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MODULE 3 
 

PROCESS SYNCHRONIZATION 

​​ A cooperating process is one that can affect or be affected by other processes 

executing in the system. Cooperating processes can either directly share a logical 
address space (that is, both code and data) or be allowed to share data only through 
files or messages. 

​​ Concurrent access to shared data may result in data inconsistency. To maintain data 

consistency, various mechanisms is required to ensure the orderly execution of 
cooperating processes that share a logical address space. 

 
Producer- Consumer Problem 

​​ A Producer process produces information that is consumed by consumer process. 

​​ To allow producer and consumer process to run concurrently, A Bounded Buffer can 
be used where the items are filled in a buffer by the producer and emptied by the 
consumer. 

​​ The original solution allowed at most BUFFER_SIZE - 1 item in the buffer at the 
same time. To overcome this deficiency, an integer variable counter, initialized to 0 
isadded. 

​​ counter is incremented every time when a new item is added to the buffer and is 
decremented every time when one item removed from thebuffer. 

 
The code for the producer process can be modified as follows: 

 
 

The code for the consumer process can be modified as follows: 
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​​ Race Condition 

When the producer and consumer routines shown above are correct separately, 
they may not function correctly when executed concurrently. 

​​ Illustration: 
Suppose that the value of the variable counter is currently 5 and that the producer and 
consumer processes execute the statements "counter++" and "counter--" concurrently. 
The value of the variable counter may be 4, 5, or 6 but the only correct result is 
counter == 5, which is generated correctly if the producer and consumer execute 
separately. 

 
 

The concurrent execution of "counter++" and "counter--" is equivalent to a sequential 
execution in which the lower-level statements presented previously are interleaved in some 
arbitrary order. One such interleaving is 

 
Consider this execution interleaving with “count = 5” initially: 

S0: producer execute register1=counter​ {register1 = 
5} S1: producer execute register1 = register1+1​ {register1 = 
6} S2: consumer execute register2=counter​ {register2 = 
5} S3: consumer execute register2 = register2-1​ {register2 = 
4} S4: producer execute counter=register1​ {count =6} 
S5: consumer execute counter=register2​ {count =4} 

 
​​ Note: It is arrived at the incorrect state "counter == 4", indicating that four buffers 

are full, when, in fact, five buffers are full. If we reversed the order of the statements 
at T4 and T5, we would arrive at the incorrect state "counter==6". 

​​ Definition Race Condition: A situation where several processes access and 
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manipulate the same data concurrently and the outcome of the execution depends on 
the particular order in which the access takes place, is called a RaceCondition. 

​​ To guard against the race condition, ensure that only one process at a time can be 

manipulating the variable counter. To make such a guarantee, the processes are 
synchronized in some way. 
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The Critical Section Problems 

●​ Consider a system consisting of n processes {Po, P1 , ... ,Pn-1}. 
●​ Each process has a segment of code, called a critical section in which the process 

may be changing common variables, updating a table, writing a file, and soon 
●​ The important feature of the system is that, when one process is executing in its 

critical section, no other process is to be allowed to execute in its critical section. 
That is, no two processes are executing in their critical sections at the sametime. 

●​ The critical-section problem is to design a protocol that the processes can use to 
cooperate. 

 
The general structure of a typical process Pi is shown in below figure. 

 

​​ Each process must request permission to enter its critical section. The section of 
code implementing this request is the entry section. 

​​ The critical section may be followed by an exit section. The remaining code is the 

reminder section. 
 

Figure: General structure of a typical process Pi 
 

A solution to the critical-section problem must satisfy the following three requirements: 

1.​ Mutual exclusion:If process Pi is executing in its critical section, then no other 
processes can be executing in their criticalsections. 

 
2.​ Progress:If no process is executing in its critical section and some processes wish to 

enter their critical sections, then only those processes that are not executing in their 
remainder sections can participate in deciding which will enter its critical section 
next, and this selection cannot be postponedindefinitely. 
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3.​ Bounded waiting:There exists a bound, or limit, on the number of times that other 
processes are allowed to enter their critical sections after a process has made a 
request to enter its critical section and before that request isgranted. 
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PETERSON'S SOLUTION 

●​ This is a classic software-based solution to the critical-section problem. There are 
no guarantees that Peterson's solution will work correctly on modern computer 
architectures 

●​ Peterson's solution provides a good algorithmic description of solving the critical- 
section problem and illustrates some of the complexities involved in designing 
software that addresses the requirements of mutual exclusion, progress, and 
bounded waiting. 

 
Peterson's solution is restricted to two processes that alternate execution between their 
critical sections and remainder sections. The processes are numbered Po and P1 or Pi and Pj 
where j = 1-i 
Peterson's solution requires the two processes to share two data 

items: int​ turn; 
boolean flag[2]; 

 
●​ turn: The variable turn indicates whose turn it is to enter its critical section. Ex: 

if turn == i, then process Pi is allowed to execute in its criticalsection 
●​ flag: The flag array is used to indicate if a process is ready to enter its critical 

section. Ex: if flag [i] is true, this value indicates that Pi is ready to enter its 
critical section. 

Figure: The structure of process Pi in Peterson's solution 
 

●​ To enter the critical section, process Pi first sets flag [i] to be true and then sets 
turn to the value j, thereby asserting that if the other process wishes to enter the 
critical section, it can doso. 
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●​ If both processes try to enter at the same time, turn will be set to both i and j 

at roughly the same time. Only one of these assignments will last, the other 
will occur but will be over written immediately. 
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●​ The eventual value of turn determines which of the two processes is allowed 
to enter its critical sectionfirst 

 
To prove that solution is correct, then we need to show that 

1.​ Mutual exclusion ispreserved 
2.​ Progress requirement is satisfied 
3.​ Bounded-waiting requirement is met 

 
1.​To prove Mutual exclusion 

●​ Each pi enters its critical section only if either flag [j] == false or turn ==i. 
●​ If both processes can be executing in their critical sections at the same time, 

then flag [0] == flag [1]==true. 
●​ These two observations imply that Pi and Pj could not have successfully executed 

their while statements at about the same time, since the value of turn can be either 0 
or 1 but cannot be both. Hence, one of the processes (Pj) must have successfully 
executed the while statement, whereas Pi had to execute at least one additional 
statement ("turn==j"). 

