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MODULE 3
PROCESS SYNCHRONIZATION

A cooperating process is one that can affect or be affected by other processes

executing in the system. Cooperating processes can either directly share a logical
address space (that is, both code and data) or be allowed to share data only through
files or messages.

Concurrent access to shared data may result in data inconsistency. To maintain data

consistency, various mechanisms is required to ensure the orderly execution of
cooperating processes that share a logical address space.

Producer- Consumer Problem

A Producer process produces information that is consumed by consumer process.

To allow producer and consumer process to run concurrently, A Bounded Buffer can

be used where the items are filled in a buffer by the producer and emptied by the
consumer.

The original solution allowed at most BUFFER_SIZE - 1 item in the buffer at the

same time. To overcome this deficiency, an integer variable counter, initialized to 0
isadded.

counter is incremented every time when a new item is added to the buffer and is

decremented every time when one item removed from thebuffer.

The code for the producer process can be modified as follows:

while (true) |

/* produce an item and put in nextProduced®/ while
{counter == BUFFER_SIZE)
/1 do nothing
buffer [in] = nextProduced;
in=(in + 1) % BUFFER_SIZE;

countert+;

The code for the consumer process can be modified as follows:
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while (true) |
while (counter ==(1)
./ donothing
nextConsumed =buffer[out].
out = (out + 1) % BUFFER_SIZE;
counter--;
/* consume the item in nextConsumed */
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When the producer and consumer routines shown above are correct separately,
they may not function correctly when executed concurrently.

Suppose that the value of the variable counter is currently 5 and that the producer and
consumer processes execute the statements "counter++" and "counter--" concurrently.
The value of the variable counter may be 4, 5, or 6 but the only correct result is
counter == 5, which is generated correctly if the producer and consumer execute
separately.

The value of counter may be incorrect as shown below:

The statement counter++ could be implemented
as register 1= counter

register] = registerl + 1 counter

=register|

The statement counter-- could be implemented as
register2 =counter

register2 = register2 — 1 count =

register2

'

The concurrent execution of "counter++" and "counter--" is equivalent to a sequential
execution in which the lower-level statements presented previously are interleaved in some

arbitrary order. One such interleaving is

Consider this execution interleaving with “count = 5” initially:

SO: producer execute registerl=counter {register]l =
5} S1: producer execute register]l = registerl+1 {register] =
6} S2: consumer execute register2=counter {register2 =
5} S3: consumer execute register2 = register2-1 {register2 =
4} S4: producer execute counter=register1 {count =6}
S5: consumer execute counter=register2 {count =4}

It is arrived at the incorrect state "counter == 4", indicating that four buffers

are full, when, in fact, five buffers are full. If we reversed the order of the statements
at T4 and T5, we would arrive at the incorrect state "counter==6".

Definition : A situation where several processes access and
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manipulate the same data concurrently and the outcome of the execution depends on
the particular order in which the access takes place, is called a RaceCondition.

To guard against the race condition, ensure that only one process at a time can be

manipulating the variable counter. To make such a guarantee, the processes are
synchronized in some way.
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Consider a system consisting of n processes {Po, P1, ... ,Pn-1}.
Each process has a segment of code, called a critical section in which the process
may be changing common variables, updating a table, writing a file, and soon

e The important feature of the system is that, when one process is executing in its
critical section, no other process is to be allowed to execute in its critical section.
That is, no two processes are executing in their critical sections at the sametime.

e The critical-section problem is to design a protocol that the processes can use to
cooperate.

The general structure of a typical process Pi is shown in below figure.

Each process must request permission to enter its critical section. The section of

code implementing this request is the entry section.

The critical section may be followed by an exit section. The remaining code is the

reminder section.

do {

entry section

pritical condition

exit section

remainder condition

+ while (TRUE);

Figure: General structure of a typical process Pi

A solution to the critical-section problem must satisfy the following three requirements:

1. If process Pi is executing in its critical section, then no other
processes can be executing in their criticalsections.

2. If no process is executing in its critical section and some processes wish to
enter their critical sections, then only those processes that are not executing in their
remainder sections can participate in deciding which will enter its critical section
next, and this selection cannot be postponedindefinitely.
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3. There exists a bound, or limit, on the number of times that other
processes are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request isgranted.
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PETERSON'S SOLUTION

e This is a classic software-based solution to the critical-section problem. There are
no guarantees that Peterson's solution will work correctly on modern computer
architectures

e Peterson's solution provides a good algorithmic description of solving the critical-
section problem and illustrates some of the complexities involved in designing
software that addresses the requirements of mutual exclusion, progress, and
bounded waiting.

Peterson's solution is restricted to two processes that alternate execution between their
critical sections and remainder sections. The processes are numbered P, and P, or Pi and P,
where j = 1-1
Peterson's solution requires the two processes to share two data

items: int turn;

boolean flag[2];
° The variable turn indicates whose turn it is to enter its critical section. Ex:
if turn == 1, then process P; is allowed to execute in its criticalsection
° The flag array is used to indicate if a process is ready to enter its critical

section. Ex: if flag [i] is true, this value indicates that P; is ready to enter its
critical section.

do {
flag[i] = TRUE;
turn = J;
while (flag[j] && turn ==j)
; // do nothing
critical section
flag[i] = FALSE;

remainder section

b while (TRUE);

Figure: The structure of process P; in Peterson's solution

e To enter the critical section, process Pi first sets flag [i] to be true and then sets
turn to the value j, thereby asserting that if the other process wishes to enter the
critical section, it can doso.
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e [fboth processes try to enter at the same time, turn will be set to both i and j
at roughly the same time. Only one of these assignments will last, the other
will occur but will be over written immediately.
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e The eventual value of turn determines which of the two processes is allowed
to enter its critical sectionfirst

To prove that solution is correct, then we need to show that
1. Mutual exclusion ispreserved
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

