple Functions 8: Defining and calling functions

Define a function buildSandwich that takes three parameters: bread (a string), filling (a string), and layers (an integer). Your
function should print lines of text to form a sandwich: the bread string appears on the top and bottom with the filling word in the
middle. The total number of lines should be the number of layers requested by the user. Your function should use the printFilling
helper function defined below to do this, and should NOT include any loops.

def printFilling(f,n):
for i in range(n):
print(f)

> buildSandwich('pita’', 'falafel’,3) > buildSandwich('toast', 'butter’,5) > buildSandwich('rye', "tuna',4)

pita toast rye

falafel butter tuna

pita butter tuna
butter rye
toast

Define your buildSandwich function in this box.

def buildSandwich(bread, filling, layers):
print(bread)
printFilling(filling, layers-2)
print(bread)

Booleans and Predicates

Booleans and Predicates 1: exactlyTwoEqual predicate

In the box below, define a function named exactlyTwoEqual that takes three numbers and returns True if exactly two
or them are equal and False otherwise. For example:

exactlyTwoEqual(6, 8, 6) = True exactlyTwoEqual(6, 8, 5) = False
exactlyTwoEqual(7, 7, 4) = True exactlyTwoEqual(5, 5, 5) = False
exactlyTwoEqual(8, 9, 9) = True

Solution 1
def exactlyTwoEqual(nl, n2, n3):

return ((nl == n2 and n2 != n3) # can also be written (nl1 == n2 != n3)
or (n1 == n3 and nl != n2) # can also be written (n2 != nl == n3)
or (n2 == n3 and nl1 != n2) # can also be written (n1 != n2 == n3)
)

Solution 2
def exactlyTwoEqual(nl, n2, n3):
return (((nl == n2) or (n2 == n3) or (nl == n3))
and not ((nl == n2) and (n2 == n3))
can also be written (nl1 == n2 == n3)

)

Booleans and Predicates 2: Age Predicates

In this problem you will define and use predicates, which are functions that return booleans. You are NOT allowed
to use if/else statements in any of your definitions. Instead, you should combine booleans with and/or/not.

Part 7a: Define a predicate isTeenager that has one parameter for age (an integer) and returns true when the age is
in the teen years (thirteen to nineteen). For example, isTeenager(13) and isTeenager(19) should both return
True, but isTeenager(12) and isTeenager(20) should both return False.

def isTeenager(age):
return age >= 13 and age <= 19
or: 13 <= age <= 19

Part 7b:: Assume that you have been given correct definitions for the following two predicates:
e isMinor(age): returns True if age <= 15, and False otherwise.
e canRetire(age): returns True if age >= 67, and False otherwise.

Define a predicate isWorkingAge that has one parameter for age and returns True if a person with that age is of
working age (between the ages of 16 and 66, inclusive) and False otherwise. Your definition must not contain any
numbers. Instead, it must call both the isMinor and canRetire functions to determine the answer. For example,
isWorkingAge(16) and isWorkingAge(66) should both return True, but isWorkingAge(15) and
isWorkingAge(67) should both return False.

def isWorkingAge(age):
return not(isMinor(age) or canRetire(age))
or: return not isMinor(age) and not canRetire(age)

Part 7c:: Define a predicate isNonWorkingAge that has one parameter for the age and returns True if a person with
that age is not of working age (as defined above) and False otherwise. Your definition must not contain any
numbers and must *not* call isWorkingAge. Instead must call both the isMinor and canRetire functions to
determine the answer. For example, isNonWorkingAge(15) and isNonWorkingAge(67) should both return
True, but isNonWorkingAge(16) and isNonWorkingAge(66) should both return False.

def isNonWorkingAge(age):
return isMinor(age) or canRetire(age)

Part 7d: Define a predicate isWorkingTeenager that has one parameter for the age and returns True if a person
with that age is a teenager who is of working age and False otherwise. Your definition must not contain any
numbers and must *not* call isMinor or canRetire. Instead it must call both isTeenager and isWorkingAge
(which you can assume are correct). For example, isWorkingTeenager(16) and isWorkingTeenager(19) should
both return True, but isWorkingTeenager(15) and isWorkingTeenager(20) should both return False.

def isWorkingTeenager(age):
return isTeenager(age) and isWorkingAge(age)

Booleans and Predicates 3: Understanding and Defining Predicates

Part 3a: The following mysteryPred predicate takes three boolean arguments and returns a boolean result.

def mysteryPred(booll, bool2, bool3):
return ((booll or bool2 or bool3)
and (not (booll and bool2 and bool3))

Fill in the following table to show the results of calls to the mysteryPred function:

Function call Result Function call Result
mysteryPred(False, False, False) False mysteryPred(True, False, True) True
mysteryPred(True, False, False) True mysteryPred(True, True, True) False

Part 3b: Define a predicate named isShortIn that takes two string arguments s1 and s2 and returns True only if all
three of the following conditions are satisfied:

1. slisasubstringins2

2. sl has at most three characters.

