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Abstract 

Harmful algal blooms (HABs) are sudden overgrowths of phytoplankton that can cause 

damage in freshwater and saltwater ecosystems, and have socioeconomic as well as human 

health implications in the surrounding area. HAB incidences are becoming increasingly prevalent 

as human activities contaminate virtually every body of water, causing costly and harmful 

effects. Predictive models have great promise, as preemptive measures would severely mitigate 

these costs. However, predicting algal growth is an extremely complex task, requiring 

multifaceted research and approaches. In particular, there lacks research on the correlation 

between environmental growth factors on distinct categories of algae, particularly in freshwater 

environments. We investigate whether a neural network can provide a predictive model for these 

relationships. Trained on data with specific measurements of environmental factors as well as the 

populations of different groups of phytoplankton, our neural network consisted of 4 layers, with 

the input layer having 27 nodes for each of the features of our data. This feeds into 2 hidden 

layers, with the result coming out as a decimal between 0 and 1. This number is then scaled to 

formulate our predictions on phytoplankton populations. Conclusively, our model provides an 

accurate and novel tool for prediction of freshwater phytoplankton communities given 

environmental data, demonstrating the utility of machine learning in approaching complex 

multivariate problems with profound human and ecological consequences. 

 

 



Background 

Algal blooms are a natural phenomena caused by mass proliferation of microscopic 

phytoplanktons in bodies of water. All phytoplankton photosynthesize and their growth depends 

on different conditions such as sunlight, carbon dioxide and the availability of nutrients; 

additional factors influencing their life are water temperature, pH, climate changes, and salinity.  

However eutrophication, the anthropogenic nutrient enrichment of rivers and lakes, can cause 

sudden and rapid overgrowth of HABs (harmful algal blooms). Elevated phosphorus and 

nitrogen concentration from “urban and rural wastewater, fertilizers applied to agricultural fields, 

combustion of fossil fuels, erosion of soil containing nutrients and sewage treatment plant 

discharges” provide ideal conditions for algae and cyanobacteria growth (Sanseverino, Conduto, 

Pozzoli, Dobricic, & Lettieri, 2016, p. 11). The effects are damaging to the surrounding aquatic 

ecosystem, and dependent communities suffer from harmful human health and socioeconomic 

impacts. 

Excessive phytoplankton growth can result in “a loss of aquatic vegetation, invertebrate 

and macrophyte communities as well as low oxygen concentrations” (Read, Bowes, Newbold, & 

Whiteley, 2014). Algal blooms grow in large sheets and their rapid overgrowth allows them to 

out-compete native aquatic vegetation, destroying fish and invertebrate habitat.  Once the bloom 

dies off, its decomposition depletes the surrounding water of dissolved oxygen, resulting in 

hypoxic zones. In addition, plankton blooms are dominated by cyanobacteria, whose metabolic 

processes produce harmful toxins (Anderson, Glibert, & Burkholder, 2002, p. 705). These 

chemicals are threats to both animal and human health, creating contamination in drinking water 

systems.  



Algal blooms are becoming increasingly prevalent as human activities cause 

eutrophication in virtually every body of water. Due to their rapid growth, the remediation of the 

damage caused by HABs are extremely costly (Sanseverino, Conduto, Pozzoli, Dobricic, & 

Lettieri, 2016). HAB prediction would allow pre-emptive measures to be taken, severely 

decreasing the costly effects of the algal bloom; however, due to the complex multivariate factors 

on which phytoplankton growth is dependent, prediction is difficult and requires multifaceted 

research in both saltwater and freshwater ecosystems. 

Much effort and resources have been focussed on improving the ecological status of 

water bodies. These initiatives are often supported by extensive oceanographic and river water 

quality monitoring programmes. While these programmes can track many variables, early 

response efforts to HABs are still limited by two factors. The first is “a lack of direct 

quantification and characterisation of plankton communities” (Read et al., 2014), particularly in 

freshwater river ecosystems. Instead, measurements are limited to proxies such as “suspended 

solids, turbidity or chlorophyll concentration” (Rigosi, Fleenor, & Rueda, 2010),  which give 

little to no biological information on the plankton community. This leads to a lack of information 

on how environmental factors affect the diversity and abundance of various phytoplankton 

groups. These communities play unique roles in environmental degradation, and their individual 

reactions to changing nutrient and growth factors are needed to better predict and manage HABs. 

The second limiting factor is the ability to analyze this data gathered.  Based on a study done in 

2015 by the University of Toronto, existing prediction models fall short of their goals, 

“demonstrating inferior ability to reproduce phytoplankton patterns” (Shimoda & Arhonditsis, 



2016) or suffering from over-specificity to a local area (Litchman, Klausmeier, Miller, Schofield, 

& Falkowski, 2006).   

