

Per-target execution platform
constraints for exec groups

Authors: fabian@meumertzhe.im (Fabian Meumertzheim)​
Status: ​Approved
Reviewers: jcater@google.com (John Cater)​
Created: ​2024-08-08
Updated: 2024-08-15
Discussion: #23245

Please read Bazel Code of Conduct before commenting.

Background
Execution groups offer a rules author great flexibility in influencing on which platform the
different actions registered in the rule are executed. Platform constraints can be set directly
on each execution group via the exec_compatible_with parameter and the toolchains
parameter allows for more complex "target to execution constraints" mapping using the
idiom of a test runner toolchain.

However, the introduction of execution groups reduced the flexibility offered to users of
rules: There is currently no way in Bazel for a user to influence the execution platform of an
action that is assigned to a non-default execution group that doesn't specify any toolchain
type in toolchains. For the default execution group, this is possible by adding constraints
to the exec_compatible_with attribute defined on all rules. There is currently no
equivalent of this attribute for non-default execution groups.

Related issues and PRs:
`cc_test` should respect `exec_compatible_with` for test action (#23202)

Support running tests on the target platform (#12719)

--use_target_platform_for_tests doesn't support exec property inheritance (#17466)

mailto:fabian@meumertzhe.im
https://github.com/katre
https://github.com/bazelbuild/bazel/discussions/23245
https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://bazel.build/extending/exec-groups
https://github.com/trybka/scraps/blob/a03099a1ad472e97c0fadd8fd1755352853f9cff/cc_test.md
https://github.com/bazelbuild/bazel/issues/23202
https://github.com/bazelbuild/bazel/pull/12719#issuecomment-773545626
https://github.com/bazelbuild/bazel/issues/17466

Proposed solution
New attribute exec_group_compatible_with
Every rule class gains a non-configurable attribute exec_group_compatible_with of
type dict[str, list[Label]] (this type doesn't exist yet). When processing an
execution group (automatic or explicitly defined) for a given target, all constraints listed
under the key corresponding to the group's name via this attribute are added to the execution
constraints specified in the execution groups exec_compatible_with argument. The
default execution group has the name "default".

Automatic execution groups are automatically named after their toolchain type and could
thus be referenced in this way. Note that this slightly increases implementation complexity
as any key that could be a label would need to go through repo mapping before being
matched against the names of automatic execution groups.

Alternatives considered

●​ Having exec_compatible_with add constraints to all execution groups: See the

example below.

●​ Adding a <exec_group>_exec_compatible_with argument to a rule class for
each execution group it defines: Bazel doesn't yet have any magic attributes with
dynamic names, which suffer from discoverability problems and wouldn't support
referencing automatic exec groups. Since Bazel already has a dict[str,
list[str]] attribute, the new attribute type improves consistency and also doesn't
introduce incompatibilities with tooling that parses BUILD files.

●​ Representing the default execution group with a different name such as "": While
this would address the theoretical concern of collisions with existing exec groups, it
would be more difficult to understand. Since execution groups aren't in widespread
use yet and automatic execution groups will make explicitly defined execution groups
even more rare, there is no realistic chance of a problematic collision.

Backwards compatibility

It's possible but highly unlikely that a rule class already defines an
exec_group_compatible_with attribute. Even if so, since its type isn't available to rules
yet, collisions could be avoided by checking the type of the attribute.

Since execution groups can be referenced by name in the exec_properties of a rule, they
are already exposed as public API of a rule class. Adding new ways to reference them by
name thus doesn't add any new backwards compatibility concerns, it just strengthens
existing ones. It should be considered whether bazel (a)query should get better support
for querying the execution groups of a rule (class).

exec_compatible_with applies to all non-test
execution groups
exec_compatible_with currently applies its constraints to the default execution group as
well as all automatic execution groups, but neither to the test execution group nor any
explicitly defined execution group. Instead, it would apply to all non-test execution groups.
This improves consistency between explicit and automatic execution groups, which is
especially important since the latter are supposed to become the new default, with explicit
execution groups being much more rare.

Alternatives considered

●​ Not changing what exec_compatible_with applies to: With the new attribute,
there is now a clear and unambiguous way to add a constraint to the default
execution group if needed, making this attribute redundant in that case. This would
also retain the inconsistency between automatic and explicit execution groups.
Furthermore, applying a constraint to all non-test execution groups of a rule that
doesn't use automatic execution groups would otherwise require listing all of them,
which creates a maintenance burden.

●​ Having exec_compatible_with add constraints to all execution groups: See the
example below, it is very common for test actions to have constraints that are entirely
unrelated to the actions that produce the test binary.

Backwards compatibility
Rules that define explicit execution groups and are annotated with
exec_compatible_with would now apply these constraints to all execution groups (e.g.
cpp_link), which could break builds. Users would need to migrate to using
exec_group_compatible_with = {"default": [...]}. This change should thus be
gated behind an incompatible flag, but the migration isn't expected to be difficult. Wherever
possible, rules should migrate to automatic execution groups anyway.

Example
Consider a cc_test target with srcs that make heavy use of a template-based DSL for
generating code that ultimately runs on a GPU. Since templates are slow to compile, the
compilation action (default execution group) for this target should run on a machine with
high single-core performance (let's assume such machines are described by execution
platforms with the constraint //:has_fast_cpu). Linking the test binary has no special
requirements, so the link action should just use the unmodified cpp_link execution group.
However, the actual test action (test execution group) needs to be run on a machine with a
GPU (i.e., on an execution platform with the constraint //:has_gpu).

With this proposal, this scenario could be modeled as follows:

Python

cc_test(
 ...,
 exec_group_compatible_with = {
 "default": "//:has_fast_cpu",
 "test": "//:has_gpu",
 },
)

This example shows why only having exec_compatible_with add constraints to all
execution groups wouldn't be flexible enough: the test action would pick up both the
//:has_fast_cpu and the //:has_gpu constraint, but there may be no machines, and
hence execution platforms, that satisfy both constraints simultaneously.

Document History

Date Description

 2024-08-08 First proposal

 2024-08-15 Addressed first round of comments

	
	Per-target execution platform constraints for exec groups
	Background
	Related issues and PRs:

	Proposed solution
	New attribute exec_group_compatible_with
	Alternatives considered
	Backwards compatibility

	exec_compatible_with applies to all non-test execution groups
	Alternatives considered
	Backwards compatibility

	Example
	Document History