3. s2does not begin with the substring s1. (You can use string slicing to test this!)
For example:

Function call Result Function call Result
isShortIn('war', 'toward') True isShortIn('it', 'kitty') True
isShortIn('ward', 'toward') False isShortIn('kit', 'kitty') False
isShortIn('to', 'toward') False isShortIn('dog', 'kitty') False

For full credit, your definition should not use any conditionals (if statements).
Define your isShortln predicate in this box:

def isShortIn(sl, s2):
return ((sl1 in s2)
and len(sl) <= 3
and not sl == s2[:len(sl)])

Booleans and Predicates 4: Predicates

Part 4a: Define a predicate named outsideRange that takes three numbers (num, 10, and hi), where you may
assume that 1o is less than or equal to hi. It returns True when num is outside the range between 1o and hi
(inclusive) and False otherwise. For example:

outsideRange(1, 3, 5) = True outsideRange(2, 3, 5) = True outsideRange(3, 3, 5) = False
outsideRange(4, 3, 5) = False outsideRange(5, 3, 5) = False outsideRange(6, 3, 5) = True

Below, complete the two different function definitions for outsideRange so that they both behave correctly.

def outsideRange(num, lo, hi):

return num < lo or hi < num

def outsideRange(num, lo, hi):

return not (lo <= num and num <= hi)

Part 4b(i): The three most frequent letters in English texts are e, t, and a. In the box below, define a predicate named
isFrequentLetter that takes a single string argument. It returns True if the string is a lower-case or upper-case
version of one of these three letters, and False otherwise. For example:

isFrequentLetter('e') = True isFrequentLetter('T') = True isFrequentLetter('a') = True
isFrequentLetter('x') = False isFrequentLetter('B') = False isFrequentLetter('eta') = False

Recall that if s is a string, then s. lower () returns the lower-case version of the string.

In this definition, you must *not* use any conditional (if/else) statements

def isFrequentLetter(char):
low = char.lower()

return low == 'e' or low 't' or low == 'a
or: return len(char) == 1 and char.lower() in ‘'eta’

Part 4b(ii): In the box below, define a predicate named containsAllFrequentLetters that takes a single string
argument. It returns True if the string contains all of the letters e, t, and a in any case (lower or upper) and False
otherwise. For example:

containsAllFrequentLetters('cattle') = True containsAllFrequentlLetters('eagle') = False
containsAllFrequentLetters('TEAM') = True containsAllFrequentLetters('CS111') = False

In this definition, you must *not* use any conditional (if/else) statements

def containsAllFrequentLetters(word):
low = word.lower()

return 'e' in low and 't' in low and 'a’' in low

Booleans and Predicates 5: Predicates

In this problem you will define and use predicates, which are functions that return booleans. You are NOT allowed to use
if/else statements in any of your definitions. Instead, you should combine booleans with and/or/not.

Part 5a [2 pts]: Define a predicate isCurrentStudent that has one parameter for class year (an integer) and returns True when
the year is the graduation date of a current college student (2024-2027). For example, isCurrentStudent(2023) and
isCurrentStudent(2028) should both return False, but isCurrentStudent(2024) and isCurrentStudent(2027) should
both return True.

def isCurrentStudent(classYear):
return 2024 <= classYear <= 2027
or return 2024 <= classYear and classYear <= 2027

Part 5b [2 pts]: Define a predicate isRedClass that has one parameter for class year and returns True if that class year's color
is red and False otherwise. The class color of 2024 is red; class colors rotate on a 4 year cycle.

For example, isRedClass(2020), isRedClass(2024) and isRedClass(2028) should all return True, but
isRedClass(2025) should return False.

def isRedClass(classYear):
return classYear%4 == 0

Part 5c [4 pts]: Assume that you have been given correct definitions for the following two predicates:
e isPurpleClass(year): returns True if the class year was a purple class (2014, 2018, 2022, 2026 ...) and False
otherwise.
e isAlum(year):returns True if the graduation year is before 2024 and False otherwise.

Define a predicate isPurpleAlum that has one parameter for year and returns True if a person with that graduation year is an
alum from a purple class and False otherwise. Your definition must not contain any numbers. Instead, it must call both the
isPurpleClass and isAlum functions to determine the answer. For example, isPurpleAlum(2022) and
isPurpleAlum(2018) should both return True. isPurpleAlum(2026) and isPurpleAlum(2023) should both return False.

def isPurpleAlum(classYear):
return isPurpleClass(classYear) and isAlum(classYear)

Part 5d [2 pts]: Define a predicate isNotPurpleAlum that has one parameter for the class year and returns True if a person
with that class year is not of a purple class alum and False otherwise. Your definition must not contain any numbers and must
not call isPurpleAlum. It must call both the isAlumand isPurpleClass functions to determine the answer. For
example, isNotPurpleAlum(2026) and isNotPurpleAlum(2023) should both return True, but isNotPurpleAlum(2022)
and isNotPurpleAlum(2018) should both return False.

def isNotPurpleAlum(classYear):
return (not isPurpleClass(classYear)) or (not isAlum(classYear))

Conditionals

Conditionals 1: Understanding conditionals

In the table below, show what is printed for various calls of this analyze function:

def

analyze(word):

if len(word) <= 4:
print('S")

else:
print('L")

if isVowel(word[0]):
print('ve')
if not isVowel(word[1]):

print('C1')

elif isVowel(word[1]):
print('V1")

else:
print('Col'")

if isVowel(word[-1]): # last letter of word

print('VvU')
if not isVowel(word[-2]): # next to last letter of word
print('CP")
def isVowel(char):
return len(char) == 1 and char.lower() in 'aeiou'
Function call Printed Output Function call Printed Output
analyze('cat') S analyze('spree') L
V1 co1l
VU
analyze('oats') S analyze('apple') L
Vo Vo
C1
VU
CpP

Conditionals 2: Conditionals with whichName
Define a function named whichName, which takes two parameters that represent potential cat names and returns
which one is best. The function whichName must return the best cat name indicated as the string '#1' or '#2' given
the following rules:
e Names with titles ("Mr. Biggles") are the best. Any string that includes a period contains a title.
e Ifboth names have a title or neither name has a title, the longer name is best.
e If the length of the names are the same, choose the name that is alphabetically last.
Examples:
In[]: whichName("Ms. Piggy","Whiskers")
Out[]: '#1'

In[]: whichName("Fancy Feast","Giganotosaurus")
Out[]: '"#2'

In[]: whichName("Tuna","Foxy")
Out[]: "#1°'

In[]: whichName("Ms. Piggy","Ms. Puffy")
Out[]: '#2'

You must not use loops for this problem. Hint: < and > can be used to compare strings.