Each pi enters its critical section only if either flag [j] == false or turn ==i.
If both processes can be executing in their critical sections at the same time,
then flag [0] == flag [1]==true.

e These two observations imply that Pi and Pj could not have successfully executed
their while statements at about the same time, since the value of turn can be either 0
or 1 but cannot be both. Hence, one of the processes (Pj) must have successfully
executed the while statement, whereas Pi had to execute at least one additional
statement ("turn==;").

e However, at that time, flag [j] == true and turn == j, and this condition will persist as
long as Pi is in its critical section, as a result, mutual exclusion ispreserved.

e A process Pi can be prevented from entering the critical section only if it is stuck in
the while loop with the condition flag [j] ==true and turn=== j; this loop is the only
onepossible.

e If Pj is not ready to enter the critical section, then flag [j] ==false, and Pi can enter
its criticalsection.

e If Pj has set flag [j] = true and is also executing in its while statement, then
either turn ===1 or turn ===j.

» Ifturn ==1, then Pi will enter the criticalsection.
= If turn==j, then Pj will enter the criticalsection.

e However, once Pj exits its critical section, it will reset flag [j] = false, allowing Pi
to enter its criticalsection.

If Pj resets flag [j] to true, it must also set turn to 1.

Thus, since Pi does not change the value of the variable turn while executing the
while statement, Pi will enter the critical section (progress) after at most one entry
by Pj (boundedwaiting).
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SYNCHRONIZATIONHARDWARE

e The solution to the critical-section problem requires a simple tool-alock.

e Race conditions are prevented by requiring that critical regions be protected by
locks. That is, a process must acquire a lock before entering a critical section and
it releases the lock when it exits the critical section

do |
acquire lock
critical section
release lock

remainder section
b while (TRUE);

Figure: Solution to the critical-section problem using locks.

e The critical-section problem could be solved simply in a uniprocessor
environment if interrupts are prevented from occurring while a shared variable
was being modified. In this manner, the current sequence of instructions would be
allowed to execute in order without preemption. No other instructions would be
run, so no unexpected modifications could be made to the sharedvariable.

e But this solution is not as feasible in a multiprocessor environment. Disabling
interrupts on a multiprocessor can be time consuming, as the message is passed to
all the processors. This message passing delays entry into each critical section,
and system efficiency decreases.

e Many modern computer systems provide special hardware instructions that
allowto test and modify the content of a word or to swap the contents of two
words atomically, that is, as one uninterruptibleunit.

e Special instructions such as TestAndSet () and Swap() instructions are used to
solve the critical-sectionproblem

® The TestAndSet () instruction can be defined as shown in Figure. The important
characteristic of this instruction is that it is executedatomically.

Definition:

booleanTestAndSet (boolean *target)

i
booleanry = *target;
*target = TRUE; return rv:

1
i
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Figure: The definition of the TestAndSet () instruction.
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e Thus, if two TestAndSet () instructions are executed simultaneously, they will be
executed sequentially in some arbitrary order. If the machine supports the TestAndSet
() instruction, then implementation of mutual exclusion can be done by declaring a
Boolean variable lock, initialized to false.

do {
while ( TestAndSet (&lock ))
; // do nothing
/| critical
section lock =FALSE;
// remaindersection
+ while (TRUE);
Figure: Mutual-exclusion implementation with TestAndSet ()

e The Swap() instruction, operates on the contents of two words, it is defined as
shown below

Definition:

void Swap (boolean *a, boolean *b)

boolean temp = *a;
o = *h:

*b = temp:

iy
]

Figure: The definition of the Swap () instruction
e Swap() it is executed atomically. If the machine supports the Swap() instruction, then
mutual exclusion can be provided as follows.
e A global Boolean variable lock is declared and is initialized to false. In addition, each
process has a local Boolean variable key. The structure of process Pi is shown in
below

do |
key = TRUE;
while ( key = TRUE) Swap
(&lock, &key );

i critical
section lock =FALSE;

i remainderscction
t while (TRUE):

Figure: Mutual-exclusion implementation with the Swap() instruction
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e These algorithms satisfy the mutual-exclusion requirement, they do not satisfy
the bounded- waiting requirement.

e Below algorithm using the TestAndSet () instruction that satisfies all the critical-
section requirements. The common data structures are

boolean
waiting[n];

boolean lock;

These data structures are initialized to false.

do {
waiting[i] = TRUE:
key = TRUE;
while (waiting[1] && key)
key = TestAndSet{ &lock); waiting|i]
= FALSE;

/! critical section j

=(i+1)%n;

while ((j 1= 1) && !waiting[i]) j
=(j+1)%n;

if (j==1)
lock = FALSE;

else

waiting[j] = FALSE;
/! remainder section
} while (TRUE);

Figure:Bounded-waiting mutual exclusion with TestAndSet ()
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Note that process Pi can enter its critical section only if either waiting [1] == false or
key ==false.

The value of key can become false only if the TestAndSet( ) isexecuted.

The first process to execute the TestAndSet( ) will find key== false; all others must
wait.

The variable waiting[i] can become false only if another process leaves its critical

section; only one waiting[i] is set to false, maintaining the mutual-exclusion
requirement.

Note that, the arguments presented for mutual exclusion also apply here, since a process
exiting the critical section either sets lock to false or sets waiting[j] to false. Both allow a
process that is waiting to enter its critical section to proceed.

Note that, when a process leaves its critical section, it scans the array waiting in
the cyclic ordering (i+1,1+2,...,n1,0,...,11).

It designates the first process in this ordering that is in the entry section (waiting[j]

==true) as the next one to enter the critical section. Any process waiting to enter its
critical section will thus do so within n - 1 turns.

SEMAPHORE

A semaphore is a synchronization tool is used solve various synchronization
problem and can be implementedefticiently.

Semaphore do not require busywaiting.