●​ However, at that time, flag [j] == true and turn == j, and this condition will persist as 
long as Pi is in its critical section, as a result, mutual exclusion ispreserved. 

 
2.​To prove Progress and Bounded-waiting 

●​ A process Pi can be prevented from entering the critical section only if it is stuck in 
the while loop with the condition flag [j] ==true and turn=== j; this loop is the only 
onepossible. 

●​ If Pj is not ready to enter the critical section, then flag [j] ==false, and Pi can enter 
its criticalsection. 

●​ If Pj has set flag [j] = true and is also executing in its while statement, then 
either turn === i or turn ===j. 

▪​ If turn == i, then Pi will enter the criticalsection. 
▪​ If turn== j, then Pj will enter the criticalsection. 

●​ However, once Pj exits its critical section, it will reset flag [j] = false, allowing Pi 
to enter its criticalsection. 

●​ If Pj resets flag [j] to true, it must also set turn to i. 
●​ Thus, since Pi does not change the value of the variable turn while executing the 

while statement, Pi will enter the critical section (progress) after at most one entry 
by Pj (boundedwaiting). 
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SYNCHRONIZATIONHARDWARE 

●​ The solution to the critical-section problem requires a simple tool-alock. 
●​ Race conditions are prevented by requiring that critical regions be protected by 

locks. That is, a process must acquire a lock before entering a critical section and 
it releases the lock when it exits the critical section 

 

Figure: Solution to the critical-section problem using locks. 
 

●​ The critical-section problem could be solved simply in a uniprocessor 
environment if interrupts are prevented from occurring while a shared   variable 
was being modified. In this manner, the current sequence of instructions would be 
allowed to execute in order without preemption. No other instructions would be 
run, so no unexpected modifications could be made to the sharedvariable. 

●​ But this solution is not as feasible in a multiprocessor environment. Disabling 
interrupts on a multiprocessor can be time consuming, as the message is passed to 
all the processors. This message passing delays entry into each critical section, 
and system efficiency decreases. 

TestAndSet ( ) and Swap( ) instructions 
●​ Many modern computer systems provide special hardware instructions that 

allowto test and modify the content of a word or to swap the contents of two 
words atomically, that is, as one uninterruptibleunit. 

●​ Special instructions such as TestAndSet () and Swap() instructions are used to 
solve the critical-sectionproblem 

●​ The TestAndSet () instruction can be defined as shown in Figure. The important 
characteristic of this instruction is that it is executedatomically. 

 
Definition: 
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Figure: The definition of the TestAndSet () instruction. 

 



 

 
 

●​ Thus, if two TestAndSet () instructions are executed simultaneously, they will be 
executed sequentially in some arbitrary order. If the machine supports the TestAndSet 
() instruction, then implementation of mutual exclusion can be done by declaring a 
Boolean variable lock, initialized to false. 

 

do { 
while ( TestAndSet (&lock )) 

; // do nothing 
//​ critical 

section lock =FALSE; 
//​ remaindersection 

} while (TRUE); 
Figure: Mutual-exclusion implementation with TestAndSet () 

 
●​ The Swap() instruction, operates on the contents of two words, it is defined as 

shown below 
 

Definition: 

Figure: The definition of the Swap ( ) instruction 
●​ Swap() it is executed atomically. If the machine supports the Swap() instruction, then 

mutual exclusion can be provided as follows. 
●​ A global Boolean variable lock is declared and is initialized to false. In addition, each 

process has a local Boolean variable key. The structure of process Pi is shown in 
below 

 

Figure: Mutual-exclusion implementation with the Swap() instruction 

 



 

 
 

●​ These algorithms satisfy the mutual-exclusion requirement, they do not satisfy 
the bounded- waiting requirement. 

●​ Below algorithm using the TestAndSet () instruction that satisfies all the critical- 
section requirements. The common data structures are 

 
boolean 
waiting[n]; 
boolean lock; 

 
These data structures are initialized to false. 

 

Figure:Bounded-waiting mutual exclusion with TestAndSet () 

 



 

1.​To prove the mutual exclusionrequirement 

​​ Note that process Pi can enter its critical section only if either waiting [i] == false or 
key ==false. 

​​ The value of key can become false only if the TestAndSet( ) isexecuted. 

​​ The first process to execute the TestAndSet( ) will find key== false; all others must 
wait. 

​​ The variable waiting[i] can become false only if another process leaves its critical 
section; only one waiting[i] is set to false, maintaining the mutual-exclusion 
requirement. 

 
2.​To prove the progressrequirement 
Note that, the arguments presented for mutual exclusion also apply here, since a process 
exiting the critical section either sets lock to false or sets waiting[j] to false. Both allow a 
process that is waiting to enter its critical section to proceed. 

 
3.​To prove the bounded-waitingrequirement 

​​ Note that, when a process leaves its critical section, it scans the array waiting in 
the cyclic ordering (i + 1, i + 2, ... , n 1, 0, ... , i 1). 

​​ It designates the first process in this ordering that is in the entry section (waiting[j] 
==true) as the next one to enter the critical section. Any process waiting to enter its 
critical section will thus do so within n - 1 turns. 

 
SEMAPHORE 

 

​​ ​A semaphore is a synchronization tool is used solve various synchronization 

problem and can be implementedefficiently. 

​​ Semaphore do not require busywaiting. 

​​ ​A semaphore S is an integer variable that, is accessed only through two standard 

atomic operations: wait () and signal (). The wait () operation was originally 
termed P and signal() was calledV. 
Definition of wait (): 

 

Definition of signal (): 
 

 



 

​​ All modifications to the integer value of the semaphore in the wait () and signal() 

operations must be executed indivisibly. That is, when one process modifies the 
semaphore value, no other process can simultaneously modify that same semaphore 
value. 

 
Binary semaphore 

​​ The value of a binary semaphore can range only between 0 and1. 

