
Project 2: Multi-Agent Pac-Man
writeup from
http://www.cs.utexas.edu/~grauman/courses/spring2014/psets/ps2/02-multiagentProject.html

Pac-Man, now with ghosts.
Minimax, Expectimax,
Evaluation.

Introduction
In this project, you will design agents for the classic version of Pac-Man, including ghosts.
Along the way, you will implement both minimax and expectimax search and try your hand
at evaluation function design.
The code base has not changed much from the previous project, but please start with a
fresh installation, rather than intermingling files from project 1. You can, however, use your
search.py and searchAgents.py in any way you want.
The code for this project contains the following files, available as a zip archive.

Key files to read

multiAgents.py Where all of your multi-agent search agents will reside.

pacman.py The main file that runs Pac-Man games. This file also describes a
Pac-Man GameState type, which you will use extensively in this
project

game.py The logic behind how the Pac-Man world works. This file describes
several supporting types like AgentState, Agent, Direction, and
Grid.

util.py Useful data structures for implementing search algorithms.

http://zacharski.org/files/courses/cs415/02-multiagent.zip

Files you can ignore

graphicsDisplay.py Graphics for Pac-Man

graphicsUtils.py Support for Pac-Man graphics

textDisplay.py ASCII graphics for Pac-Man

ghostAgents.py Agents to control ghosts

keyboardAgents.py Keyboard interfaces to control Pac-Man

layout.py Code for reading layout files and storing their contents

autograder.py Project autograder

testParser.py Parses autograder test and solution files

testClasses.py General autograding test classes

test_cases/ Directory containing the test cases for each question

multiagentTestClasses.py Project 2 specific autograding test classes

What to submit: You will fill in portions of multiAgents.py during the assignment. You
should submit this file with your code and comments. You may also submit supporting files
that you use in your code (like search.py, etc. from Project 1, or new files that you have
created). Please do not change the other files in this distribution or submit any of our
original files other than multiAgents.py.
This assignment should be submitted by sending the files via gmail to submit.o.bot.

Evaluation: Your code will be autograded for technical correctness. Please do not change
the names of any provided functions or classes within the code, or you will wreak havoc on
the autograder. However, the correctness of your implementation -- not the autograder's
output -- will be the final judge of your score. If necessary, we will review and grade
assignments individually to ensure that you receive due credit for your work.
Academic Dishonesty: We will be checking your code against other submissions in the
class for logical redundancy. If you copy someone else's code and submit it with minor
changes, we will know. These cheat detectors are quite hard to fool, so please don't try. We
trust you all to submit your own work only; please don't let us down. If you do, we will
pursue the strongest consequences available to us.
Getting Help: You are not alone! If you find yourself stuck on something, contact the
course staff for help. Office hours, section, and the newsgroup are there for your support;
please use them. If you can't make our office hours, let us know and we will schedule more.
We want these projects to be rewarding and instructional, not frustrating and demoralizing.
But, we don't know when or how to help unless you ask.

Multi-Agent Pac-Man
First, play a game of classic Pac-Man:
python pacman.py

Now, run the provided ReflexAgent in multiAgents.py:
python pacman.py -p ReflexAgent

Note that it plays quite poorly even on simple layouts:
python pacman.py -p ReflexAgent -l testClassic

Inspect its code (in multiAgents.py) and make sure you understand what it's doing.
Question 1 (3 points) Improve the ReflexAgent in multiAgents.py to play respectably.
The provided reflex agent code provides some helpful examples of methods that query the
GameState for information. A capable reflex agent will have to consider both food locations
and ghost locations to perform well. Your agent should easily and reliably clear the
testClassiclayout:
python pacman.py -p ReflexAgent -l testClassic

Try out your reflex agent on the default mediumClassic layout with one ghost or two (and
animation off to speed up the display):
python pacman.py --frameTime 0 -p ReflexAgent -k 1
python pacman.py --frameTime 0 -p ReflexAgent -k 2

How does your agent fare? It will likely often die with 2 ghosts on the default board, unless
your evaluation function is quite good.
Note: you can never have more ghosts than the layout permits.
Note: As features, try the reciprocal of important values (such as distance to food) rather
than just the values themselves.
Note: The evaluation function you're writing is evaluating state-action pairs; in later parts of
the project, you'll be evaluating states.
Options: Default ghosts are random; you can also play for fun with slightly smarter
directional ghosts using -g DirectionalGhost. If the randomness is preventing you from
telling whether your agent is improving, you can use -f to run with a fixed random seed
(same random choices every game). You can also play multiple games in a row with -n. Turn
off graphics with -q to run lots of games quickly.
Grading: we will run your agent on the openClassic layout 10 times. You will receive 0 points
if your agent times out, or never wins. You will receive 1 point if your agent wins at least 5
times. You will receive an addition 1 point if your agent's average score is greater than 500,
or 2 points if it is greater than 1000. You can try your agent out under these conditions with
python autograder.py -q q1

