1. Program on R Data types

AIM:
Write a program to illustrate the datatypes in R programming
DESCRIPTION:

Basic data types in R can be divided into the following types:

numeric - (10.5, 55, 787)

integer - (1L, 55L, 100L, where the letter "L" declares this as an integer)
complex - (9 + 31, where "i" is the imaginary part)

character (a.k.a. string) - ("k", "R is exciting", "FALSE", "11.5")

logical (a.k.a. boolean) - (TRUE or FALSE)

We can use the class() function to check the data type of a variable:

PROGRAM:

v <- TRUE
print(class(v))
v<-235
print(class(v))

v <-2L

print(class(v))

v <- 2+5i

print(class(v))

v <- "TRUE"
print(class(v))

v <- charToRaw("Hello")
print(class(v))

Output:

[1] "logical"
[1] "numeric"
[1] "integer"
[1] "complex"
[1] "character"
[1] "raw"

RESULT:
The program is executed sucessfully without any errors.

2.Program on R Objects

AIM:
Write a program to demonstrate objects in R programming

DESCRIPTION:

There are 5 basic types of objects in the R language:
Vectors

Atomic vectors are one of the basic types of objects in R programming. Atomic vectors can store
homogeneous data types such as character, doubles, integers, raw, logical, and complex. A single
element variable is also said to be vector.

Lists

List is another type of object in R programming. List can contain heterogeneous data types such as
vectors or another lists.

Matrices

To store values as 2-Dimensional array, matrices are used in R. Data, number of rows and columns
are defined in the matrix() function.

Factors

Factor object encodes a vector of unique elements (levels) from the given data vector.

Arrays

array() function is used to create n-dimensional array. This function takes dim attribute as an
argument and creates required length of each dimension as specified in the attribute.

PROGRAM:

Create a vector.
apple <- ¢('red','green’,"yellow")
print(apple)

Get the class of the vector.
print(class(apple))

Create a list.
listl <- list(c(2,5,3),21.3,sin)

Print the list.
print(listl)

Create a matrix.
M = matrix(c¢('a','a','b','c','b','a"), nrow = 2, ncol = 3, byrow = TRUE)
print(M)

Create an array.
a <- array(c('green','yellow'),dim = c(3,3,2))
print(a)

QOutput:

[1] "red" "green
[1] "character"

[[1]]
[1]253

yellow"

[[2]]
[1]21.3

[[31]

function (x) .Primitive("sin")

111,21 [,3]

[1’] Hall Hall Hb"
[2’] "C" "b" Ha"
29 1

https://www.geeksforgeeks.org/r-vector/
https://www.geeksforgeeks.org/r-lists/
https://www.geeksforgeeks.org/r-factors/

11 [2] [.3]

nn nn

[1,] "green" "yellow" "green"
[2,] "yellow" "green" "yellow"
[3’] ngeen" Hyellow" ngeen"
29 2

L1121 3]

[1,] "yellow" "green" "yellow"
[2’] ngeen” Hyellowﬂ ngeen"
[3,] "yellow" "green" "yellow"

RESULT:

The program ios executed sucessfully without any error.

3. Program on Control Statements

AIM:

Write a program to illustrate the control statements in R programming

DESCRIPTION:

Control statements are expressions used to control the execution and flow of the program based on
the conditions provided in the statements. These structures are used to make a decision after
assessing the variable. In this article, we’ll discuss all the control statements with the examples.

In R programming, there are 8 types of control statements as follows:

if condition

if-else condition

for loop

nested loops

while loop

repeat and break statement
return statement

next statement

PROGRAM:

a) Reverse of a given number using Repeat in R
n = as.integer(readline(prompt = "Enter a number :"))

s=0

repeat {
r=n %% 10
s=s*10+r
n=n %/% 10

if (n==0){
break}
h

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
https://www.geeksforgeeks.org/control-statements-in-r-programming/#ifstatement
https://www.geeksforgeeks.org/control-statements-in-r-programming/#if-else
https://www.geeksforgeeks.org/control-statements-in-r-programming/#forloop
https://www.geeksforgeeks.org/control-statements-in-r-programming/#nestedloop
https://www.geeksforgeeks.org/control-statements-in-r-programming/#whileloop
https://www.geeksforgeeks.org/control-statements-in-r-programming/#repeatandbreak
https://www.geeksforgeeks.org/control-statements-in-r-programming/#return
https://www.geeksforgeeks.org/control-statements-in-r-programming/#next

print(paste("The reverse of a given number is :", s))

Qutput:
Enter a number :123

[1] "The reverse of a given number is : 321"

b) Sum of Digits of a given number using While loop

n = as.integer(readline(prompt = "Enter a number :"))
s=0

while (n > 0) {
r=n %% 10
S=s+r
n=n %/% 10

b
print(paste("Sum of the digits is :", s))

Qutput:

Enter a number :213
[1] "Sum of the digits is : 6"

C) print first n odd numbers in descending order in R using For Loop
print first n odd numbers in descending order in R

num = as.integer(readline(prompt = "Enter a number :"))
num =num - 1

for (1 in num:0) {

a=1+1%*2

print(paste(a))
b

QOutput:

Enter a number :12

[1]"23"
[1]"21"
[1]"19"
[1]"17"
[1]"15"
[1]"13"
[1]"11"
[1]"9"

[1]"7"

[1]"5"
[1]"3"
(171"
RESULT:

The program is executed sucessfully without any error.