Define your whichName function in this box

def whichName(namel, name2):
First, choose a title over a non-title:

if '." in namel and '.' not in name2:
return '#1'
elif '.' not in namel and ' in name2:

return '#2'

Get here only 1if both names are titles or neither 1is a title.
In this case find the Llonger one.
elif len(namel) > len(name2):
return '#1'
elif len(namel) < len(name2):
return '#2'

Get here only 1if there's no answer yet and both names
have the same length. In this case return the one that's
alphabetically Llast.
elif namel > name2:
return '#1'
else:
return '#2'

Conditionals 3: Printing Time (Function with Conditionals & Booleans)

In the box at the bottom of this problem, define a function printTime that takes three arguments:
1. day: a day of the week, which is one of the strings 'Sun', 'Mon', 'Tue', 'Wed’', 'Thu', 'Fri', 'Sat’
2. hour: an integer between 1 and 12, inclusive
3. ampm: one of the strings'AM" or 'PM'

printTime prints exactly one word as specified below. It does not return anything.
e For a weekend day (Sat or Sun), it prints weekend.
e For a weekday (Mon through Fri):
o It prints evening from 5PM up to and including 11PM
o It prints sleep from midnight (12AM) up to and including 8AM.
Note that midnight is considered the beginning of a new day, not the end of a previous day.
o It prints class for all other times — i.e., from 9AM up to and including 4PM.
This range includes noon (12PM).

Here are some examples:

Function call Printed Output Function call Printed Output
printTime('Sat’',12, 'AM") weekend printTime('Mon',12,'AM") sleep
printTime('Sat',10,'AM") weekend printTime('Wed',3,'AM") sleep
printTime('Sun',11,'PM") weekend printTime('Fri',8,'AM") sleep
printTime('Mon',5,"'PM") evening printTime('Tue',9,'AM") class
printTime('Thu',8,'PM") evening printTime('Wed',12,'PM") class
printTime('Fri’',11,'PM") evening printTime('Thu',4,'PM") class

In your definition you do not need to handle cases where an input is an unexpected value (e.g., an invalid day or ampm
string or an hour that is not an integer in the range 1 to 12 inclusive).

(Please keep all your code within the box)

def printTime(day, hour, ampm):

if day == "Sat" or day == "Sun":
print("weekend")
elif ampm == "PM" and 5 <= hour and hour <= 11:

Alternatively can write: 5 <= hour <= 11:
print("evening")
elif ampm == "AM" and (hour == 12 or hour <= 8): # 12AM is special case
print("sleep")
else:
Although 1it's not needed (since ELSE catches everything else)
we could use this explicit test instead for this case:
((ampm = "AM" and 9 <= hour <= 11)
or (ampm = "PM" and (hour == 12 or hour <= 4)))
print("class")

Conditionals 4: 1mnop
Define a function named 1mnop that takes a single letter and returns an integer according to these rules:

° If the letter is one of the five letters in 1, m, n, o, or p (either lower or upper case) then 5 is returned
° If the letter comes before the 1 in the alphabet (letter “el”, not the digit 1!) in the alphabet, 1 is returned
° If the letter comes after p in the alphabet, then 3 is returned

Imnop should treat upper and lower case letters the same way. You may assume the input is a string consisting of a
single alphabetic letter; you should not handle input strings whose length is not 1, nor nonalphabetic characters like
digits, punctuation or spaces. Below are some sample invocations. Recall that characters can be compared
alphabetically using < and >, e.g. ('a' < 'b') isTrue because 'a' comes before 'b' in the alphabet.

In[]: lmnop('a') Define your Lmnop function in this box
Oﬁﬁigimmpfp') def lmnop(letter):
out[]: 5 lowerLetter = letter.lower()
In[]: lmnop('L") if lowerLetter in 'lmnop':
out[]: 5 return 5
OE%};;WmP(T) elif lowerLetter < '1': # this is the letter 1
In[]: Imnop('C') return 1 # this is the number 1
out[]: 1 else: # letter comes after 'p'
return 3

Conditionals 5: Implementing a program based on a flow chart

Define a function called stringExplorer that implements the flow chart shown to the right. Your function should have one
parameter, s.