To run it without graphics, use:
python autograder.py -q q1 --no-graphics

Don't spend too much time on this question, though, as the meat of the project lies ahead.
Question 2 (4 points) Now you will write an adversarial search agent in the provided
MinimaxAgent class stub in multiAgents.py. Your minimax agent should work with any
number of ghosts, so you'll have to write an algorithm that is slightly more general than
what appears in the textbook. In particular, your minimax tree will have multiple min layers
(one for each ghost) for every max layer.
Your code should also expand the game tree to an arbitrary depth. Score the leaves of your
minimax tree with the supplied self.evaluationFunction, which defaults to

http://www.cs.utexas.edu/~grauman/courses/spring2014/psets/ps2/docs/multiAgents.html
http://www.cs.utexas.edu/~grauman/courses/spring2014/psets/ps2/docs/multiAgents.html
http://www.cs.utexas.edu/~grauman/courses/spring2014/psets/ps2/docs/multiAgents.html
http://www.cs.utexas.edu/~grauman/courses/spring2014/psets/ps2/layouts/mediumClassic.lay

scoreEvaluationFunction. MinimaxAgent extends MultiAgentAgent, which gives access to
self.depth and self.evaluationFunction. Make sure your minimax code makes reference to
these two variables where appropriate as these variables are populated in response to
command line options.
Important: A single search ply is considered to be one Pac-Man move and all the ghosts'
responses, so depth 2 search will involve Pac-Man and each ghost moving two times.
Hints and Observations

●​ The evaluation function in this part is already written (self.evaluationFunction).
You shouldn't change this function, but recognize that now we're evaluating
states rather than actions, as we were for the reflex agent. Look-ahead agents
evaluate future states whereas reflex agents evaluate actions from the current
state.

●​ The minimax values of the initial state in the minimaxClassic layout are 9, 8, 7,
-492 for depths 1, 2, 3 and 4 respectively. Note that your minimax agent will
often win (665/1000 games for us) despite the dire prediction of depth 4
minimax.

●​ python pacman.py -p MinimaxAgent -l minimaxClassic -a
depth=4

●​ To increase the search depth achievable by your agent, remove the
Directions.STOP action from Pac-Man's list of possible actions. Depth 2 should be
pretty quick, but depth 3 or 4 will be slow. Don't worry, the next question will
speed up the search somewhat.

●​ Pac-Man is always agent 0, and the agents move in order of increasing agent
index.

●​ All states in minimax should be GameStates, either passed in to getAction or
generated via GameState.generateSuccessor. In this project, you will not be
abstracting to simplified states.

●​ On larger boards such as openClassic and mediumClassic (the default), you'll find
Pac-Man to be good at not dying, but quite bad at winning. He'll often thrash
around without making progress. He might even thrash around right next to a
dot without eating it because he doesn't know where he'd go after eating that
dot. Don't worry if you see this behavior, question 5 will clean up all of these
issues.

●​ When Pac-Man believes that his death is unavoidable, he will try to end the game
as soon as possible because of the constant penalty for living. Sometimes, this is
the wrong thing to do with random ghosts, but minimax agents always assume
the worst:

●​ python pacman.py -p MinimaxAgent -l trappedClassic -a
depth=3

●​ Make sure you understand why Pac-Man rushes the closest ghost in this case.
Grading: We will be checking your code to determine whether it explores the correct
number of game states. This is the only way reliable way to detect some very subtle bugs in
implementations of minimax. As a result, the autograder will be very picky about how many
times you call GameState.getLegalActions. If you call it any more or less than necessary,
the autograder will complain. To test and debug your code, run
python autograder.py -q q2

This will show what your algorithm does on a number of small trees, as well as a pacman
game. To run it without graphics, use:
python autograder.py -q q2 --no-graphics

Question 3 (4 points) Make a new agent that uses alpha-beta pruning to more efficiently
explore the minimax tree, inAlphaBetaAgent. Again, your algorithm will be slightly more
general than the pseudo-code in the textbook, so part of the challenge is to extend the
alpha-beta pruning logic appropriately to multiple minimizer agents.
You should see a speed-up (perhaps depth 3 alpha-beta will run as fast as depth 2
minimax). Ideally, depth 3 on smallClassicshould run in just a few seconds per move or
faster.
python pacman.py -p AlphaBetaAgent -a depth=3 -l
smallClassic

The AlphaBetaAgent minimax values should be identical to the MinimaxAgent minimax
values, although the actions it selects can vary because of different tie-breaking behavior.
Again, the minimax values of the initial state in the minimaxClassic layout are 9, 8, 7 and
-492 for depths 1, 2, 3 and 4 respectively.
Grading: Because we check your code to determine whether it explores the correct number
of states, it is important that you perform alpha-beta pruning without reordering children. In
other words, successor states should always be processed in the order returned by
GameState.getLegalActions. You must not prune on equality in order to match the set
of states explored by our autograder. (Indeed, alternatively, but incompatible with our
autograder, would be to also allow for pruning on equality and invoke alpha-beta once on
each child of the root node, but this will not match the autograder.)
To test and debug your code, run
python autograder.py -q q3