A semaphore S is an integer variable that, is accessed only through two standard

atomic operations: wait () and signal (). The wait () operation was originally
termed P and signal() was calledV.

wait (S) |
while S <=0
./l no-op
S--
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All modifications to the integer value of the semaphore in the wait () and signal()

operations must be executed indivisibly. That is, when one process modifies the
semaphore value, no other process can simultaneously modify that same semaphore
value.

Binary semaphore
The value of a binary semaphore can range only between 0 and1.

Binary semaphores are known as mutex locks, as they are locks that provide

mutual exclusion. Binary semaphores to deal with the critical-section problem for
multiple processes. Then processes share a semaphore, mutex, initialized to1

Each process Pi is organized as shown in below figure

do |
wait {mutex);
/{ Critical Section
signal {mutex);
{f remainder section
' while (TRUE);

Figure: Mutual-exclusion implementation with semaphores

Counting semaphore

The value of a counting semaphore can range over an unrestricteddomain.

Counting semaphores can be used to control access to a given resource
consisting of a finite number ofinstances.
The semaphore is initialized to the number of resources available. Each process

that wishes to use a resource performs a wait() operation on the semaphore.
When a process releases a resource, it performs a signal()operation.

When the count for the semaphore goes to 0, all resources are being used. After

that, processes that wish to use a resource will block until the count becomes
greater than 0.

Implementation
The main disadvantage of the semaphore definition requires busywaiting.

While a process is in its critical section, any other process that tries to enter

its critical section must loop continuously in the entry code.
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This continual looping is clearly a problem in a real multiprogramming

system, where a single CPU is shared among many processes.
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Busy waiting wastes CPU cycles that some other process might be able to use

productively. This type of semaphore is also called a spinlock because the process
"spins" while waiting for thelock.

Semaphore implementation with no busy waiting

The definition of the wait() and signal() semaphore operations ismodified.

When a process executes the wait () operation and finds that the semaphore value
1s not positive, it mustwait.
However, rather than engaging in busy waiting, the process can block itself. The

block operation places a process into a waiting queue associated with the
semaphore, and the state of the process is switched to the waiting state. Then
control is transferred to the CPU scheduler, which selects another process
toexecute.

A process that is blocked, waiting on a semaphore S, should be restarted when

some other process executes a signal() operation. The process is restarted by a
wakeup( ) operation, which changes the process from the waiting state to the ready
state. The process is then placed in the readyqueue.

To implement semaphores under this definition, we define a semaphore as a "C'

typedefstruct |
int value;

struct process *list;

I gemanhaore:
e apnnore,

struct:

Each semaphore has an integer value and a list of processes list. When a process

must wait on a semaphore, it is added to the list of processes. A signal() operation
removes one process from the list of waiting processes and awakens that process.

semaphore operation can now be defined as:

wait(semaphore *S) {
S-=value--;
if (S-=value < 0) {
dd this process to S-
=list; block();
b
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semaphore operation can now be defined as

s1gnal(semaphore *S) |
S->value++;

it (S-=value <= 0) {

remove a process P from S-=list;
wakeup(P);

The block() operation suspends the process that invokes it. The wakeup(P)

operation resumes the execution of a blocked process P. These two operations
are provided by the operating system as basic systemcalls.

In this implementation semaphore values may be negative. If a semaphore value

1s negative, its magnitude is the number of processes waiting on thatsemaphore.

Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a situation

where two or more processes are waiting indefinitely for an event that can be caused
only by one of the waiting processes. The event in question is the execution of a

signal( ) operation. When such a state is reached, these processes are said to be
deadlocked.

To illustrate this, consider a system consisting of two processes, Po and P1, each

accessing two semaphores, S and Q, set to the value 1

P, P,
wait(S); wait(Q);
wait(Q); wait(S);
sign.al(S); signal(Q);
signal(Q); signal(S);

Suppose that Po executes wait (S) and then P1 executes wait (Q). When Po

executes wait (Q), it must wait until P1 executes signal (Q). Similarly, when P1
executes wait (S), it must wait until Po executes signal(S). Since these signal()
operations camlot be executed, Po and P1 are deadlocked.



L= =
S S LTS

b=
W

Another problem related to deadlocks is indefinite blocking or starvation:

A situation in which processes wait indefinitely within the semaphore.

Indefinite blocking may occur if we remove processes from the list associated

with a semaphore in LIFO (last-in, first-out) order.

CLASSICAL PROBLEMS OF SYNCHRONIZATION
Bounded-BufferProblem

Readers and WritersProblem

Dining-PhilosophersProblem

Bounded-Buffer Problem

N buffers, each can hold one item
Semaphore mutexinitialized to the value 1
Semaphore full initialized to the value0

Semaphore empty initialized to the value N.

While (true)
{
/{ produce an item
wait (empty);
wait (mutex);
// add the item to the buffer
signal (mutex);
signal (full);

The structure of the producer process:

while (true)
{
wait (full);
wait (mutex);
// remove an item from buffer
signal (mutex);
signal (empty);
// consume the removed item

The structure of the consumerprocess:
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Readers-Writers Problem

while (true)

{

while (true)

{

A data set is shared among a number of concurrentprocesses

Readers — only read the data set; they do not perform anyupdates
Writers — can both read andwrite.

Problem — allow multiple readers to read at the same time. Only one single

writer can access the shared data at the sametime.

SharedData

Dataset

Semaphore mutexinitialized to 1.
Semaphore wrtinitialized tol.

Integer readcountinitialized to 0.

wait (wrt) ;
/f writing is performed

signal (wrt) ;

The structure of a writerprocess

wait (mutex) ;

readcount ++ 3

if (readcount = 1)
wait (wro) ;

signal (mutex)

/f reading is performed

wait (mutex) ;

readcount - -;

if (readcount = 0)
signal (wrt) ;

signal (mutex) ;

The structure of a readerprocess
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Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The philosophers
share a circular table surrounded by five chairs, each belonging to one philosopher. In the
center of the table is a bowl of rice, and the table is laid with five singlechopsticks.