​​ Binary semaphores are known as mutex locks, as they are locks that provide 

mutual exclusion. Binary semaphores to deal with the critical-section problem for 
multiple processes. Then processes share a semaphore, mutex, initialized to1 

 
Each process Pi is organized as shown in below figure 

 

Figure: Mutual-exclusion implementation with semaphores 
 

Counting semaphore 

​​ The value of a counting semaphore can range over an unrestricteddomain. 

​​ Counting semaphores can be used to control access to a given resource 

consisting of a finite number ofinstances. 

​​ The semaphore is initialized to the number of resources available. Each process 

that wishes to use a resource performs a wait() operation on the semaphore. 
When a process releases a resource, it performs a signal()operation. 

​​ When the count for the semaphore goes to 0, all resources are being used. After 

that, processes that wish to use a resource will block until the count becomes 
greater than 0. 

 
Implementation 

​​ The main disadvantage of the semaphore definition requires busywaiting. 

​​ While a process is in its critical section, any other process that tries to enter 

its critical section must loop continuously in the entry code. 

 



 

​​ This continual looping is clearly a problem in a real multiprogramming 

system, where a single CPU is shared among many processes. 

 



 

​​ Busy waiting wastes CPU cycles that some other process might be able to use 

productively. This type of semaphore is also called a spinlock because the process 
"spins" while waiting for thelock. 

 
Semaphore implementation with no busy waiting 

​​ The definition of the wait() and signal() semaphore operations ismodified. 

​​ When a process executes the wait () operation and finds that the semaphore value 

is not positive, it mustwait. 

​​ However, rather than engaging in busy waiting, the process can block itself. The 

block operation places a process into a waiting queue associated with the 
semaphore, and the state of the process is switched to the waiting state. Then 
control is transferred to the CPU scheduler, which selects another process 
toexecute. 

​​ A process that is blocked, waiting on a semaphore S, should be restarted when 

some other process executes a signal() operation. The process is restarted by a 
wakeup( ) operation, which changes the process from the waiting state to the ready 
state. The process is then placed in the readyqueue. 

 
​​ To implement semaphores under this definition, we define a semaphore as a "C' 

struct: 

​​ Each semaphore has an integer value and a list of processes list. When a process 

must wait on a semaphore, it is added to the list of processes. A signal() operation 
removes one process from the list of waiting processes and awakens that process. 

 
​​ The wait() semaphore operation can now be defined as: 

 

 



 

​​ The signal () semaphore operation can now be defined as 
 

​​ The block() operation suspends the process that invokes it. The wakeup(P) 

operation resumes the execution of a blocked process P. These two operations 
are provided by the operating system as basic systemcalls. 

​​ In this implementation semaphore values may be negative. If a semaphore value 

is negative, its magnitude is the number of processes waiting on thatsemaphore. 
 

Deadlocks and Starvation 
 

​​ The implementation of a semaphore with a waiting queue may result in a situation 

where two or more processes are waiting indefinitely for an event that can be caused 
only by one of the waiting processes. The event in question is the execution of a 
signal( ) operation. When such a state is reached, these processes are said to be 
deadlocked. 

​​ To illustrate this, consider a system consisting of two processes, Po and P1, each 

accessing two semaphores, S and Q, set to the value 1 
 

P0​ P1 
wait(S);​ wait(Q); 
wait(Q);​ wait(S); 

.​ . 

.​ . 
signal(S);​ signal(Q); 
signal(Q);​ signal(S); 

 
​​ Suppose that Po executes wait (S) and then P1 executes wait (Q). When Po 

executes wait (Q), it must wait until P1 executes signal (Q). Similarly, when P1 
executes wait (S), it must wait until Po executes signal(S). Since these signal() 
operations cam1ot be executed, Po and P1 are deadlocked. 

 



 

​​ Another problem related to deadlocks is indefinite blocking or starvation: 

A situation in which processes wait indefinitely within the semaphore. 

​​ Indefinite blocking may occur if we remove processes from the list associated 

with a semaphore in LIFO (last-in, first-out) order. 
 
 

CLASSICAL PROBLEMS OF SYNCHRONIZATION 
​​ Bounded-BufferProblem 

​​ Readers and WritersProblem 

​​ Dining-PhilosophersProblem 

 
Bounded-Buffer Problem 

​​ N buffers, each can hold one item 

​​ Semaphore mutexinitialized to the value 1 

​​ Semaphore full initialized to the value0 

​​ Semaphore empty initialized to the value N. 
 
 

The structure of the producer process: 
 

The structure of the consumerprocess: 

 



 

Readers-Writers Problem 

​​ A data set is shared among a number of concurrentprocesses 

​​ Readers – only read the data set; they do not perform anyupdates 

​​ Writers – can both read andwrite. 

​​ Problem – allow multiple readers to read at the same time. Only one single 

writer can access the shared data at the sametime. 

​​ SharedData 

​​ Dataset 

​​ Semaphore mutexinitialized to 1. 

​​ Semaphore wrtinitialized to1. 

​​ Integer readcountinitialized to 0. 
 
 
 

The structure of a writerprocess 
 

The structure of a readerprocess 

 



 

Dining-Philosophers Problem 
 

Consider five philosophers who spend their lives thinking and eating. The philosophers 
share a circular table surrounded by five chairs, each belonging to one philosopher. In the 
center of the table is a bowl of rice, and the table is laid with five singlechopsticks. 

A philosopher gets hungry and tries to pick up the two chopsticks that are closest to her 
(the chopsticks that are between her and her left and right neighbors). A philosopher 
may pick up only one chopstick at a time. When a hungry philosopher has both her 
chopsticks at the same time, she eats without releasing the chopsticks. When she is 
finished eating, she puts down both chopsticks and starts thinkingagain. 
It is a simple representation of the need to allocate several resources among several 
processes in a deadlock-free and starvation-freemanner. 

 
Solution:One simple solution is to represent each chopstick with a semaphore. A 
philosopher tries to grab a chopstick by executing a wait() operation on thatsemaphore. 
She releases her chopsticks by executing the signal() operation on the appropriate 
semaphores. Thus, the shared data are 

semaphore chopstick[5]; 
 

where all the elements of chopstick are initialized to 1. The structure of 
philosopher iis shown 

 

Several possible remedies to the deadlock problem are replaced by: 

●​Allow at most four philosophers to be sitting simultaneously at thetable. 

