
Project 6: DMA Popcount (V)
E315​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 2022.0

Autograder Due: Wednesday, October 25th, 2023

Demo Due: Friday, October 27th, 2023
Maximum Group Size: 2

Starter Code: https://github.com/Engr315/P6_DMA_Popcount.git

Goal
The goal of this project is to learn to use a Direct Memory Access (DMA) interface to accelerate
data transfers between the CPU and the FPGA.

Popcount
The population count (or popcount) is the number of 1s (ones) in the binary representation of a
non-negative integer. For example, 5 (which is 101 in binary) has a population count of 2, while
1 (001 in binary) and 8 (100 in binary) both have a population count of 1. [Link]

This is the same as previous projects.

Getting started
Similar to previous projects, use git to clone the project, and the e315helper script to get it
setup.

git clone https://github.com/Engr315/P6_DMA_Popcount.git
cd P6_DMA_Popcount
python3 e315helper.py init --ip 192.168.2.99

 (Your IP address may vary)

Popcount in Python
The Pynq folder contains the Python starter code for the Pynq board.

https://github.com/Engr315/P6_DMA_Popcount.git
https://en.wikipedia.org/wiki/Hamming_weight
http://rosettacode.org/wiki/Population_count
https://github.com/Engr315/P6_DMA_Popcount.git

E315 DMA Popcount: Page 2 of 5

DMA_Popcount.ipynb contains the Python starter code, which is similar to previous projects.
The only difference is the addition of a ‘dma’ version of the hardware popcount.

DMAPopcount.py is the Python file that you will need to modify. It is the Python interface into
the FPGA’s DMA hardware’s block.

Popcount on Vivado
The e315helper script should build a Vivado project for you that looks like the image below.

You will again be modifying popcount.sv. This time you need to also support values coming
over an AXI stream interface.

E315 DMA Popcount: Page 3 of 5

AXI4Stream Popcount Implementation Details
To correctly pass the supplied simulations (detailed below), your module
should do the following:

●​ Correctly respond to MMIO popcount requests of previous projects.
●​ Also accept and compute popcount for a stream of values arriving over an incoming AXI

stream.

Simulation
There are also two pre-configured simulations to help with debugging.

Axi4lite_synth is an MMIO-only simulation. Axi5stream_synth is the DMA-enabled simulation.
By default, axi4lite_synth is used. To use axi4stream_synth, right click on it and set “Mark
Active”. The simulations should NOT require modifications. However, by default your popcount
block does nothing, thus the simulations will initially fail.

E315 DMA Popcount: Page 4 of 5

Pynq Python Documentation
​ https://pynq.readthedocs.io/en/v2.6.1/

In particular, we find this helpful:

MMIO

https://pynq.readthedocs.io/en/v2.6.1/pynq_libraries/mmio.html

DMA
https://pynq.readthedocs.io/en/v2.6.1/pynq_libraries/dma.html

Assignment Description

As noted above, the software-only implementation of popcount is quite slow. It requires almost
50 seconds to process the “large” 10M file.

Your task is to use DMA interface on the
FPGA to accelerate this to UNDER 1

second (not 10).

https://pynq.readthedocs.io/en/v2.6.1/
https://pynq.readthedocs.io/en/v2.6.1/pynq_libraries/mmio.html
https://pynq.readthedocs.io/en/v2.6.1/pynq_libraries/dma.html

E315 DMA Popcount: Page 5 of 5

For this to work, you will need to:
-​ Implement the popcount module in Vivado.
-​ Generate a bitstream and use the e315helper to copy it over to the Pynq board
-​ Update MyHardwarePopcount.py to load and utilize your hardware module
-​ Correctly count the number of 1’s in the ‘medium.bin’ file in under 1 second.
-​ Demonstrate the hardware-accelerated implementation to the TA

For reference, the instructor’s implementation runs the large input file in 0.98 seconds.

Evaluation

Autograder (50%)
For this project, you will submit your popcount.sv implementation to the autograder. It will
award you points based on both correctness and performance, with the bulk of the points being
allocated for performance.

Demonstration (50%)
You will also need to demonstrate your working project to the TA in lab or office hours. If this is
not possible, please make alternative arrangements with the TA.

	Starter Code: https://github.com/Engr315/P6_DMA_Popcount.git
	Goal
	Popcount
	Getting started
	Popcount in Python
	Popcount on Vivado
	AXI4Stream Popcount Implementation Details
	Simulation

	Pynq Python Documentation
	Assignment Description
	Evaluation
	Autograder (50%)
	Demonstration (50%)