Some potential was shown in a study by the Royal Society of Chemistry on the use of 

flow cytometry (FCM) to “provide a much-needed, rapid and cheap quantification and 

characterisation of river phytoplankton” (Read et al., 2014). The results included high resolution 

datasets encompassing multiple sites across the River Thames, detailing the taxonomic 

inventories of phytoplankton as well as various measurements such as nutrient concentration, 

pH, temperature etc. By applying machine learning to this detailed data, it can generate a 

predictive model for specific algal communities in freshwater river ecosystems. This can provide 

a greater understanding of how changing nutrient concentrations impact different plankton 

communities, so rivers can be more effectively managed to secure water resources and produce 

good ecological status. 

Our project aims to create a model using ML. This is done through the use of the 

Tensorflow library, a powerful tool created by Google that runs on Python. We propose the use of 

a neural network to identify the relationships between environmental factors affecting a body of 

water and individual phytoplankton community populations. These relationships will aid in 

predicting and preventing HAB occurrences, with the potential to reduce the environmental, 

health and socioeconomic burdens of HABs. 

Purpose 

​ To accurately model the population of different species of phytoplankton in relation to 

certain environmental factors, in order to predict the possibility of HAB occurrences. 

 



Hypothesis 

​ If a neural network of adequate complexity is trained in a sufficient range of 

environmental data, then it will learn to generate predictions of phytoplankton community 

populations. 

Procedure 

Using a system of neural networks, we developed a model of freshwater phytoplankton 

communities which aims to predict the population of those communities in an area given 

sufficient environmental data. The thinking behind choosing a dense neural network to try to 

model our data was based on the regression problem we see here. Each of the variables affects 

the others, and all of them affect the final population of algae. This leads us to create a model 

where each of the neurons, capable of deciding between true or false, are all connected. A design 

such as this allows each of the neurons to develop a unique connection to the others, allowing 

our network to find intricate relationships within our data. 

Our model tests for the population of two specific groups of algae, measured in cells/mL. Group 

1 consisted of diatoms, the most plentiful type of algae. Group 2 comprised of Microcystis, a 

genus that contains the species Microcystis aeruginosa, a harmful cyanobacteria that creates 

toxins and harmful algal blooms.  

Our neural network parses for twenty-six environmental data measurements (Temperature, pH, 

Alkalinity, Soluble reactive phosphorus, Total Dissolved Phosphorus, Total Phosphorus, NH4, 

Si, Chlorophyll A, F, Cl, NO2, Br, NO3, SO4, Na, K, Ca, Mg. B, Fe, Mn, Zn, Cu, Al, and Flow 

rate). The network consisted of 4 layers, one layer to take in inputs, one node for an output, and 2 



dense hidden layers. These hidden layers were 128 neurons in size, and allowed for optimal 

network construction while not using too much processing power. 

Training data was gathered from Dr. Daniel Read, a professor at the Center for Ecology and 

Hydrology.  

Results and Analysis 

When validating our networks, our model performed optimally using 4 layers: one layer for 

inputs, one node for an output, and 2 dense hidden layers. We trained the model using the Adam 

learning algorithm. This algorithm trains using the model’s mean squared error (MSE) for the 

cost function, which measures how well our model fits the training data. Our training data is 

comprised of environmental data as well as their corresponding algal populations for a period 

spanning one year.  The training data was transformed to fit between 0 and 1, reducing any 

inherent bias from numbers that may be larger than others.  When the networks were trained, the 

training costs dropped to as low as 3.7529x10^-5 in 100 epochs. This means that if our algal 

sample is in the thousands per mL, our model can predict to the closest ±4 algae. 

Our model was able to achieve an MSE within 10^-5 with twenty-six parameters. This generates 

predictions with very little noise considering the complexity of biological outcomes. However, 

since this approach could be used to fit arbitrary datasets, if more or less data became available, 

accuracy would scale correspondingly. This means that even for datasets containing less 

parameters of environmental data, the accuracy of our model would still be very high. 

Conclusion 

In terms of data size, our accuracy of the neural network would be drastically improved with a 

larger dataset. This larger dataset would introduce anomalies that the network would have to 



correct for, items that the network currently does not understand. Currently, the network is 

capable of accurate predictions for a normal season. Our neural network was demonstrated to 

accurately predict the population of a specific phytoplankton community given the applicable 

environmental data. This model can be generalized to other datasets, with accuracy increasing as 

more data is provided. For example, our network, given external environmental data from the 

Center for Ecology and Hydrology of the Thames on the 28th of August, 2012, predicted a 

higher than normal level of cyanobacteria, reflecting the real life results that occured during that 

period (Flanagan, 2012). News sources during that week reported on the high level of 

cyanobacteria in the Thames, which proves our network has potential in predicting the amount 

and type of algae in rivers like the Thames. Our model constitutes a novel tool for the prediction 

of various phytoplankton communities given environmental data. While the experiment was 

conducted on data collected within the Thames, our model has possible future applications 

within other freshwater river streams as well. In particular, our model could be used to aid in the 

prediction of HABs, allowing earlier intervention, therefore reducing their devastating 

environmental as well as socioeconomic impacts. Finally, our model shows the relationship 

between different species of phytoplankton and their growth factors, aiding in the research on the 

complex nature of algae. 
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