 



 

●​Allowaphilosophertopickupherchopsticksonlyifbothchopsticksareavailable. 

●​Use an asymmetric solution—that is, an odd-numbered philosopher picks up 
first her left chopstick and then her right chopstick, whereas an even numbered 
philosopher picks up her right chopstick and then her leftchopstick. 

 
 
Problems with Semaphores 
Correct use of semaphore operations: 

​​ signal (mutex) …. wait (mutex) : Replace signal with wait andvice-versa 

​​ wait (mutex) … wait(mutex) 

​​ Omitting of wait (mutex) or signal (mutex) (orboth) 

 
 
Monitor 

​​ An abstract data type—or ADT—encapsulates data with a set of functions to 

operate on that data that are independent of any specific implementation of the ADT. 
​​ A monitor typeis an ADT that includes a set of programmer defined operations that 

are provided with mutual exclusion within the monitor. The monitor type also 
declares the variables whose values define the state of an instance of that type, along 
with the bodies of functions that operate on those variables. 

​​ The monitor construct ensures that only one process at a time is active within the 
monitor. 

 



 

​​ To have a powerful Synchronization schemes a condition construct is added to the 

Monitor. So synchronization scheme can be defined with one or more variables of type 
condition Two operations on a conditionvariable: 

Condition x, y 

​​ The only operations that can be invoked on a condition variable are wait() and signal(). 
The operation 

x.wait () – a process that invokes the operation is suspended. 
x.signal () – resumes one of processes (if any) that invoked x.wait () 

 
 
 

Fig: Monitor with Condition Variables 

 



 

Solution to Dining Philosophers 
 
Each philosopher I invokes the operations pickup() and putdown() in the following 

​​ For each monitor, a semaphore mutex (initialized to 1) is provided. A process 

must execute wait(mutex) before entering the monitor and must execute 
signal(mutex) after leaving the monitor. 

​​ Since a signaling process must wait until the resumed process either leaves or 

waits, an additional semaphore, next, is introduced, initialized to 0. The signaling 
processes can use next to suspend themselves. An integer variable next_count is 
also provided to count the number of processes suspended on next. Thus ,each 
external function F is replaced by 

 



 

 

 

​​ For each condition x, we introduce a semaphore x sem and an integer variable 

x count, both initialized to 0. The operation x.wait() can now be implemented 
as 

 

​​ The operation x.signal() can be implementedas 
 
 

Resuming Processes within a Monitor 

If several processes are suspended on condition x, and an x.signal() operation is 
executed by some process, then to determine which of the suspended processes should 
be resumed next, one simple solution is to use a first-come, first-served (FCFS) 
ordering, so that the process that has been waiting the longest is resumed first. For this 
purpose, the conditional-wait construct can be used. This construct has theform 

x.wait(c); 

where c is an integer expression that is evaluated when the wait() operation is executed. 
The value of c, which is called a priority number, is then stored with the name of the 
process that is suspended. When x.signal() is executed, the process with the smallest 
priority number is resumednext. 

 



 

 

 
 

​​ The Resource Allocator monitor shown in the above Figure, which controls 

the allocation of a single resource among competingprocesses. 

​​ A process that needs to access the resource in question must observe the 

following sequence: 

R.acquire(t); 
... 
access the resource; 
... 
R.release(); 

where R is an instance of type ResourceAllocator. 

​​ The monitor concept cannot guarantee that the preceding access sequence will 
be observed. In particular, the following problems can occur: 

​​ A process might access a resource without first gaining access permission to 
the resource. 

​​ A process might never release a resource once it has been granted access to 

the resource. 

​​ A process might attempt to release a resource that it neverrequested. 

​​ A process might request the same resource twice (without first releasing 

the resource). 

 



 

QUESTION BANK 
 
 

1.​ What are semaphores? Explain two primitive semaphore operations. What are its advantages? 

2.​ Explain any one synchronization problem for testing newly proposed sync scheme 

3.​ Explain three requirements that a solution to critical –section problem must satisfy. 
4.​ State Dining Philosopher’s problem and give a solution using semaphores. Write structure of 

philosopher. 

5.​ What do you mean by binary semaphore and counting semaphore? With C struct, explain 

implementation of wait() and signal. Semaphore as General Synchronization Tool. 

6.​ Describe term monitor. Explain solution to dining philosophers. 

7.​ What are semaphores? Explain solution to producer-cons umer problem using semaphores 

8.​ What is critical section ? Explain the various methods to implement process synchronization. 

9.​ Explain the various classical synchronization problems. 

 
DEADLOCKS 

 
A process requests resources, if the resources are not available at that time, the process enters a 
waiting state. Sometimes, a waiting process is never again able to change state, because the 
resources it has requested are held by other waiting processes. This situation is called a 
Deadlock. 

 
SYSTEM MODEL 

 

●​ A system consists of a finite number of resources to be distributed among a number of 
competing processes. The resources are partitioned into several types, each consisting of 
some number of identical instances. Memory space, CPU cycles, files, and I/0 devices 
are examples of resource types. 

●​ A process must request a resource before using it and must release the resource after 
using it. A process may request as many resources as it requires carrying out its 
designated task. The number of resources requested may not exceed the total number of 
resources available in the system. 

 
Under the normal mode of operation, a process may utilize a resource in only the following 
sequence: 

1.​ Request: The process requests the resource. If the request cannot be granted 
immediately, then the requesting process must wait until it can acquire the 
resource. 

2.​ Use: The process can operate on the resource. 
3.​ Release: The process releases the resource. 

 
A set of processes is in a deadlocked state when every process in the set is waiting for an event 

 



 

that can be caused only by another process in the set. The events with which we are mainly 
concerned here are resource acquisition and release. The resources may be either physical 
resources or logical resources 

 
To illustrate a deadlocked state, consider a system with three CD RW drives. 
Suppose each of three processes holds one of these CD RW drives. If each process now 
requests another drive, the three processes will be in a deadlocked state. 
Each is waiting for the event "CD RW is released," which can be caused only by one of the 
other waiting processes. This example illustrates a deadlock involving the same resource type. 