Define your stringExplorer function in this box:

def stringExplorer(s):
if s[0] == 'A’ @
print('Apple') yes no

if len(s) < 3:

pr int (S) print("Apple") return s
else:
print('big") o>
return len(s) 1 s ~— — l
else:
return s print(s) print("big!")

return len(s)

Understanding while Loops

Understanding while Loops 1: mystery while loop

Study the mystery function below, which uses the provided isVowel function.

def isVowel(char):
return len(char) == 1 and char.lower() in 'aeiou'’

def mystery(word, bound):
"""Docstring withheld."""

result =
i=20

while len(result) < bound and i < len(word):
if (not isVowel(word[i])) and word[i] not in result:
result += word[i]
i+=1
if result == "":
return 'No result’

return result

Predict the outcome of the following invocations of the mystery function:

Function call Value returned by function call
mystery('pineapple’, 1) 'p'
mystery('pineapple', 4) "'pnl'
mystery('guava', 2) 'gv'
mystery('oooooh', 2) "h'

mystery('ooooo', 2) "No result’

Understanding while Loops 2: While Loops with user input

Consider this askForFruit function: Select all the valid possible outcomes consistent with

executing askForFruit()

def askForFruit():
name = "'
while len(name) <= 6:
name = input('Fruit? ')
print('Done")

Choice A
Fruit? Apple
Fruit? Strawberry
Done

X cChoice C
Fruit? Apple
Done

X cChoice E
Fruit? Watermelon
Fruit? Apple
Fruit? Grapes
Done

Choice B
Fruit? LightBlue
Done

X choice D
Fruit? Banana
Fruit? Fofana
Done

Choice F
Fruit? Apple
Fruit? Orange
Fruit? Cantaloupe
Done

Understanding while Loops 3: Using an iteration table to understand a loop

You are given this definition of a mysteryLines function.

def mysterylLines(c, h):

i=1
while i < h + 1:
s=h-1
if i ==1o0or i ==
m=2%1i-1
line = ('-" * s) + (¢ *m) + ('-' * s)
else:
m=2%1i-3
line = ('"-" *s) + c+ ('-" *m) +c+ ('-" *5s)
In the 1iteration table, show the values of state variables at this point
print(line)
i+=1

For the invocation mysteryLines('*', 4),in each row of the iteration table below, show the values of the state
variables in each execution of the body of the for loop right before the call to print.
e The iteration table has more rows than needed, so at least one will be blank
e Unlike some other iteration tables you have seen in class. this iteration table should not have any row
containing the values of state variables before the loop is entered.

Fill in this iteration table for mystery('*', 4)

i h S m line

1 | 4| 3|1 L

4 4 0 7 Pokkkkkkk!

Understanding while Loops 4: Tracing loops and conditionals

Below is a function doSomething that contains a while loop and conditional statements. Trace the execution of
invoking the doSomething function with different arguments by showing what is printed and what is returned for
each invocation.

def doSomething(n): >>> doSomething(10)

n 1s an *integer*
answer = "'
answer 1s a *string*
while n > 2:
answer = answer + str(n)
if n%2 == 0:
print(n, 'E")
elif n % 9 ==
print(n, 'T")
early return
return answer

if n == 10:
print(n, 'R")
elif n >= 7:
print(n, 'H")
if n <= 12:
print(n, 'L")
else:
print(n, 'M")
else:
print(n, 'S")
update n in Lloop:
n=n-4
return result after Loop
if len(answer) >= 3:
return '#' + answer
else:
return

+ answer

Show what is printed:

10 E
10 R
6 E
6 S

Show what is returned:

'#106"

>>> doSomething(13)

Show what is printed:

13 H
13 M
9T

Show what is returned:

'139"

>>> doSomething(7)

Show what is printed:

7 H
7 L
35S

Show what is returned:

"173"

Understanding while Loops 5: Tracing loops and conditionals

Below is a function process that contains a while loop and conditional statements. Trace the execution of invoking
the process function with different arguments by showing what is printed and what is returned for each invocation.

def process(n):
n 1s an *integer*
answer = "'
answer 1s a *string*
while n > O:

answer = answer + str(n)

if n%2 == 0:
print(n, 'E")
if n > 9:
print(n, 'G")
elif n ==

print(n, 'R")
early return
return answer
elif n >= 5:
print(n, 'H")
if n <= 7:
print(n, ‘L")
else:
print(n, 'M")
else:
print(n, 'S")
update n in Lloop:
n=n-25
return result after Loop
if len(answer) >= 3:
return '#' + answer
else:
return

+ answer

>>> process(10)

Show what is printed:

10 E
10 G
5 H
51L

Show what is returned:

'#105°

>>> process(9)

Show what is printed:

9 H

b O
nm2=x

Show what is returned:

*194:

>>> process(8)

Show what is printed:

8 E
8 R

Show what is returned:

|8|

Understanding while Loops 6: Flow diagrams, iteration tables, and while loops

This problem involves a function named halvesAndDecs, which has a single integer parameter n and returns a string.
The function counts the number of halves (n//2 operations) and decs (n-1 operations) performed in a loop within the
body of the function. (“dec” is short for “decrement”, which means to subtract 1 from a number.)

The body of the halvesAndDecs function is expressed by this flow diagram:

True

‘return str(n) + ' is not positive’

n

False

y

4

‘return str(halves) + '

halves and ' + str(decs) + ' decs' ‘

Part 6a [10 pts]: For the function invocation halvesAndDecs(10) , fill in the missing values in the rows of the

iteration table below. Each row shows the values of the variables n, halves, and decs right before the loop condition
n > 0Oistested. The iteration table has more rows than needed, so at least one will be blank.

Number of times
loop body has
been executed

halves

decs

0

10

O | R (N|P,~|WV

W W IN|FR | RO

N | R R[R|lo|®

Part 6b [8 pts]: In the box below, complete the body of the halvesAndDecs function in Python so that it correctly
expresses the meaning of the flow diagram (copied below). Make sure that your indentation is clear!

def halvesAndDecs(n):
if n <= 0O:
return str(n) + ' is not positive'
else:
halves = ©
decs = 0
while n > O:
if n%2 == 0:

halves += 1

n=n//2
else:

decs += 1

n =n-1

return (str(halves) + ' halves and '

+ str(decs) + ' decs')

Here is a copy of the flow diagram for reference:

True /l\ False

] ‘

return str(n) + ' is not positive’ ‘ ‘retur‘n str(halves) + ' halves and ' + str(decs) + ' decs'

Understanding for Loops

Understanding for loops 1: Tracing conditionals

Given the function calcPoints below, show what is (1) returned and (2) printed by the following invocations.

