3D PRINTING & PARAMETRIC DESIGN

LWHS - 2022-2023

****Submit Documentation of each tutorial on your google site, include:

Screenshots and one sentence about your thoughts/challenges on each tutorial

Surface Transformation

 Grasshopper contains many kinds of transformations under the Transform tab. The most mysterious (and useful) of these are the ones that transform the geometry onto a surface, similar to Rhino's flow along surface command.

Mapping Curves to Surfaces

• The simplest way to make a given geometry conform to that of a surface is to use the **Map Surface Component**. This component will take a curve in the domain space of a surface, and turn a transformed curve on the surface itself.

Visual Example

- 1) Drop in a **Cylinder Component** (Surface tab, Primitive panel)
- 2) Drop in a **Deconstruct** *Domain* ² **Component** (Maths Tab, Domain panel)

- 3) Connect the **output** of the **Cylinder Component** to the **Domain input** of the **Deconstruct** *Domain*² **Component**
- 4) Drop in a **Rectangle Component** (Curve tab, Primitive panel)
- 5) This rectangle component will create a rectangle in the XY-plane that represents the boundary of the domain parameter space of the cylinder
- 6) Connect the "U Component" output of the Deconstruct $Domain^2$ Component to the "X" input of the Rectangle Component
- 7) Connect the "V Component" output of the Deconstruct $Domain^2$ Component to the "Y" input of the Rectangle Component

- 8) To create an interesting set of curves to map to the cylinder, give this rectangle to a **Populate 2D Component.** This creates a random set of points in the region of the XY-plane bounded by it.
- 9) Drop in a **Populate 2D Component** (Vector tab, Grid panel)
- 10)Connect the "Rectangle" output of the Rectangle Component to the "Region" input of the Populate 2D Component.

- 11) Let's feed these points to a **Voronoi Component**. This component finds the largest non-overlapping curves that surround each point and are still within the original rectangle.
- 12) Drop in a Voronoi Component (Mesh tab, Triangulation panel)
- 13)Connect the "Rectangle" output of the Rectangle Component to the "Boundary" input of the Voronoi Component
- 14)Connect the "Population" output of the Populate 2D Component to the "Points" input of the Voronoi Component

- 15) The final step is to use the Map to Surface Component. This component requires three points: (Curves) The curves in the domain space to map to a target surface (Target) the target surface that the final curves end up on, and (Surface) a "source surface" representing the domain space.
- 16)To create the source surface we feed the rectangle curve defined earlier to a **Boundary Surface Component**. This component creates a planer surface that is bound by any closed planar curve, similar to Rhino's Planar Surface command.
- 17) Drop in a **Boundary Surface Component** (Surface tab, Freefrom panel)
- 18)Connect the "Rectangle" output of the Rectangle Component to the "Edges" input of the Boundary Component

- 19) Drop in a **Map to Surface Component** (Transform tab, Morph panel)
- 20)Connect the "Surfaces" output of the Boundary Surface Component to the "Source" input of the Map to Surface Component
- 21)Connect the "Curve" input of the Map to Surface Component to the "Cells" output of the Voronoi Component
- 22) Connect the output of the **Cylinder Component** to the "**Target**" input of the **Map to Surface Component**
- 23) Double-click on the "Curve" output of the Map to Surface Component and select "Graft"

What happens if your target input is connected to a Cone Component or a Sphere instead of the original cylinder?