 



 

Deadlocks may also involve different resource types. For example, consider a system with one 
printer and one DVD drive. Suppose that process Pi is holding the DVD and process Pj is 
holding the printer. If Pi requests the printer and Pj requests the DVD drive, a deadlock occurs. 

 
 

DEADLOCK CHARACTERIZATION 
 
Necessary Conditions 

 

A deadlock situation can arise if the following four conditions hold simultaneously in a system: 
 

1.​ Mutual exclusion: At least one resource must be held in a non-sharable mode, that is, 
only one process at a time can use the resource. If another process requests that resource, 
the requesting process must be delayed until the resource has been released. 

 
2.​ Hold and wait: A process must be holding at least one resource and waiting to acquire 

additional resources that are currently being held by other processes. 
 

3.​ No preemption: Resources cannot be preempted; that is, a resource can be released only 
voluntarily by the process holding it, after that process has completed its task. 

 
4.​ Circular wait: A set {P0, Pl, ... , Pn} of waiting processes must exist such that Po is 

waiting for a resource held by P1, P1 is waiting for a resource held by P2, ... , Pn-1 is 
waiting for a resource held by Pn and Pn is waiting for a resource held by Po. 

 
Resource-Allocation Graph 

 

Deadlocks can be described in terms of a directed graph called System Resource-Allocation 
Graph 

 
The graph consists of a set of vertices V and a set of edges E. The set of vertices V is 
partitioned into two different types of nodes: 

●​ P = {P1, P2, ...,Pn}, the set consisting of all the active processes in the system. 
●​ R = {R1, R2, ..., Rm} the set consisting of all resource types in the system. 

 
A directed edge from process Pi to resource type Rj is denoted by Pi → Rj it signifies that 
process Pi has requested an instance of resource type Rj and is currently waiting for that 
resource. 
A directed edge from resource type Rj to process Pi is denoted by Rj → Pi it signifies that an 
instance of resource type Rj has been allocated to process Pi. 

●​ A directed edge Pi → Rj is called a Request Edge. 
●​ A directed edge Rj → Pi is called an Assignment Edge. 

 



 

Pictorially each process Pi as a circle and each resource type Rj as a rectangle. Since resource 
type Rj may have more than one instance, each instance is represented as a dot within the 
rectangle. 
A request edge points to only the rectangle Rj, whereas an assignment edge must also designate 
one of the dots in the rectangle. 

 
When process Pi requests an instance of resource type Rj, a request edge is inserted in the 
resource-allocation graph. When this request can be fulfilled, the request edge is 
instantaneously transformed to an assignment edge. When the process no longer needs access to 
the resource, it releases the resource; as a result, the assignment edge is deleted. 

 
The resource-allocation graph shown in Figure depicts the following situation. 

 

The sets P, K and E: 
●​ P = {P1, P2, P3} 
●​ R= {R1, R2, R3, R4} 
●​ E = {Pl →Rl, P2 → R3, Rl → P2, R2 → P2, R2 → P1, R3 → P3 } 

Resource instances: 
●​ One instance of resource type R1 

●​ Two instances of resource type R2 

●​ One instance of resource type R3 

●​ Three instances of resource type R4 

Process states: 
●​ Process P1 is holding an instance of resource type R2 and is waiting for an instance of 

resource type R1. 
●​ Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an 

instance of R3. 
●​ Process P3 is holding an instance of R3. 

 



 

If the graph does contain a cycle, then a deadlock may exist. 
 

●​ If each resource type has exactly one instance, then a cycle implies that a deadlock has 
occurred. If the cycle involves only a set of resource types, each of which has only a 
single instance, then a deadlock has occurred. Each process involved in the cycle is 
deadlocked. 

●​ If each resource type has several instances, then a cycle does not necessarily imply that 
a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a 
sufficient condition for the existence of deadlock. 

 
 
To illustrate this concept, the resource-allocation graph depicted in below figure: 
Suppose that process P3 requests an instance of resource type R2. Since no resource instance is 
currently available, a request edge P3 → R2 is added to the graph. At this point, two minimal 
cycles exist in the system: 

1. P1 →R1 → P2 → R3 → P3 → R2→P1 
2. P2 →R3 → P3 → R2 → P2 

 

Figure: Resource-allocation graph with a deadlock. 
 
Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is 
held by process P3. Process P3 is waiting for either process P1 or process P2 to release resource 
R2. In addition, process P1 is waiting for process P2 to release resource R1. 

 
Consider the resource-allocation graph in below Figure. In this example also have a cycle: 

P1→R1→P3→R2→P1 
 

Figure: Resource-allocation graph with a cycle but no deadlock 

 



 

However, there is no deadlock. Observe that process P4 may release its instance of resource 
type R2. That resource can then be allocated to P3, breaking the cycle. 

 
 
 

METHODS FOR HANDLING DEADLOCKS 
 

The deadlock problem can be handled in one of three ways: 
1.​ Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter 

a deadlocked state. 
2.​ Allow the system to enter a deadlocked state, detect it, and recover. 
3.​ Ignore the problem altogether and pretend that deadlocks never occur in the system. 

 
To ensure that deadlocks never occur, the system can use either deadlock prevention or a 
deadlock-avoidance scheme. 

 

Deadlock prevention provides a set of methods for ensuring that at least one of the necessary 
conditions cannot hold. These methods prevent deadlocks by constraining how requests for 
resources can be made. 

 
Deadlock-avoidance requires that the operating system be given in advance additional 
information concerning which resources a process will request and use during its lifetime. With 
this additional knowledge, it can decide for each request whether or not the process should wait. 
To decide whether the current request can be satisfied or must be delayed, the system must 
consider the resources currently available, the resources currently allocated to each process, and 
the future requests and releases of each process 

 
If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, 
then a deadlock situation may arise. In this environment, the system can provide an algorithm 
that examines the state of the system to determine whether a deadlock has occurred and an 
algorithm to recover from the deadlock. 