Y

A philosopher gets hungry and tries to pick up the two chopsticks that are closest to her
(the chopsticks that are between her and her left and right neighbors). A philosopher
may pick up only one chopstick at a time. When a hungry philosopher has both her
chopsticks at the same time, she eats without releasing the chopsticks. When she is
finished eating, she puts down both chopsticks and starts thinkingagain.

It is a simple representation of the need to allocate several resources among several
processes in a deadlock-free and starvation-freemanner.

One simple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing a wait() operation on thatsemaphore.
She releases her chopsticks by executing the signal() operation on the appropriate
semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of
philosopher iis shown

While (true)

{
wait ( chopstick[i] );
wait ( chopStick[ (i+ 1) % 5] );
// eat
signal ( chopstick[i] );
signal (chopstick[ (i + 1) % 5] )
// think

Several possible remedies to the deadlock problem are replaced by:

e Allow at most four philosophers to be sitting simultaneously at thetable.
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e Allowaphilosophertopickupherchopsticksonlyifbothchopsticksareavailable.

e Use an asymmetric solution—that is, an odd-numbered philosopher picks up
first her left chopstick and then her right chopstick, whereas an even numbered

philosopher picks up her right chopstick and then her leftchopstick.

Correct use of semaphore operations:

signal (mutex) .... wait (mutex) : Replace signal with wait andvice-versa

wait (mutex) ... wait(mutex)

Omitting of wait (mutex) or signal (mutex) (orboth)

Monitor

An abstract data type—or ADT—encapsulates data with a set of functions to

operate on that data that are independent of any specific implementation of the ADT.

A

is an ADT that includes a set of programmer defined operations that

are provided with mutual exclusion within the monitor. The monitor type also
declares the variables whose values define the state of an instance of that type, along
with the bodies of functions that operate on those variables.

The monitor construct ensures that only one process at a time is active within the

monitor.

monitor monitor name

{

// shared variable declarations

procedure P1 (. . .) {

p T

procedure P2 (.. . ) {

}

procedure Pn (. . .} {

initialization code (.. .) {

}

Syntax of the monitor
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To have a powerful Synchronization schemes a condition construct is added to the

Monitor. So synchronization scheme can be defined with one or more variables of type
condition Two operations on a conditionvariable:
Condition x, y

The only operations that can be invoked on a condition variable are wait() and signal().

The operation
— a process that invokes the operation is suspended.
— resumes one of processes (if any) that invoked x.wait ()

Ot ansocinbed with | X—wi
¥, i Sonchisnig i el

Cp et niEES

*._  Ininafization "
x_&-i:adn_ o -

Fig: Monitor with Condition Variables
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Each plw bp ing

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [S];
void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)
self [i].wait;
3
void putdown (int i)
{
state[i] = THINKING;
// test left and right neighbors
test(@ + 4) % 5);
test( + 1) % 5);

void test (int i)
{

(S

if((state[(i+4)% S| !=EATING)& &(state[i|—HUNGRY)& &(state[(i+1)%S]|I=EATING))
{
state[i] = EATING ;
selffi].signal () ;
}
}
initialization code()

{

for (inti=0;i<5;i++)
state[i] = THINKING;

For each monitor, a semaphore mutex (initialized to 1) is provided. A process

must execute wait(mutex) before entering the monitor and must execute
signal(mutex) after leaving the monitor.

Since a signaling process must wait until the resumed process either leaves or

waits, an additional semaphore, next, is introduced, initialized to 0. The signaling
processes can use next to suspend themselves. An integer variable next count is
also provided to count the number of processes suspended on next. Thus ,each
external function F is replaced by
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wait(mutex);
body of F

if (next_count > 0)
signal (next};
else
signal (mutex) ;

For each condition x, we introduce a semaphore x sem and an integer variable

x count, both initialized to 0. The operation x.wait() can now be implemented
as

x_count++;
if (next_count > 0)
signal (next) ;
else
signal (mutex) ;
wait(x_sem);
x_count—-;

The operation x.signal() can be implementedas

if (x_count = 0) {
next.count++;
signal (x_sem) ;
wait(next):
next _count--;

If several processes are suspended on condition x, and an x.signal() operation is

executed by some process, then to determine which of the suspended processes should

be resumed next, one simple solution is to use a first-come, first-served (FCFS)

ordering, so that the process that has been waiting the longest is resumed first. For this

purpose, the conditional-wait construct can be used. This construct has theform
x.wait(c);

where c is an integer expression that is evaluated when the wait() operation is executed.
The value of ¢, which is called a priority number, is then stored with the name of the
process that is suspended. When x.signal() is executed, the process with the smallest
priority number is resumednext.
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monitor ResourcelAllocator

{

boolean busy;
condition x;

void acquire{int time) {
if (busy)
¥x.wait(time) ;
busy = TRUE;

}

void release() {
busy = FALSE;
%.signal () ;

)

initialization code(} {
busy = FALSE;

}
}

The Resource Allocator monitor shown in the above Figure, which controls
the allocation of a single resource among competingprocesses.

A process that needs to access the resource in question must observe the
following sequence:

R.acquire(t);
access the resource;

R.release();
where R is an instance of type ResourceAllocator.

The monitor concept cannot guarantee that the preceding access sequence will

be observed. In particular, the following problems can occur:

A process might access a resource without first gaining access permission to

the resource.

A process might never release a resource once it has been granted access to

the resource.

A process might attempt to release a resource that it neverrequested.

A process might request the same resource twice (without first releasing

the resource).
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A process requests resources, if the resources are not available at that time, the process enters a
waiting state. Sometimes, a waiting process is never again able to change state, because the
resources it has requested are held by other waiting processes. This situation is called a

QUESTION BANK

What are semaphores? Explain two primitive semaphore operations. What are its advantages?
Explain any one synchronization problem for testing newly proposed sync scheme

Explain three requirements that a solution to critical —section problem must satisfy.