Assume that Imnop works correctly, as described above in Conditionals 4: 1mnop.

def calcPoints(word):

points = @ In[]: calcPoints('bye') Show what is printed:
for char in word: Out[]: Show whatisreturned: | b 1
if char == 'y': 27 y 13
points = 10 # =, not += 27
elif char in 'aeiou': €
points = points * 2
elif char in '©123456789':
early return In[]: calcPoints('iou") Show what is printed:
return points + int(char) Out[]: Show whatisreturned: | i 1
points += 1lmnop(char) 17 o7
print(char, points) u 17
return points
In[]: calcPoints('R450t"') | Show what is printed:
Out[]: Show whatis returned: | R 3

7

Understanding for loop 2: Conditionals in loops in getScore

This problem involves the following getScore function:

def getScore(word):
score = 0
for char in word:
if char.isdigit():
score = score + int(char)
print(char, 'returnl', score)
return score
elif char == 't':
score = 10 # note: this uses =, not +=
elif char in 'aeiou':
score score * 2
else:
score = score + 1
print(char, "'ifl', score)
if char < 'i': # compare by dictionary order
if char > 'c': # compare by dictionary order
score += 5
score += 3
print(char, 'if2', score)
print(char, 'return2', score)
return score

For each of the following calls of getScore, show the output of all the print statements and what is returned.

Call

What is printed

What is returned

getScore("show")

=S = =00 >TSS uVLWNM

if1
if2
if1
if2
if1
if2
if1
if2

1
1
2
10
20
20
21
21

return2 21

21

getScore("pots")

n n n -+ 0 O T T

if1
if2
if1
if2
if1
if2
if1
if2

1
1
2
2

10
10
11
11

return2 11

11

getScore("cat32")

Wttt v 00

if1
if2
if1
if2
if1
if2

returnl 13

13

Understanding for loops 3: Tracing for loops and conditionals
Given the function wordScore, show what is (1) returned and (2) printed by the following function calls.
If nothing is printed, write “nothing.”

The predicate isVowel returns True for vowels (any letter in the string "aAeEiloOuU") and False otherwise.

def wordScore(word):

In[]: wordScore('et&c") Show what is printed:
result = 0 Out[]: Show whatisreturned: |+ e
if word[1] == word[@]: 2 + t
result += 1
for char in word: ++ &
if char in "1?": o C
result += 100 Finished!

return result
if isVowel(char):

print('+',char)

result += 2
else: In[]: wordScore('eek") Show what is printed:

print('++', char) Out[]: Show whatisreturned: | 4+ e

print('Finished!") > + €
return result ++ k
Finished!

In[]: wordScore('z?y!") Show what is printed:
Out[]: Show whatisreturned: | ++ z

100

Understanding for loops 4: Tracing for loops and conditionals
You are given the function string_inspector that contains conditional statements. Trace the execution of invoking
this function with different arguments by showing what is printed and what is returned for each invocation.

e char.upper() returns the uppercase version of char if it'’s a letter; otherwise it just returns char.

e char.isupper() returns True if char is an uppercase letter and False otherwise

def string_inspector(s): >>> string_inspector("Abba")
result = '§’
for char in s: Show what is printed: Show what is returned:
result += char.upper() P "$ABBA!’
W
if char.isupper(): T
print("P") T
R
if char == 'a':
if 'd' in s:
print("Q")
else:
print("R") >>> string_inspector("zemor")
elif char == 'b':
if s[-1] == 'd': Show what is printed: S:how w'hat is returned:
print("s") W $ZE
else: U
print("T")
elif char in 'cdef':
print("U")
if s[@0] == 'z':
return result
else:
print("W") >>> string_inspector("bad")
1f 1(:‘2‘Elslr)‘n>:ejtzjlt b Show what is printed: Show what is returned:
S "$BAD* '
else:
return result + "*" 8

Understanding for Loops 5: Tracking variables

This problem involves the following function definition that uses the tracking variable prev to keep track of the
previous letter in the word while the for loop is executed. You may assume that isVowel correctly returns True if its
string argument is a lower or upper case version of the letters a, e, 0, i, u, and is otherwise False.

def process(word): # Line 1
newWord = "' # Line 2
prev = "' # Line 3

for letter in word: # line 4
if isVowel(letter) or isVowel(prev): # Lline 5
newWord += letter # Line 6
print('prev’, prev, 'letter’', lLetter, 'newWord', newWord) # Lline 7
prev = letter # Line 8
return newWord # Line 9

Part a: [6 pts] Suppose the debugging print on line 7 is uncommented. Fill in the underlined parts in the following
printed output to show what is printed when process('purple’) is called. if the empty string is printed, leave the
underlined part blank.

prev __ letter p___ newWord
prev p___ letter u___ newWord u
prev u___ letter r____ newWord ur
prev r___ letter p___ newWord ur
prev p__ letter 1 newWord ur
prev 1 letter e newWord ure

Part b: [3 pts] Show the result returned by the following three calls to process. Assume that line 7 is commented
out, so that nothing is printed. Write the result value after the arrow =, remembering to quote all string values.

process('length') = 'en’ process('odious') = 'odious’ process('bcd') =

Understanding for loops 6: Debugging a loop

This problem involves a function hasThreeConsecutiveVowels that should return True when called on a string
that contains at least three consecutive vowels and False for any other string. For example, it should return True
for strings like "bureau”, "precious" , and "queue" and False for strings like "cat", "nation", and "evoke".