 
In the absence of algorithms to detect and recover from deadlocks, then the system is in a 
deadlock state yet has no way of recognizing what has happened. In this case, the undetected 
deadlock will result in deterioration of the system's performance, because resources are being 
held by processes that cannot run and because more and more processes, as they make requests 
for resources, will enter a deadlocked state. Eventually, the system will stop functioning and 
will need to be restarted manually. 

 



 

DEADLOACK PREVENTION 
 

Deadlock can be prevented by ensuring that at least one of the four necessary conditions cannot 
hold. 

 
Mutual Exclusion 

●​ The mutual-exclusion condition must hold for non-sharable resources. Sharable 
resources, do not require mutually exclusive access and thus cannot be involved in a 
deadlock. 

●​ Ex: Read-only files are example of a sharable resource. If several processes attempt to 
open a read-only file at the same time, they can be granted simultaneous access to the 
file. A process never needs to wait for a sharable resource. 

●​ Deadlocks cannot prevent by denying the mutual-exclusion condition, because some 
resources are intrinsically non-sharable. 

 
Hold and Wait 

To ensure that the hold-and-wait condition never occurs in the system, then guarantee that, 
whenever a process requests a resource, it does not hold any other resources. 

●​ One protocol that can be used requires each process to request and be allocated all its 
resources before it begins execution. 

●​ Another protocol allows a process to request resources only when it has none. A process 
may request some resources and use them. Before it can request any additional 
resources, it must release all the resources that it is currently allocated. 

 

Ex: 
 

●​ Consider a process that copies data from a 
DVD drive to a file on disk, sorts the file, 
and then prints the results to a printer. If all 
resources must be requested at the 
beginning of the process, then the process 
must initially request the DVD drive, disk 
file, and printer. It will hold the printer for 
its entire execution, even though it needs 
the printer only at the end. 

●​ The second method allows the process to 
request initially only the DVD drive and 
disk file. It copies from the DVD drive to 
the disk and then releases both the DVD 
drive and the disk file. The process must 
then again request the disk file and the 
printer. After copying the disk file to the 
printer, it releases these two resources and 
terminates. 

 
 

The two main disadvantages of these protocols: 
1.​ Resource utilization may be low, since resources may be allocated but unused for a long 

period. 
2.​ Starvation is possible. 

 



 

No Preemption 
The third necessary condition for deadlocks is that there be no preemption of resources that 
have already been allocated. 

 
To ensure that this condition does not hold, the following protocols can be used: 

●​ If a process is holding some resources and requests another resource that cannot be 
immediately allocated to it, then all resources the process is currently holding are 
preempted. 

●​ The preempted resources are added to the list of resources for which the process is 
waiting. The process will be restarted only when it can regain its old resources, as well 
as the new ones that it is requesting. 

 
If a process requests some resources, first check whether they are available. If they are, allocate 
them. 
If they are not available, check whether they are allocated to some other process that is waiting 
for additional resources. If so, preempt the desired resources from the waiting process and 
allocate them to the requesting process. 
If the resources are neither available nor held by a waiting process, the requesting process must 
wait. While it is waiting, some of its resources may be preempted, but only if another process 
requests them. 
A process can be restarted only when it is allocated the new resources it is requesting and 
recovers any resources that were preempted while it was waiting. 

 
Circular Wait 

One way to ensure that this condition never holds is to impose a total ordering of all resource 
types and to require that each process requests resources in an increasing order of enumeration. 

 
To illustrate, let R = {R1, R2, ... , Rm} be the set of resource types. Assign a unique integer 
number to each resource type, which allows to compare two resources and to determine 
whether one precedes another in ordering. Formally, it defined as a one-to-one function 
F: R ->N, where N is the set of natural numbers. 

 
Example: if the set of resource types R includes tape drives, disk drives, and printers, then the 
function F might be defined as follows: 

F (tape drive) = 
1 F (disk drive) 
= 5 F (printer) = 
12 

 
Now consider the following protocol to prevent deadlocks. Each process can request resources 
only in an increasing order of enumeration. That is, a process can initially request any number 
of instances of a resource type -Ri. After that, the process can request instances of resource type 
Rj if and only if F(Rj) > F(Ri). 

 



 

 
DEADLOCK AVOIDANCE 

 
●​ To avoid deadlocks an additional information is required about how resources are to be 

requested. With the knowledge of the complete sequence of requests and releases for 
each process, the system can decide for each request whether or not the process should 
wait in order to avoid a possible future deadlock 

●​ Each request requires that in making this decision the system consider the resources 
currently available, the resources currently allocated to each process, and the future 
requests and releases of each process. 

●​ The various algorithms that use this approach differ in the amount and type of 
information required. The simplest model requires that each process declare the 
maximum number of resources of each type that it may need. Given this a priori 
information, it is possible to construct an algorithm that ensures that the system will 
never enter a deadlocked state. Such an algorithm defines the deadlock-avoidance 
approach. 

 
Safe State 

 

●​ Safe state: A state is safe if the system can allocate resources to each process (up to its 
maximum) in some order and still avoid a deadlock. A system is in a safe state only if 
there exists a safe sequence. 

 
●​ Safe sequence: A sequence of processes <P1, P2, ... , Pn> is a safe sequence for the 

current allocation state if, for each Pi, the resource requests that Pi can still make can be 
satisfied by the currently available resources plus the resources held by all Pj, with j <i. 

 
In this situation, if the resources that Pi needs are not immediately available, then Pi can wait 
until all Pj have finished. When they have finished, Pi can obtain all of its needed resources, 
complete its designated task, return its allocated resources, and terminate. When Pi terminates, 
Pi+1 can obtain its needed resources, and so on. If no such sequence exists, then the system 
state is said to be unsafe. 

 
A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all 
unsafe states are deadlocks as shown in figure. An unsafe state may lead to a deadlock. As long 
as the state is safe, the operating system can avoid unsafe states 

 



 

 

 
 

Figure: Safe, unsafe, and deadlocked state spaces. 
 

Resource-Allocation-Graph Algorithm 
 

●​ If a resource-allocation system has only one instance of each resource type, then a 
variant of the resource-allocation graph is used for deadlock avoidance. 

●​ In addition to the request and assignment edges, a new type of edge is introduced, called 
a claim edge. 