State Dining Philosopher’s problem and give a solution using semaphores. Write structure of
philosopher.

What do you mean by binary semaphore and counting semaphore? With C struct, explain
implementation of wait() and signal. Semaphore as General Synchronization Tool.

Describe term monitor. Explain solution to dining philosophers.

What are semaphores? Explain solution to producer-cons umer problem using semaphores
What is critical section ? Explain the various methods to implement process synchronization.

Explain the various classical synchronization problems.

DEADLOCKS

Deadlock.

e A system consists of a finite number of resources to be distributed among a number of

SYSTEM MODEL

competing processes. The resources are partitioned into several types, each consisting of
some number of identical instances. Memory space, CPU cycles, files, and 1/0 devices

are examples of resource types.
A process must request a resource before using it and must release the resource

using it. A process may request as many resources as it requires carrying out its
designated task. The number of resources requested may not exceed the total number of

resources available in the system.

after

Under the normal mode of operation, a process may utilize a resource in only the following
sequence:

l.

A set of processes is in a deadlocked state when every process in the set is waiting for an event

Request: The process requests the resource. If the request cannot be granted
immediately, then the requesting process must wait until it can acquire the
resource.

Use: The process can operate on the resource.

Release: The process releases the resource.



concerned here are resource acquisition and release. The resources may be either physical
resources or logical resources

To illustrate a deadlocked state, consider a system with three CD RW drives.

Suppose each of three processes holds one of these CD RW drives. If each process now
requests another drive, the three processes will be in a deadlocked state.

Each is waiting for the event "CD RW is released," which can be caused only by one of the
other waiting processes. This example illustrates a deadlock involving the same resource type.



: e
printer and one DVD drive. Suppose that process Pi is holding the DVD and process P;j is
holding the printer. If Pirequests the printer and Pjrequests the DVD drive, a deadlock occurs.

DEADLOCK CHARACTERIZATION

el ary Londifion

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode, that is,
only one process at a time can use the resource. If another process requests that resource,
the requesting process must be delayed until the resource has been released.

2. Hold and wait: A process must be holding at least one resource and waiting to acquire
additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be released only
voluntarily by the process holding it, after that process has completed its task.

4. Circular wait: A set {Po, P, ... , Pn} of waiting processes must exist such that Po is
waiting for a resource held by Pi, P1 is waiting for a resource held by P2, ..., Pn-11s

waiting for a resource held by Pnand Pnis waiting for a resource held by Po.

Recovrce-Allocation Graph

Deadlocks can be described in terms of a directed graph called System Resource-Allocation
Graph

The graph consists of a set of vertices V and a set of edges E. The set of vertices V is
partitioned into two different types of nodes:
e P = {P1, P2, ...,Pn}, the set consisting of all the active processes in the system.

e R ={Ri, Ry, ..., Rm} the set consisting of all resource types in the system.

A directed edge from process Pi to resource type Rjis denoted by Pi — Rj it signifies that
process Pi has requested an instance of resource type Rj and is currently waiting for that
resource.
A directed edge from resource type Rjto process Piis denoted by Rj — Piit signifies that an
instance of resource type Rjhas been allocated to process Pi.

e A directed edge Pi — Rjis called a Request Edge.

e A directed edge Rj— Piis called an Assignment Edge.



type Rj may have more than one instance, each instance is represented as a dot within the

rectangle.

A request edge points to only the rectangle Rj, whereas an assignment edge must also designate

one of the dots in the rectangle.

When process Pi requests an instance of resource type Rj, a request edge is inserted in the
resource-allocation graph. When this request can be fulfilled, the request edge is
instantaneously transformed to an assignment edge. When the process no longer needs access to

the resource, it releases the resource; as a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure depicts the following situation.

@ ®
@
R,
The sets P, K and E:
P = {P1, P2, P3}
R= {R1, Rz, R3, R4}

E = {Pi—Ri, P2— R3, Ri— P2, R2— P2, R2— P1, R3 — P3}

Resource instances:

One instance of resource type Ri
Two instances of resource type R2

One instance of resource type R3

Three instances of resource type R4

Process states:

Process P1is holding an instance of resource type R2 and is waiting for an instance of
resource type Ri.

Process P2 1s holding an instance of R1and an instance of Rz and is waiting for an
instance of Rs.

Process P3is holding an instance of Ra.
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e If each resource type has exactly one instance, then a cycle implies that a deadlock has
occurred. If the cycle involves only a set of resource types, each of which has only a
single instance, then a deadlock has occurred. Each process involved in the cycle is
deadlocked.

e If each resource type has several instances, then a cycle does not necessarily imply that
a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a
sufficient condition for the existence of deadlock.

To illustrate this concept, the resource-allocation graph depicted in below figure:
Suppose that process P3 requests an instance of resource type R2. Since no resource instance is
currently available, a request edge P3 — R2 is added to the graph. At this point, two minimal
cycles exist in the system:

1.P1 -R1 - P2 - R3 —- P3 - R2—PI1

2.P2 5R3 - P3 - R2 — P2

\

R, °

Ry
Figure: Resource-allocation graph with a deadlock.

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is
held by process P3. Process P3 is waiting for either process P1 or process P2 to release resource
R2. In addition, process P1 is waiting for process P2 to release resource R1.

Consider the resource-allocation graph in below Figure. In this example also have a cycle:
P1—-R1—-P3—-R2—Pl1

" D

L

Py

—®

Figure: Resource-allocation graph with a cycle but no deadlock
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type R2. That resource can then be allocated to P3, breakmg the cycle.

METHODS FOR HANDLING DEADLOCKS

The deadlock problem can be handled in one of three ways:

1. Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter
a deadlocked state.
2. Allow the system to enter a deadlocked state, detect it, and recover.