Below is a buggy version of hasThreeConsecutiveVowels that does not work correctly.

def buggyHasThreeConsecutiveVowels(string): line 1

#
counter = 0 # line 2
for letter in string: # line 3
if isVowel(letter): # line 4
counter += 1 # line 5
if counter == # line 6
return True # line 7
return False # line 8

Assume that the function isVowel correctly returns True when its single argument is a vowel (a single letter in
aeiouAEIOU) and False otherwise.

Part 3a Are there any counterexample strings for which buggyHasThreeConsecutiveVowels returns True when
hasThreeConsecutiveVowels returns False?
e [f yes, give an example of such a counterexample string, and explain in English the structure of such
counterexample strings.
e If no, explain why such counterexample strings are not possible.=

Yes. buggyHasThreeConsecutiveVowels returns True for any string that contains at least
three vowels, even when there are not three consecutive vowels. E.g. 'nation', 'abei’,
"hahaha', "soup du jour'

Part 3b Are there any counterexample strings for which buggyHasThreeConsecutiveVowels returns False when
hasThreeConsecutiveVowels returns True?

e |[f yes, give an example of such a counterexample string, and explain in English the structure of such
counterexample strings.
e If no, explain why such counterexample strings are not possible.

No. buggyHasThreeConsecutiveVowels returns True for every string that contains at least
three vowels, so it will never return False for any string that has three consecutive vowels.

Part 3c It is possible to add code between two consecutive lines of buggyHasThreeConsecutiveVowels so that
the modified function behaves like the correct hasThreeConsecutiveVowels. Specify the two lines between
which the new code should be added and what the new code is.

Between lines 7 and 8, add the code:

else: # matches the outer 1if, not the inner 1if
counter = 0

Defining functions with loops

Defining functions with loops 1: Hiding characters

Define a function named hide that takes a string and replaces certain characters with a ' *

. The hide function will

take two parameters: (1) a string and (2) a string of characters such that if any of them occur in the first string

parameter, they are to be hidden (replaced) by a ' *'. For full credit, hide should contain one for loop.
Below are some sample invocations.
Invocation Result
hide('apple', 'p') 'a**le'’
hide('apple', 'pa') Tkkk]a!
hide('coffee', 'oe') ekt & hokul
hide('coffee', 'xyz') 'coffee’
hide('winter is coming', 'coming') ‘w¥¥ter *g Fikdkxx!

Define your hide function in the box below:

def hide(string, charsToHide):
result = "'
for char in string:
if char in charsToHide:
result += '*'
else:
result += char
return result

Defining functions with loops 2: Duplicating odd characters

Define a function duplicateOddChars that takes a string as its single argument and returns a string containing all
the characters of the given string in order except that each character at an odd index is duplicated.
e Recall that indexing starts at 0.

e For full credit, your function must use a while loop (but substantial partial credit will be awarded if it uses
a correct for loop).

Below are shown some examples of invoking the function.

>>> duplicateOddChars('Omaha, NE') >>> duplicateOddChars('I")
'Ommahha,, NNE' "I’

>>> duplicateOddChars('ba') >>> duplicateOddChars('")
Ibaal L]

>>> duplicateOddChars('yes!")
'yees!!'

Define your duplicateOddChars function in this box.

while Loop solution
def duplicateOddChars(word):
result = "'
index = ©
while index < len(word):
if index % 2 == 1:
result += word[index] * 2
else:
result += word[index]
index += 1
return result

for Loop solution
def duplicateOddChars(word):
result = "'
for index in range(len(word)):
if index % 2 == 1:
result += word[index] * 2
else:
result += word[index]
return result

Defining functions with loops 3: Shouting a string

Define a function shout that takes a string as its single argument and returns a version of the string in which
e all alphabetic characters and spaces are kept but all other non-space non-alphabetic characters have been

removed;

e all alphabetic characters have been capitalized.

Below are some sample invocations of shout:

>>> shout('{one}, (two), [three]")
"ONE TWO THREE'

>>> shout('!@Foo#$BAR% "baz&*")
"FOOBARBAZ'

>>> shout('You say "Goodbye!", and I say "Hello!"')
'YOU SAY GOODBYE AND I SAY HELLO'

>>> shout('")

In your shout definition, you may use either a for loop or a while loop, whichever you find easier.
If s is a string, then s.isalpha() returns True if all the characters in s are alphabetic, and False otherwise.
You can test for a space character using ==.

If s is a string, then s.upper() returns a version of s in which all alphabetic characters are capitalized.

