

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE HANDOUT

PART-A

: Mr.Michael Sadgun Rao Kona Name of Course Instructor

Course Name & Code : Data Mining using Python Lab & 20CS58

L-T-P Structure : 0-0-3 Credits: 3

Program/Sem/Sec : B.Tech., IT., IV-Sem., B section A.Y : 2021-22

PRE-REQUISITE: Python Programming

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of this lab is to Practical exposure on implementation of well-known data mining algorithms and Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Apply preprocessing techniques on real world datasets.(Apply-L3)
CO 2	Apply apriori algorithm to generate frequent itemsets.(Apply L3)
CO 3	Apply Classification and clustering algorithms on different datasets.(Apply L3)
CO 4	Improve individual / teamwork skills, communication & report writing skills with
	ethical values.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO 1	P O2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	-	-	2	1	1	1	1	1	1	1	1	1	3	1	
CO2	-	-	-	2	1	-	-	-	-	-	-	-	-	3	1
CO3	-	-	-	2	1	ı	ı	ı	ı	1	ı	ı	-	3	2
CO4	-	_	1	ı	ı	ı	ı	2	2	2	ı	ı	ı	ı	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

Web Resources:

- 1. https://analyticsindiamag.com/data-pre-processing-in-python/
- 2. https://towardsdatascience.com/decision-tree-in-python-b433ae57fb93
- 3. https://towardsdatascience.com/calculate-similarity-the-most-relevant-metrics-in-a-nutshell-9a43564 f533e
- 4. https://www.springboard.com/blog/data-mining-python-tutorial/
- 5. https://medium.com/analytics-vidhya/association-analysis-in-python-2b955d0180c
- 6. https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn
- 7. https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
- 8. https://towardsdatascience.com/dbscan-algorithm-complete-guide-and-application-with-python-sciki t-learnd690cbae4c5d

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S NO	Date (Tentative)	Actual Date	Topics to be covered	Teaching Learning Methods	HOD Signature
1	08.03.2022, 15.03.2022,		Demonstrate the following data preprocessing tasks using python libraries.		
	22.03.2022		a) Loading the dataset		
	22.03.2022		b) Identifying the dependent and	TLM4	
			independent variables.		
			c) Dealing with missing data		
2	29.03.2022,		Demonstrate the following data		
	05.04.2022		preprocessing tasks using python libraries.		
			a) Dealing with categorical data.		
			b) Scaling the features.	TLM4	
			c) Splitting dataset into Training and Testing		
			Sets		
3	12.04.2022		Demonstrate the following Similarity and		
			Dissimilarity Measures using python		
			a) Pearson's Correlation		
			b) Cosine Similarity	TLM4	
			c) Jaccard Similarity		
			d) Euclidean Distance		
			e) Manhattan Distance		
4	19.04.2022		Build a model using a linear regression	TI MA	
			algorithm on any dataset.	TLM4	
		M	id - I Examinations 25.04.2022 to 30.04.2022		
5	03.05.2022		Build a classification model using Decision	TLM4	
			Tree algorithm on iris dataset	1121/114	
6	10.05.2022		Apply Naïve Bayes Classification algorithm	TV 144	
			on any dataset	TLM4	
7	17.05.2022		Generate frequent item sets using Apriori		
			Algorithm in python and also generate	TLM4	
			association rules for any market basket data.		
8	24.05.2022		Apply the K- Means clustering algorithm on	TLM4	
			any dataset.		
9	31.05.2022		Apply Hierarchical Clustering algorithms on	TLM4	
			any dataset.		
10	07.06.2022		Apply the DBSCAN clustering algorithm on	TLM4	
			any dataset.	11/117	
11	14.06.2022		Internal Exam	TLM4	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	LM2 PPT TLM5		ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Day-to-day work	D1=05
Record	R1=05
Internal Test	IT1=5
Continuous Internal Evaluation (CIE)=D1+R1+IT1	15
Procedure/Algorithm	P1=5
Experimentation/Program execution	E1=10
Observations/Calculations/Validation	O1=10
Result/Inference	R1=5
Viva voce	V1=5
Semester End Examination (SEE)= P1+ E1+ O1+ V1	30
Total Marks = CIE+SEE	50

PART-D

PROGRAMME OUTCOMES (POs):

	AMME OUTCOMES (POS):							
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering							
	problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex							
	engineering problems reaching substantiated conclusions using first principles of mathematics,							
	natural sciences, and engineering sciences.							
PO 3	Design/development of solutions : Design solutions for complex engineering problems and							
	design system components or processes that meet the specified needs with appropriate							
	consideration for the public health and safety, and the cultural, societal, and environmental							
	considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research							
	methods including design of experiments, analysis and interpretation of data, and synthesis of							
	the information to provide valid conclusions.							
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern							
	engineering and IT tools including prediction and modelling to complex engineering activities							
	with an understanding of the limitations							
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess							
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to							
	the professional engineering practice							
PO 7	Environment and sustainability: Understand the impact of the professional engineering							
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need							
	for sustainable development.							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and							
	norms of the engineering practice.							
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in							
	diverse teams, and in multidisciplinary settings.							
PO	Communication: Communicate effectively on complex engineering activities with the							
10	engineering community and with society at large, such as, being able to comprehend and write							
	effective reports and design documentation, make effective presentations, and give and receive							
	clear instructions.							
PO 11	Project management and finance: Demonstrate knowledge and understanding of the							
	engineering and management principles and apply these to one's own work, as a member and							
	leader in a team, to manage projects and in multidisciplinary environments.							
PO	Life-long learning: Recognize the need for, and have the preparation and ability to engage in							
12	independent and life-long learning in the broadest context of technological change.							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Organize, Analyze and interpret the data to extract meaningful conclusions.
PSO 2	Design, Implement and Evaluate a computer-based system to meet desired needs
PSO 3	Develop IT application services with the help of different current engineering tools.

Course Instructor	Course Coordinator	Module Coordinator	HOD	
Mr.Michael Sadgun Rao Kona	Mr.Michael Sadgun Rao Kona	Dr.K.Lavanya	Dr B.Srinivasa Rao	