3. Ignore the problem altogether and pretend that deadlocks never occur in the system.

To ensure that deadlocks never occur, the system can use either deadlock prevention or a
deadlock-avoidance scheme.

Deadlock prevention provides a set of methods for ensuring that at least one of the necessary
conditions cannot hold. These methods prevent deadlocks by constraining how requests for
resources can be made.

Deadlock-avoidance requires that the operating system be given in advance additional

information concerning which resources a process will request and use during its lifetime. With
this additional knowledge, it can decide for each request whether or not the process should wait.
To decide whether the current request can be satisfied or must be delayed, the system must
consider the resources currently available, the resources currently allocated to each process, and
the future requests and releases of each process

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may arise. In this environment, the system can provide an algorithm
that examines the state of the system to determine whether a deadlock has occurred and an
algorithm to recover from the deadlock.

In the absence of algorithms to detect and recover from deadlocks, then the system is in a
deadlock state yet has no way of recognizing what has happened. In this case, the undetected
deadlock will result in deterioration of the system's performance, because resources are being
held by processes that cannot run and because more and more processes, as they make requests
for resources, will enter a deadlocked state. Eventually, the system will stop functioning and
will need to be restarted manually.
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DEADTOACK PREVENTION

Deadlock can be prevented by ensuring that at least one of the four necessary conditions cannot
hold.

Mutual Exclusion

e The mutual-exclusion condition must hold for non-sharable resources. Sharable
resources, do not require mutually exclusive access and thus cannot be involved in a

deadlock.

e Ex: Read-only files are example of a sharable resource. If several processes attempt to
open a read-only file at the same time, they can be granted simultaneous access to the
file. A process never needs to wait for a sharable resource.

e Deadlocks cannot prevent by denying the mutual-exclusion condition, because some

resources are intrinsically non-sharable.

Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, then guarantee that,

whenever a process requests a resource, it does not hold any other resources.

Ex:

e One protocol that can be used requires each process to request and be allocated all its

resources before it begins execution.

e Another protocol allows a process to request resources only when it has none. A process
may request some resources and use them. Before it can request any additional
resources, it must release all the resources that it is currently allocated.

e (onsider a process that copies data from a

DVD drive to a file on disk, sorts the file,
and then prints the results to a printer. If all
resources must be requested at the
beginning of the process, then the process
must initially request the DVD drive, disk
file, and printer. It will hold the printer for
its entire execution, even though it needs
the printer only at the end.

The second method allows the process to
request initially only the DVD drive and
disk file. It copies from the DVD drive to
the disk and then releases both the DVD
drive and the disk file. The process must
then again request the disk file and the
printer. After copying the disk file to the
printer, it releases these two resources and
terminates.

The two main disadvantages of these protocols:
1. Resource utilization may be low, since resources may be allocated but unused for a long

period.
2. Starvation is possible.
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No Preemption
The third necessary condition for deadlocks is that there be no preemption of resources that
have already been allocated.

To ensure that this condition does not hold, the following protocols can be used:

e If a process is holding some resources and requests another resource that cannot be
immediately allocated to it, then all resources the process is currently holding are
preempted.

e The preempted resources are added to the list of resources for which the process is
waiting. The process will be restarted only when it can regain its old resources, as well
as the new ones that it is requesting.

If a process requests some resources, first check whether they are available. If they are, allocate
them.

If they are not available, check whether they are allocated to some other process that is waiting
for additional resources. If so, preempt the desired resources from the waiting process and
allocate them to the requesting process.

If the resources are neither available nor held by a waiting process, the requesting process must
wait. While it is waiting, some of its resources may be preempted, but only if another process
requests them.

A process can be restarted only when it is allocated the new resources it is requesting and
recovers any resources that were preempted while it was waiting.

Circular Wait
One way to ensure that this condition never holds is to impose a total ordering of all resource
types and to require that each process requests resources in an increasing order of enumeration.

To illustrate, let R = {R1, R2, ... , Rm} be the set of resource types. Assign a unique integer
number to each resource type, which allows to compare two resources and to determine
whether one precedes another in ordering. Formally, it defined as a one-to-one function

F: R ->N, where N is the set of natural numbers.

Example: if the set of resource types R includes tape drives, disk drives, and printers, then the
function F might be defined as follows:

F (tape drive) =

1 F (disk drive)

= 5 F (printer) =

12

Now consider the following protocol to prevent deadlocks. Each process can request resources
only in an increasing order of enumeration. That is, a process can initially request any number
of instances of a resource type -Ri. After that, the process can request instances of resource type
Rjif and only if F(R;) > F(Ri).
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DEADLOCK AVOIDANCE

e To avoid deadlocks an additional information is required about how resources are to be
requested. With the knowledge of the complete sequence of requests and releases for
each process, the system can decide for each request whether or not the process should
wait in order to avoid a possible future deadlock

e Each request requires that in making this decision the system consider the resources
currently available, the resources currently allocated to each process, and the future
requests and releases of each process.

e The various algorithms that use this approach differ in the amount and type of
information required. The simplest model requires that each process declare the
maximum number of resources of each type that it may need. Given this a priori
information, it is possible to construct an algorithm that ensures that the system will
never enter a deadlocked state. Such an algorithm defines the deadlock-avoidance
approach.

Safe State

e Safe state: A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. A system is in a safe state only if
there exists a safe sequence.

e Safe sequence: A sequence of processes <P1, P2, ..., Pn> is a safe sequence for the
current allocation state if, for each P1i, the resource requests that Pi can still make can be
satisfied by the currently available resources plus the resources held by all Pj, with j <i.