Define your shout function in this box. Make sure that your indentation is clear!

while loop version

def shout(text):
result = "'
index = ©

while index < len(text):

char = text[index]
or char.isalpha():

if char ==

result += char.upper()

index += 1
return result

for loop version
def shout(text):
result = '’
for char in text:
if char == "' '

or char.isalpha():

result += char.upper()

return result

Defining functions with loops 4: Swapping case in a string

Define a function swapCase that takes a string as its single argument and returns a version of the string in which
e all alphabetic characters and spaces are kept, but all other non-space non-alphabetic characters have been
removed;
e all lower-case alphabetic characters have been upper-cased and all upper-cased alphabetic characters have
been lower-cased. (An upper-case letter is just a capital letter; a lower-case letter is not a capital.)
Below are some sample invocations of swapCase:

>>> swapCase('lower Capitalized UPPER')
"LOWER cAPITALIZED upper'

>>> swapCase('I am NOT shouting but TALKING!'")
i AM not SHOUTING BUT talking'

>>> swapCase('Happy Birthday! You're the *BEST*') =>
"hAPPY bIRTHDAY yOURE THE best’

e In your swapCase definition, you should use a for loop to get full credit
e Ifsisastring, then
o s.isalpha() returns True if all the characters in s are alphabetic, and False otherwise.
o s.islower() returns True if all the alphabetic characters in s are lower case, and False otherwise.
(s.isupper() issimilar for upper case, but it's not necessary in this problem.)
o s.lower() returns a version of s in which all letters are lower-cased.
o s.upper() returns a version of s in which all letters are upper-cased.
e You can test for a space character using ==.

Define your swapCase function in this box. Make sure that your indentation is clear!

def swapCase(string):
result = '’
for char in string:
if char.isalpha():
if char.islower():
result += char.upper()
else:
result += char.lower()
elif char == ' "':
result += char
return result

Defining functions with loops 5: Laughing strings

Part 8a: Define a function named laughStretch with four parameters — two strings (a word and a filler character)
and two integers (maxReps and length) — that prints stretched words like the ones shown below. The function
repeats the word until it reaches the target length or runs out of allowed repetitions, and then fills any leftover space

with the filler character.
length is the minimum length of the final string

Recall that * can be used to repeat a string

a correct for loop).
Below are shown some examples of invoking the function.

maxReps is the maximum number of times that word can be repeated in the final string
You can assume that the filler argument will contain a single character.

For full credit, your function must use a while loop (but substantial partial credit will be awarded if it uses

>>> laughStretch("ha","~",10,6)
hahaha

>>> laughStretch("ha","~",2,6)
haha~~

>>> laughStretch("teehee","!",1,10)
teehee!!!!

>>> laughStretch("ha","w",2,7)
hahawww

>>> laughStretch("ha","w",4,7)
hahahaha

Define your laughStretch function in this box.

while loop solution

resultSoFar =

resultSoFar += word
maxReps -= 1

if charsNeeded > 0:
print resultSoFar
for loop solution

resultSoFar =
for _ in range(maxReps):
resultSoFar += word
if len(resultSoFar) >= targetLength:
break

if charsNeeded > 0:

print resultSoFarv

resultSoFar += fillerChar*charsNeeded

resultSoFar += fillerChar*charsNeeded

def laughStretchwhile(word, fillerChar, maxReps, targetLength):

while (len(resultSoFar) < targetLength) and maxReps > 0:

charsNeeded = targetLength-len(resultSoFar)

def laughStretchFor(word, fillerChar, maxReps, targetLength):

charsNeeded = targetLength-len(resultSoFar)

Part 8b: (You do not have to define 1laughStretch correctly in part 4a in order to answer this part.) In the box below, write an

invocation of the laughStretch function that will display the pattern below if laughStretch is correctly defined

teehee!teehee!!!

Write your invocation of 1aughStretch in this box:

laughStretch('teehee!*', '!', 2, 16)

Defining functions with loops 6: Converting a tracking variable to an index loop

This problem is related to the one in Understanding for Loops 5: Tracking variables. It involves the following function
definition that uses the tracking variable prev to keep track of the previous letter in the word while the for loop is
executed. You may assume that isVowel correctly returns True if its string argument is a lower or upper case version
of the letters a, e, 0, i, u, and is otherwise False.

def process(word): # Line 1
newWord = "' # Lline 2
prev = "' # Line 3

for letter in word: # line 4
if isVowel(letter) or isVowel(prev): # line 5
newWord += letter # Lline 6
print('prev', prev, 'letter', letter, 'newWord', newWord) # Line 7
prev = letter # Line 8
return newhord # Line 9

Below, show how to define an alternative version of process that uses an index loop expressed with a while loop
rather than a tracking variable expressed with a for loop to handle accessing the previous letter. The definition has
been started for you; you must complete it. You should *not* include the commented debugging print from line 7 in
your definition.

def process(word):
"""version of process with an index loop using while
index = ©
newhWord =
while index < len(word)
letter = word[index]
if isVowel(letter) or (index !=0 and isVowel(word[index-1])):
newWord += letter

return newlWord

mimn

Defining functions with loops 7: replaceVowelSequences [tests writing a complex loop]

Because vowels are more likely to change over time than consonants, linguists sometimes describe words in terms

of just their consonants, putting in a star (asterisk) for a sequence of consecutive vowels. So 'dog"' would be
written 'd*g"' and 'seafood' would be written as 's*f*d".

In this problem you will write a function replaceVowelSequences that takes a word and returns a string that
replaces each sequence of vowels in the word with a single asterisk. Here are iteration tables that show the

function working on some examples:

Iteration Tables

Example 1: 'dog" Example 2: 'seafood’
char result inVowelSequence char result inVowelSequence
v False v False
d 'd’ False S 's! False
o tax! True e 's*! True
g 'd*g' False a 's*! True
f 's*f! False
o 's*Ex! True
¢} 's*EX! True
d 's*f*xd!’ False

Define replaceVowelSequences in the box below using a for loop with the state variables shown in the above
iteration tables. Assume there is a correct isVowel predicate that you can use without defining it.