●​ A claim edge Pi ->Rj indicates that process Pi may request resource Rj at some time in 
the future. This edge resembles a request edge in direction but is represented in the 
graph by a dashed line. 

●​ When process Pi requests resource Rj, the claim edge Pi ->Rj is converted to a request 
edge. When a resource Rj is released by Pi the assignment edge Rj->Pi is reconverted to 
a claim edge Pi->Rj. 

 
Figure: Resource-allocation graph for deadlock avoidance. 

 
Note that the resources must be claimed a priori in the system. That is, before process Pi starts 
executing, all its claim edges must already appear in the resource-allocation graph. 
We can relax this condition by allowing a claim edge Pi ->Rj to be added to the graph only if 
all the edges associated with process Pi are claim edges. 

 
Now suppose that process Pi requests resource Rj. The request can be granted only if 
converting the request edge Pi ->Rj to an assignment edge Rj->Pi does not result in the 
formation of a cycle in the resource-allocation graph. 

 



 

There is need to check for safety by using a cycle-detection algorithm. An algorithm for 
detecting a cycle in this graph requires an order of n2 operations, where n is the number of 
processes in the system. 

●​ If no cycle exists, then the allocation of the resource will leave the system in a safe state. 
●​ If a cycle is found, then the allocation will put the system in an unsafe state. In that case, 

process Pi will have to wait for its requests to be satisfied. 
 
To illustrate this algorithm, consider the resource-allocation graph as shown above. Suppose 
that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action 
will create a cycle in the graph. 
A cycle, indicates that the system is in an unsafe state. If P1 requests R2, and P2 requests R1, 
then a deadlock will occur. 

 
Figure: An unsafe state in a resource-allocation graph 

 
 
 

Banker's Algorithm 
 
The Banker’s algorithm is applicable to a resource allocation system with multiple instances of 
each resource type. 

●​ When a new process enters the system, it must declare the maximum number of 
instances of each resource type that it may need. This number may not exceed the total 
number of resources in the system. 

●​ When a user requests a set of resources, the system must determine whether the 
allocation of these resources will leave the system in a safe state. If it will, the resources 
are allocated; otherwise, the process must wait until some other process releases enough 
resources. 

 



 

To implement the banker's algorithm the following data structures are used. 
 

Let n = number of processes, and m = number of resources types 
 
Available: A vector of length m indicates the number of available resources of each type. If 
available [j] = k, there are k instances of resource type Rj available. 

 
Max: An n x m matrix defines the maximum demand of each process. If Max [i,j] = k, then 
process Pi may request at most k instances of resource type Rj 

 
Allocation: An n x m matrix defines the number of resources of each type currently allocated to 
each process. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj 

 
Need: An n x m matrix indicates the remaining resource need of each process. If Need[i,j] = k, 
then Pi may need k more instances of Rj to complete its task. 

 
Need [i,j] = Max[i,j] – Allocation [i,j] 

 
 

Safety Algorithm 
 

The algorithm for finding out whether or not a system is in a safe state. This algorithm can be 
described as follows: 

 
1.​ Let Work and Finish be vectors of length m and n, 

respectively. Initialize: Work = Available 
Finish [i] = false for i = 0, 1,…,n- 1 

 
2.​Find an index i such that both: 

(a)​Finish[i] = false 

(b)​Needi≤ Work 

If no such i exists, go to step 4 
 

3.​ Work = Work + Allocationi 

Finish[i] = true 
go to step 2 

 
4.​If Finish [i] == true for all i, then the system is in a safe state 

This algorithm may require an order of m x n2 operations to determine whether a state is safe. 

 



 

Resource-Request Algorithm 
 
The algorithm for determining whether requests can be safely granted. 
Let Requesti be the request vector for process Pi. If Requesti [j] == k, then process Pi wants k 
instances of resource type Rj. When a request for resources is made by process Pi, the following 
actions are taken: 

 
1.​ If Requesti≤Needigo to step 2. Otherwise, raise error condition, since process has 

exceeded its maximum claim 
 
2.​If Requesti≤Available, go to step 3. Otherwise Pi must wait, since resources are not available 

 
3.​ Have the system pretend to allocate requested resources to Pi by modifying the 
state as follows: 

Available = Available – Request; 
Allocationi= Allocationi + Requesti; 
Needi=Needi – Requesti; 

 
If safe ⇒ the resources are allocated to Pi 

If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored 

 
 

Example 
 

Consider a system with five processes Po through P4 and three resource types A, B, and C. 
Resource type A has ten instances, resource type B has five instances, and resource type C has 
seven instances. Suppose that, at time T0the following snapshot of the system has been taken: 

 
 

 



 

The content of the matrix Need is defined to be Max - Allocation 
 

 

The system is currently in a safe state. Indeed, the sequence <P1, P3, P4, P2, P0> satisfies the 
safety criteria. 

 
Suppose now that process P1 requests one additional instance of resource type A and two 
instances of resource type C, so Request1 = (1,0,2). Decide whether this request can be 
immediately granted. 

 

Check that Request ≤ Available 

(1,0,2) ≤ (3,3,2) ⇒ true 
 
Then pretend that this request has been fulfilled, and the following new state is arrived. 

 

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety 
requirement. 

 



 

DEADLOCK DETECTION 

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, 
then a deadlock situation may occur. In this environment, the system may provide: 

●​ An algorithm that examines the state of the system to determine whether a deadlock 
has occurred 

●​ An algorithm to recover from the deadlock 
 

Single Instance of Each Resource Type 
 

●​ If all resources have only a single instance, then define a deadlock detection algorithm 
that uses a variant of the resource-allocation graph, called a wait-for graph. 

●​ This graph is obtained from the resource-allocation graph by removing the resource 
nodes and collapsing the appropriate edges. 

●​ An edge from Pi to Pj in a wait-for graph implies that process Pi is waiting for process Pj 

to release a resource that Pi needs. An edge Pi → Pj exists in a wait-for graph if and only 
if the corresponding resource allocation graph contains two edges Pi →Rq and Rq→Pi for 
some resource Rq. 

 
Example: In below Figure, a resource-allocation graph and the corresponding wait-for graph is 
presented. 