In this situation, if the resources that Pi needs are not immediately available, then Pi can wait
until all Pj have finished. When they have finished, Pi can obtain all of its needed resources,
complete its designated task, return its allocated resources, and terminate. When Pi terminates,
Pi+1 can obtain its needed resources, and so on. If no such sequence exists, then the system
state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all
unsafe states are deadlocks as shown in figure. An unsafe state may lead to a deadlock. As long
as the state is safe, the operating system can avoid unsafe states
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unsafe
deadlock

ﬂ

Figure: Safe, unsafe, and deadlocked state spaces.

Resource-Allocation-Graph Algorithm

e If aresource-allocation system has only one instance of each resource type, then a
variant of the resource-allocation graph is used for deadlock avoidance.

e In addition to the request and assignment edges, a new type of edge is introduced, called
a claim edge.

e A claim edge Pi ->Rj indicates that process Pi may request resource Rj at some time in
the future. This edge resembles a request edge in direction but is represented in the
graph by a dashed line.

e When process Pi requests resource Rj, the claim edge Pi ->Rj is converted to a request
edge. When a resource Rj is released by Pi the assignment edge Rj->Pi is reconverted to
a claim edge Pi->Rj.

A,

Figure: Resource-allocation graph for deadlock avoidance.

Note that the resources must be claimed a priori in the system. That is, before process Pi starts
executing, all its claim edges must already appear in the resource-allocation graph.

We can relax this condition by allowing a claim edge Pi ->Rj to be added to the graph only if
all the edges associated with process Pi are claim edges.

Now suppose that process Pi requests resource Rj. The request can be granted only if
converting the request edge Pi ->Rj to an assignment edge Rj->Pi does not result in the
formation of a cycle in the resource-allocation graph.



detecting a cycle in this graph requires an order of n? operations, where n is the number of

processes in the system.
e Ifno cycle exists, then the allocation of the resource will leave the system in a safe state.

e If a cycle is found, then the allocation will put the system in an unsafe state. In that case,
process Pi will have to wait for its requests to be satisfied.

To illustrate this algorithm, consider the resource-allocation graph as shown above. Suppose
that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action
will create a cycle in the graph.
A cycle, indicates that the system is in an unsafe state. If P1 requests R2, and P2 requests R1,
then a deadlock will occur.

R,

Figure: An unsafe state in a resource-allocation graph

Banker's Algorithm

The Banker’s algorithm is applicable to a resource allocation system with multiple instances of
each resource type.

e When a new process enters the system, it must declare the maximum number of
instances of each resource type that it may need. This number may not exceed the total
number of resources in the system.

e When a user requests a set of resources, the system must determine whether the
allocation of these resources will leave the system in a safe state. If it will, the resources
are allocated; otherwise, the process must wait until some other process releases enough
resources.
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Let n = number of processes, and m = number of resources types

Available: A vector of length m indicates the number of available resources of each type. If
available [j] =k, there are k instances of resource type Rj available.

Max: An n x m matrix defines the maximum demand of each process. If Max [1,j] =k, then
process Pi may request at most k instances of resource type Rj

Allocation: An n x m matrix defines the number of resources of each type currently allocated to
each process. If Allocation[i,j] = k then P1 is currently allocated k instances of Rj

Need: An n x m matrix indicates the remaining resource need of each process. If Need[i,j] =k,
then Pi may need k more instances of Rj to complete its task.

Need [1,]] = Max]i,j] — Allocation [1,j]

Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state. This algorithm can be
described as follows:

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize: Work = Available
Finish [i] = false fori1=0, 1,...,n- 1

2. Find an index 1 such that both:
(a) Finish[1] = false

(b) Needi< Work

If no such 1 exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [1] == true for all 1, then the system is in a safe state

This algorithm may require an order of m x n? operations to determine whether a state is safe.
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Résource-Request KIE“I 1Unm

The algorithm for determining whether requests can be safely granted.

Let Requesti be the request vector for process Pi. If Requesti [j] == k, then process Pi wants k
instances of resource type Rj. When a request for resources is made by process Pi, the following
actions are taken:

1. If Requesti<Needigo to step 2. Otherwise, raise error condition, since process has

exceeded its maximum claim
2. If Requesti<Available, go to step 3. Otherwise Pi must wait, since resources are not available

3. Have the system pretend to allocate requested resources to Pi by modifying the

state as follows:
Available = Available — Request;
Allocation= Allocationi+ Requesti,
Needi=Needi— Requesti;

If safe = the resources are allocated to Pi

If unsafe = Pi must wait, and the old resource-allocation state is restored

Example

Consider a system with five processes Po through Psand three resource types 4, B, and C.
Resource type 4 has ten instances, resource type B has five instances, and resource type C has
seven instances. Suppose that, at time 7othe following snapshot of the system has been taken:

Allocation Max Available
ABC ABC ABC
Py 010 753 332
P, 200 322
P> 302 902
P, 211 222

P, 002 433
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~Thecontent of the matrix Need s defined tobe Max—=Atlocation

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

The system is currently in a safe state. Indeed, the sequence <P1, P3, P4, P2, Po> satisfies the
safety criteria.

Suppose now that process P1requests one additional instance of resource type A and two

instances of resource type C, so Requesti = (1,0,2). Decide whether this request can be
immediately granted.

Check that Request < Available

(1,0,2) < (3,3,2) > true

Then pretend that this request has been fulfilled, and the following new state is arrived.

Allocation Need Available

ABC ABC ABC
Py, 010 743 230
P, 302 020
P, 302 600
Py 211 011
Py 002 431

Executing safety algorithm shows that sequence <P1, P3, Pa, Po, P> satisfies safety
requirement.
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DEADECOCK DETECTION

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may occur. In this environment, the system may provide:
e An algorithm that examines the state of the system to determine whether a deadlock
has occurred
® An algorithm to recover from the deadlock

Single Instance of Each Resource Type

e [f all resources have only a single instance, then define a deadlock detection algorithm
that uses a variant of the resource-allocation graph, called a wait-for graph.

e This graph is obtained from the resource-allocation graph by removing the resource
nodes and collapsing the appropriate edges.

e An edge from Pito P;in a wait-for graph implies that process Piis waiting for process P;
to release a resource that Pineeds. An edge Pi— P;exists in a wait-for graph if and only
if the corresponding resource allocation graph contains two edges Pi—Rq and Rq— Pi for
some resource Rg.