SOLUTION 1: A completely correct solution has the following properties:

* It uses a for loop with three state variables having exactly the names

char, result, and inVowelSequence, as shown in the iteration tables.

* The code in the for Lloop body expresses the update rules for the result

result and inVowelSequence state variables that are implied by the iteration tables.
def replaceVowelSequences(word):

result = '' # initialize state variable for accumulating result string
inVowelSequence = False # 1initialize state variable that determines when to add '*'
for char in word: # iterate over each character in word, using char as iteration variable
if isVowel(char):
if not inVowelSequence: # add '*' only when previous char was not vowel
result += '*'
inVowelSequence = True # For next time, indicate previous char *was* a vowel
else: # use else rather than testing “not isVowel (char)"
result += char # always add a nonvowel to result
inVowelSequence = False # For next time, indicate previous char was *not* a vowel
return result

SOLUTION 2:0bserve that inVowelSequence needn’t actually be a state variable, since the value
of inVowelSequence 1is the result of the expression result != '' and result[-1] == '*'
Based on this observation, a simplified version of the function definition 1is:
def replaceVowelSequences(word):
result = '' # initialize state variable for accumulating result string
for char in word: # iterate over each character in word, using char as iteration variable
if isVowel(char):
if not (result != '' and result[-1] == '*') # add '*' only when previous char was not
vowel
1f can be simplified to if (result == '' or result[-1] != "*')
result += "*'
else: # use else rather than testing “not isVowel (char)"
result += char # always add a nonvowel to result
return result

Defining functions with loops 8: firstDigits [tests writing a complex loop]

Define a function named firstDigits that takes a string containing only spaces and digits and returns a string
containing the first digits from each group of digits. firstDigits has a single string parameter and returns a string.

If the string passed into firstDigits is not empty, it will always begin with a digit and end with a digit. If the string is
empty, the function should return the string "NOTHING!" You can assume the groups of digits are separated by single
spaces.

For full credit, firstDigits must contain exactly one while loop or for loop, and cannot use .split().
Here are some sample function calls:

Invocation Result
firstDigits('19 500 0') '150'
firstDigits('") "NOTHING!'
firstDigits('34 34 34 34') '3333"
firstDigits('1 2 3') '123"

Write your firstDigits function in the box below:

def firstDigitsl(string):
"' Version of firstDigits with value loop and tracking variable.
if string == '":
return 'NOTHING!'
prevSpace = True
digits = "'
for char in string:
if char == ' ":
prevSpace = True;
else:
if prevSpace:
digits += char
prevSpace = False;
return digits

def firstDigits2(string):
"'' Version of firstDigits with while-based index loop.
if string == "':
return 'NOTHING!'
digits = string[@] # guaranteed to be a digit
index = 0
while index < len(string) # don’t process last index of string!
if string[index] == ' ' and string[index+1] !=
By assumption, string guaranteed not to *end* in a space,
so string[index+1] will never be out-of-bounds.
Alternatively, continuation condition can be: index < len(string)-1
digits += string[index+1]
return digits

	CS111 Fall 2025 Solutions for Midterm 1 Review Problems
	
	Python Basics
	Python Basics 1: Python Calisthenics
	
	Python Basics 2: Python basics
	
	Python Basics 3: Python built-in functions
	Python Basics 4: Python built-in functions
	Python Basics 5: Python built-in functions

	Simple Functions
	Simple Functions 1: Defining a repeatIt function
	Simple Functions 2: Functions with return and print
	Simple Functions 3: Custom Functions
	Simple Functions 4: Custom Functions
	
	Simple Functions 5: Defining and calling functions
	
	Simple Functions 6: Defining and calling functions
	
	Simple Functions 7: Defining and calling functions
	Simple Functions 8: Defining and calling functions

	Booleans and Predicates
	Booleans and Predicates 1: exactlyTwoEqual predicate
	Booleans and Predicates 2: Age Predicates
	Booleans and Predicates 3: Understanding and Defining Predicates
	Booleans and Predicates 4: Predicates
	Booleans and Predicates 5: Predicates

	Conditionals
	Conditionals 1: Understanding conditionals
	
	Conditionals 2: Conditionals with whichName
	
	Conditionals 3: Printing Time (Function with Conditionals & Booleans)
	Conditionals 4: lmnop
	Conditionals 5: Implementing a program based on a flow chart

	Understanding while Loops
	Understanding while Loops 1: mystery while loop
	
	
	Understanding while Loops 2: While Loops with user input
	
	
	Understanding while Loops 3: Using an iteration table to understand a loop
	Understanding while Loops 4: Tracing loops and conditionals

	
	
	Understanding while Loops 5: Tracing loops and conditionals

	
	Understanding while Loops 6: Flow diagrams, iteration tables, and while loops

	
	Understanding for Loops
	Understanding for loops 1: Tracing conditionals
	Understanding for loop 2: Conditionals in loops in getScore
	
	Understanding for loops 3: Tracing for loops and conditionals
	
	
	
	Understanding for loops 4: Tracing for loops and conditionals
	
	Understanding for Loops 5: Tracking variables
	
	Understanding for loops 6: Debugging a loop

	Defining functions with loops
	
	Defining functions with loops 2: Duplicating odd characters
	Defining functions with loops 3: Shouting a string
	Defining functions with loops 4: Swapping case in a string
	Defining functions with loops 5: Laughing strings
	Defining functions with loops 6: Converting a tracking variable to an index loop
	
	Defining functions with loops 7: replaceVowelSequences [tests writing a complex loop]
	Defining functions with loops 8: firstDigits [tests writing a complex loop]
	

