<u>Mastering Physics Solutions Chapter 28 Physical</u> <u>Optics: Interference and Diffraction</u>

https://www.aplustopper.com/mastering-physics-solutions-chapter-28-physical-optics-interference-and-diffraction/

http://bit.ly/2MMnPch

https://drive.google.com/drive/u/0/folders/1KhQr9G59axJUsISSbE25Ldj4tdq8qnxU

http://bit.ly/2kQq1JE

 $\frac{https://docs.google.com/presentation/d/e/2PACX-1vS3WTjplkY52V2uuAzlalj9TmM4ZuGIWVR5}{NYTD0RhXoxOlxx09QMXggmAb5oQ4CvskhC9gdt0-cO35/pub?start=false&loop=false&delayms=3000}$

http://bit.ly/2KctC9v

https://docs.google.com/document/d/e/2PACX-1vRJfO-knYlumKZXXYKTWjy-hPIQGq0TXDJ32 GbpAQkd41m8GQO9AqNP0sLOqq04TF25SOpvKMRHx-Er/pub

http://bit.ly/2lph57F

https://sites.google.com/site/aplustopperguide/mastering-physics-solutions-chapter-28-physical-optics-interference-and-diffraction

http://bit.ly/2tuQMR5

http://aplustoppernotes.blogspot.com/2018/06/mastering-physics-solutions-chapter-28.html http://bit.ly/2tjRVMh

https://aplustoppernotes.wordpress.com/2018/06/22/mastering-physics-solutions-chapter-28-physical-optics-interference-and-diffraction/

http://bit.ly/2yulAqM

https://wp.me/p9YiSz-2I

Chapter 28 Physical Optics: Interference and Diffraction Q.1CQ

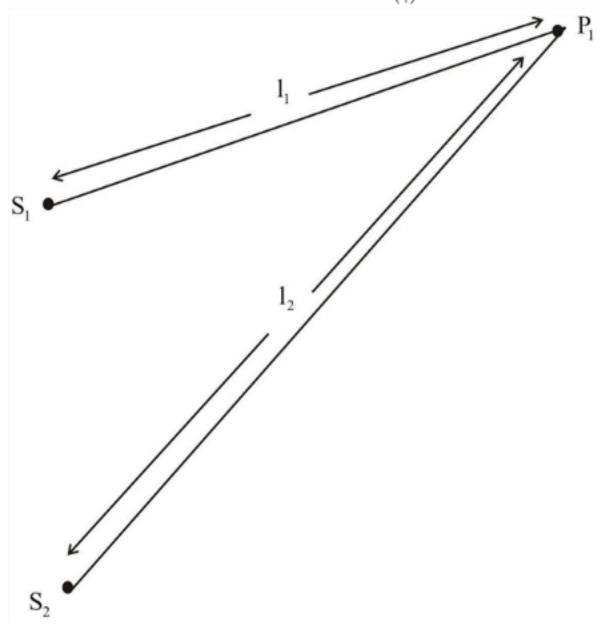
When two light waves interfere destructively, what happens to their energy? **Solution:**

When two waves interfere destructively at one place, then at some other place, these waves interfere constructively. The energy at the point of destructive interference at one place is always balanced by that at constructive interference. In destructive interference, the net energy of the resultant wave is less than the sum of energies of two individual waves, which interfere destructively to give destructive interference.

In constructive interference, the net energy of the resultant wave is more than the sum of energies of two individual waves which interfere constructively to give constructive interference. Thus, when two waves interfere destructively at one place, then the energy of individual waves at that place goes to the point where these waves constructively interfere. Thus, at a place of destructive interference, the energy is nearly zero, and at a place of constructive interference, energy is more than the sum of energies of individual waves. Hence, energy is redistributed from a place of destructive interference to a place of constructive interference.

Chapter 28 Physical Optics: Interference and Diffraction Q.1P

Two sources emit waves that are coherent, in phase, and have wavelengths of 26.0 m. Do the waves interfere constructively or destructively at an observation point 78.0 m from one source and 143 m from the other source?


Solution:

Given that

Two sources emit waves that are coherent, in phase and have wavelength $(\lambda) = 26.0 \text{ m}$

The first source gives interference pattern at a distance of $(l_1) = 78 \text{ m}$

The second source gives interference pattern at a distance of $(l_1) = 143 \text{ m}$

To reach the point P_1 , the waves from the two sources have traveled different distances. The difference in these distances

$$l_2 - l_1 = m\lambda$$

Where l_2 and l_1 are the distances from the two sources and λ is the wavelength and m is the order of the interference pattern

$$143 \text{ m} - 78 \text{ m} = m(26.0 \text{ m})$$

$$65\,\mathrm{m} = m\big(26.0\,\mathrm{m}\big)$$

$$m = \frac{65 \,\mathrm{m}}{26 \,\mathrm{m}}$$

$$= 2.5$$

This can be written as

$$l_2 - l_1 = \left(m - \frac{1}{2}\right)\lambda$$

$$=\left(3-\frac{1}{2}\right)\lambda$$

$$l_2 - l_1 = \left(3 - \frac{1}{2}\right)\lambda$$

This is the form for destructive interference. So, the waves interfere destructively.