Example: In below Figure, a resource-allocation graph and the corresponding wait-for graph is
presented.

&

A, Az e

(@) ()

Figure: (a) Resource-allocation graph. (b) Corresponding wait-for graph.

e A deadlock exists in the system if and only if the wait-for graph contains a cycle. To
detect deadlocks, the system needs to maintain the wait-for graph and periodically
invoke an algorithm that searches for a cycle in the graph.

e An algorithm to detect a cycle in a graph requires an order of n’ operations, where n
is the number of vertices in the graph.
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Several Instances of a Reésource Type

A deadlock detection algorithm that is applicable to several instances of a resource type. The
algorithm employs several time-varying data structures that are similar to those used in the
banker's algorithm.

e Available: A vector of length m indicates the number of available resources of each

type.

e Allocation: Ann x m matrix defines the number of resources of each type currently
allocated to each process.

e Request: An n x m matrix indicates the current request of each process. If Request[i][j]
equals 4, then process P; is requesting k£ more instances of resource type Rj.

Algorithm:

1. Let Work and Finish be vectors of length m and n, respectively Initialize:
(a) Work = Available
(b) Fori=1,2, ..., n,if Allocationi# 0, then Finish[i] =

false; otherwise, Finish[i] = true

2. Find an index isuch that both:

(a)  Finish[i] ==
false

(b)Requesti<Work
If no such i exists, go to step 4
3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 <i<n, then the system is in deadlock state. Moreover, if
Finish[i] == false, then Piis deadlocked

Algorithm requires an order of O(m x n® operations to detect whether the
system is in deadlocked state

Example of Detection Algorithm

Consider a system with five processes Po through P4 and three resource types 4, B, and C.
Resource type 4 has seven instances, resource type B has two instances, and resource type C
has six instances. Suppose that, at time 70, the following resource-allocation state:
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Allocation Request Available

ABC ABC ABC
P, 010 000 000
P, 200 202
P, 303 000
Py 211 100
P, 002 002

After executing the algorithm, Sequence <Po, P2, P3, P1, P+&> will result in Finish[i] = true for
all i

Suppose now that process P2 makes one additional request for an instance of type C. The
Request matrix is modified as follows:

Regquest

ABC
P, 000
P, 202
P, 001
P, 100
P, 002

The system 1s now deadlocked. Although we can reclaim the resources held by process Po, the
number of available resources is not sufficient to fulfill the requests of the other processes.
Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

The detection algorithm can be invoked on two factors:
1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked frequently.
Resources allocated to deadlocked processes will be idle until the deadlock can be broken.

If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph
and so we would not be able to tell which of the many deadlocked processes “caused” the

deadlock.
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RECOVERY FROMDEADTOCK

The system recovers from the deadlock automatically. There are two options for breaking a
deadlock one is simply to abort one or more processes to break the circular wait. The other is to
preempt some resources from one or more of the deadlocked processes.

Process Termination

To eliminate deadlocks by aborting a process, use one of two methods. In both methods, the
system reclaims all resources allocated to the terminated processes.

1.

2.

Abort all deadlocked processes: This method clearly will break the deadlock cycle, but
at great expense; the deadlocked processes may have computed for a long time, and the
results of these partial computations must be discarded and probably will have to be
recomputed later.

Abort one process at a time until the deadlock cycle is eliminated: This method
incurs considerable overhead, since after each process is aborted, a deadlock-detection
algorithm must be invoked to determine whether any processes are still deadlocked.

If the partial termination method is used, then we must determine which deadlocked process (or
processes) should be terminated. Many factors may affect which process is chosen, including:

N —

S kW

. What the priority of the process is

How long the process has computed and how much longer the process will compute
before completing its designated task

How many and what types of resources the process has used.

How many more resources the process needs in order to complete

How many processes will need to be terminated?

Whether the process is interactive or batch

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some resources
from processes and give these resources to other processes until the deadlock cycle is broken.
If preemption is required to deal with deadlocks, then three issues need to be addressed:

1.

Selecting a victim. Which resources and which processes are to be preempted? As in
process termination, we must determine the order of preemption to minimize cost. Cost
factors may include such parameters as the number of resources a deadlocked process is
holding and the amount of time the process has thus far consumed during its execution.
Rollback. If we preempt a resource from a process, what should be done with that
process? Clearly, it cannot continue with its normal execution; it is missing some needed
resource. We must roll back the process to some safe state and restart it from that state.
Since it is difficult to determine what a safe state is, the simplest solution is a total
rollback: abort the process and then restart it.
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3. Starvation. How do we ensure that starvation will not occur? That is, how can we
guarantee that resources will not always be preempted from the same process?

DEADLOCKS

1. What are deadlocks? What are its characteristics? Explain the necessary conditions for
its occurrence.
2. Explain the process of recovery from deadlock.
3. Describe RAG:
1) With deadlock
1) With a cycle but no deadlock
4. What is Resource Allocation Graph (RAG)? Explain how RAG is very useful
in describing deadly embrace (dead lock ) by considering your own example.
5. With the help of a system model, explain a deadlock and explain the necessary
conditions that must hold simultaneously in a system for a deadlock to occur.
6. Explain how deadlock can be prevented by considering four necessary conditions cannot
hold.
7. Using Banker's algorithm determines whether the system is in a safe state.
8. How is a system recovered from deadlock? Explain the different methods used to
recover from deadlock.
9. Explain deadlock detection with algorithm and example
10. Define the terms: safe state and safe sequence. Give an algorithm to find whether or not
a system is in a safe state.
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