This will show what your algorithm does on a number of small trees, as well as a pacman
game. To run it without graphics, use:
python autograder.py -q q3 --no-graphics

Question 4 (4 points) Random ghosts are of course not optimal minimax agents, and so
modeling them with minimax search may not be appropriate. Fill in ExpectimaxAgent, where
your agent agent will no longer take the min over all ghost actions, but the expectation
according to your agent's model of how the ghosts act. To simplify your code, assume you
will only be running against RandomGhost ghosts, which choose amongst their
getLegalActions uniformly at random.
You should now observe a more cavalier approach in close quarters with ghosts. In
particular, if Pac-Man perceives that he could be trapped but might escape to grab a few
more pieces of food, he'll at least try. Investigate the results of these two scenarios:
python pacman.py -p AlphaBetaAgent -l trappedClassic -a
depth=3 -q -n 10
python pacman.py -p ExpectimaxAgent -l trappedClassic -a
depth=3 -q -n 10

You should find that your ExpectimaxAgent wins about half the time, while your
AlphaBetaAgent always loses. Make sure you understand why the behavior here differs from
the minimax case.
To debug you implementation using the autograder run:
python autograder.py -q q4

Make sure when you compute your averages that you use floats. Integer division in
Python truncates, so that 1/2 = 0, unlike the case with floats where 1.0/2.0 = 0.5.
Question 5 (5 points) Write a better evaluation function for pacman in the provided
function betterEvaluationFunction. The evaluation function should evaluate states, rather
than actions like your reflex agent evaluation function did. You may use any tools at your
disposal for evaluation, including your search code from the last project. With depth 2
search, your evaluation function should clear the smallClassic layout with two random
ghosts more than half the time and still run at a reasonable rate (to get full credit, Pac-Man
should be averaging around 1000 points when he's winning).
python pacman.py -l smallClassic -p ExpectimaxAgent -a
evalFn=better -q -n 10

Document your evaluation function! We're very curious about what great ideas you have, so
don't be shy. We reserve the right to reward bonus points for clever solutions and show
demonstrations in class.
Hints and Observations

●​ As for your reflex agent evaluation function, you may want to use the reciprocal
of important values (such as distance to food) rather than the values themselves.

●​ One way you might want to write your evaluation function is to use a linear
combination of features. That is, compute values for features about the state that
you think are important, and then combine those features by multiplying them by
different values and adding the results together. You might decide what to
multiply each feature by based on how important you think it is.

Grading: we will run your agent on the smallClassic layout 10 times. We will assign points to
your evaluation function in the following way:

●​ If you win at least once without timing out the autograder, you receive 1 points.
Any agent not satisfying these criteria will receive 0 points.

●​ +1 for winning at least 5 times.
●​ +1 for an average score of at least 500, +2 for an average score of at least 1000

(including scores on lost games)
●​ +1 if your games take on average less than 30 seconds on the autograder

machine. The autograder will be run on a modern i7 machine, so this machine
will have a fair amount of resources, but your personal computer could be far
less performant (netbooks) or far more performant (gaming rigs).

●​ *The additional points for average score and computation time will only be
awarded if you win at least 5 times.

The autograder command to grade this problem only follows the standard pattern.
Mini Contest (3 points extra credit) Pac-Man's been doing well so far, but things are
about to get a bit more challenging. This time, we'll pit Pac-Man against smarter foes in a
trickier maze. In particular, the ghosts will actively chase Pac-Man instead of wandering
around randomly, and the maze features more twists and dead-ends, but also extra pellets
to give Pac-Man a fighting chance. You're free to have Pac-Man use any search procedure,
search depth, and evaluation function you like. The only limit is that games can last a
maximum of 3 minutes (with graphics off), so be sure to use your computation wisely. We'll
run the contest with the following command:
python pacman.py -l contestClassic -p ContestAgent -g
DirectionalGhost -q -n 10

The three agents with the highest score (details: we run 10 games, games longer than 3
minutes get score 0, lowest and highest 2 scores discarded, the rest averaged) will receive

3, 2, and 1 extra credit points respectively and can look on with pride as their Pac-Man
agents are shown off in class. Be sure to document what your agent is doing, as we may
award additional extra credit to creative solutions even if they're not in the top 3.
Note that the autograder does not run checks for your contest agent.
Project 2 is done. Go Pac-Man!

	Project 2: Multi-Agent Pac-Man
	Introduction
	Key files to read
	Files you can ignore

	Multi-Agent Pac-Man