 
 

Figure: (a) Resource-allocation graph. (b) Corresponding wait-for graph. 

 
●​ A deadlock exists in the system if and only if the wait-for graph contains a cycle. To 

detect deadlocks, the system needs to maintain the wait-for graph and periodically 
invoke an algorithm that searches for a cycle in the graph. 

●​ An algorithm to detect a cycle in a graph requires an order of n2 operations, where n 
is the number of vertices in the graph. 

 



 

Several Instances of a Resource Type 
 

A deadlock detection algorithm that is applicable to several instances of a resource type. The 
algorithm employs several time-varying data structures that are similar to those used in the 
banker's algorithm. 

 
●​ Available: A vector of length m indicates the number of available resources of each 

type. 
●​ Allocation: Ann x m matrix defines the number of resources of each type currently 

allocated to each process. 
●​ Request: An n x m matrix indicates the current request of each process. If Request[i][j] 

equals k, then process P; is requesting k more instances of resource type Rj. 
 
 

Algorithm: 
 

1.​Let Work and Finish be vectors of length m and n, respectively Initialize: 
(a)​Work = Available 

(b)​ For i = 1,2, …, n, if Allocationi≠ 0, then Finish[i] = 
false; otherwise, Finish[i] = true 

 
2.​Find an index isuch that both: 

(a)​ Finish[i] == 
false 

(b)Requesti≤Work 
 

If no such i exists, go to step 4 
 
3.​Work = Work + Allocationi 

Finish[i] = true 
go to step 2 

 

4.​If Finish[i] == false, for some i, 1 ≤i≤n, then the system is in deadlock state. Moreover, if 
Finish[i] == false, then Pi is deadlocked 

 
Algorithm requires an order of O(m x n2) operations to detect whether the 
system is in deadlocked state 

 
 
Example of Detection Algorithm 

 
Consider a system with five processes Po through P4 and three resource types A, B, and C. 
Resource type A has seven instances, resource type B has two instances, and resource type C 
has six instances. Suppose that, at time T0, the following resource-allocation state: 

 



 

 

 
 

After executing the algorithm, Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for 
all i 

Suppose now that process P2 makes one additional request for an instance of type C. The 
Request matrix is modified as follows: 

The system is now deadlocked. Although we can reclaim the resources held by process Po, the 
number of available resources is not sufficient to fulfill the requests of the other processes. 
Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4. 

 
Detection-Algorithm Usage 

 

The detection algorithm can be invoked on two factors: 
1.​ How often is a deadlock likely to occur? 
2.​ How many processes will be affected by deadlock when it happens? 

 
If deadlocks occur frequently, then the detection algorithm should be invoked frequently. 
Resources allocated to deadlocked processes will be idle until the deadlock can be broken. 

 
If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph 
and so we would not be able to tell which of the many deadlocked processes “caused” the 
deadlock. 

 

 



 

RECOVERY FROM DEADLOCK 
 

The system recovers from the deadlock automatically. There are two options for breaking a 
deadlock one is simply to abort one or more processes to break the circular wait. The other is to 
preempt some resources from one or more of the deadlocked processes. 

 
Process Termination 

To eliminate deadlocks by aborting a process, use one of two methods. In both methods, the 
system reclaims all resources allocated to the terminated processes. 

 
1.​ Abort all deadlocked processes: This method clearly will break the deadlock cycle, but 

at great expense; the deadlocked processes may have computed for a long time, and the 
results of these partial computations must be discarded and probably will have to be 
recomputed later. 

2.​ Abort one process at a time until the deadlock cycle is eliminated: This method 
incurs considerable overhead, since after each process is aborted, a deadlock-detection 
algorithm must be invoked to determine whether any processes are still deadlocked. 

 
 
If the partial termination method is used, then we must determine which deadlocked process (or 
processes) should be terminated. Many factors may affect which process is chosen, including: 

 
1.​ What the priority of the process is 
2.​ How long the process has computed and how much longer the process will compute 

before completing its designated task 
3.​ How many and what types of resources the process has used. 
4.​ How many more resources the process needs in order to complete 
5.​ How many processes will need to be terminated? 
6.​ Whether the process is interactive or batch 

 
Resource Preemption 

 

To eliminate deadlocks using resource preemption, we successively preempt some resources 
from processes and give these resources to other processes until the deadlock cycle is broken. 
If preemption is required to deal with deadlocks, then three issues need to be addressed: 

 
1.​ Selecting a victim. Which resources and which processes are to be preempted? As in 

process termination, we must determine the order of preemption to minimize cost. Cost 
factors may include such parameters as the number of resources a deadlocked process is 
holding and the amount of time the process has thus far consumed during its execution. 

2.​ Rollback. If we preempt a resource from a process, what should be done with that 
process? Clearly, it cannot continue with its normal execution; it is missing some needed 
resource. We must roll back the process to some safe state and restart it from that state. 
Since it is difficult to determine what a safe state is, the simplest solution is a total 
rollback: abort the process and then restart it. 
 

 
 
 



 

 
3.​ Starvation. How do we ensure that starvation will not occur? That is, how can we 

guarantee that resources will not always be preempted from the same process?   
 
 

DEADLOCKS 
 

1.​ What are deadlocks? What are its characteristics? Explain the necessary conditions for 
its occurrence. 

2.​ Explain the process of recovery from deadlock. 
3.​ Describe RAG: 

i)​ With deadlock 
ii)​ With a cycle but no deadlock 

4.​ What is Resource Allocation Graph (RAG)? Explain how RAG is very useful 
in describing deadly embrace (dead lock ) by considering your own example. 

5.​ With the help of a system model, explain a deadlock and explain the necessary 
conditions that must hold simultaneously in a system for a deadlock to occur. 

6.​ Explain how deadlock can be prevented by considering four necessary conditions cannot 
hold. 

7.​ Using Banker's algorithm determines whether the system is in a safe state. 
8.​ How is a system recovered from deadlock? Explain the different methods used to 

recover from deadlock. 
9.​ Explain deadlock detection with algorithm and example 
10.​Define the terms: safe state and safe sequence. Give an algorithm to find whether or not 

a system is in a safe state. 
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