4. R Programming using Functions

AIM:
Write a program to demonstrate functions in R programming

DESCRIPTION:

A function is a set of statements organized together to perform a specific task. R has a large number
of in-built functions and the user can create their own functions.

In R, a function is an object so the R interpreter is able to pass control to the function, along with
arguments that may be necessary for the function to accomplish the actions.

The function in turn performs its task and returns control to the interpreter as well as any result
which may be stored in other objects.

PROGRAM:

a) Built in Functions
Create a sequence of numbers from 32 to 44.
print(seq(32,44))

Find mean of numbers from 25 to 82.
print(mean(25:82))

Find sum of numbers frm 41 to 68.
print(sum(41:68))

Qutput:

[1]32 3334353637 38394041 42 43 44
[1]53.5
[1] 1526

b)User Defined Functions

Create a function to print squares of numbers in sequence.
new.function <- function(a) {

for(iin 1:a) {

b <-i"2

print(b)

h

h

Call the function new.function supplying 6 as an argument.
new.function(6)

Output:

[1]1
[1]4
[119
[1]16
[1] 25
[1] 36

RESULT:
The program is executed sucessfully without any error.

5.Reading Data and Writing Data

AIM:

Write a R program to demonstrate Reading Data and Writing Data
PROGRAM:

a) Reading the data from CSV

> getwd()

[1] "C:/Users/LENOVO/Documents"

"ng./m
> setwd("d:/")
> print(getwd())
[1] "d:/"
Sample.CSV
] —— . o 1
rah B L 6 E
a icd marme salarmy start_date depi
= 1 Rick S2=2.2 Ool-Ol1-2OoA > 1T
= 2 Dam 5152 2Z3Z-09-20132 Opaerations
<1 = rMickhelle 511 1S-A11-22012 1T
= L Rwyam F29 11-05-201<12 HR
=3 5 Sary S43 25 27-03-2015 Fimamce
- S MNima S7F7E 21-05-201= 1T
= FOSirmeaom 5328 IO-0OT7-2013F Opeaerations
= S Swuru F22.5 A1 TF-05-2019 Fimnmamce
[P I Er—-— e o s e 1 |I_- LLLL
Readw I EEB | [T = L]
]

> data <- read.csv("sample.csv")

> print(data)
id name salary start date dept

1 1 Rick 623.3001-01-2012 IT

2 2 Dan 515.20 23-09-2013 Operations
3 3 Michelle 611.00 15-11-2014 IT

4 4 Ryan 729.00 11-05-2014 HR
55 Gary 843.2527-03-2015 Finance

6 6 Nina 578.00 21-05-2013 IT

7 7 Simon 632.80 30-07-2013 Operations
8 8 Guru 722.50 17-06-2014 Finance

b.) Writing the data using R Program

>data<- read.csv("sample.csv")

#Getting details of those peoples who joined in Department IT
> details <- subset(data,dept=="1T")

Writing filtered data into a new file.
>write.csv(details,"output.csv")

>new_details<- read.csv("output.csv")

>print(new_details)

Xid name salary start date dept
111 Rick 623.301-01-2012 IT
2 3 3 Michelle 611.0 15-11-2014 IT
36 6 Nina 578.021-05-2013 IT

A B C D E F '
1 id name salary start date dept (=]
2 |1 1 Rick 623.3 01-01-2012 IT |
3 |3 3 Michelle 611 15-11-2014 IT |
4 |6 6 Nina 278 21-05-2013 IT

M 4k M| pgutput < ¥J I MY
EEE = v st
OUTPUT:

The program is execute sucessfully without any error.
5. Loop Functions

AIM:
Write a program to demonstrate Loop functions in R programming

DESCRIPTION:
There are three types of loop in R programming:
For Loop

While Loop
Repeat Loop

For Loop in R
It is a type of control statement that enables one to easily construct a loop that has to run statements

or a set of statements multiple times. For loop is commonly used to iterate over items of a sequence.
It is an entry controlled loop, in this loop the test condition is tested first, then the body of the loop is
executed, the loop body would not be executed if the test condition is false.

While Loop in R
It is a type of control statement which will run a statement or a set of statements repeatedly unless

the given condition becomes false. It is also an entry controlled loop, in this loop the test condition is
tested first, then the body of the loop is executed, the loop body would not be executed if the test
condition is false.

Repeat Loop in R
It is a simple loop that will run the same statement or a group of statements repeatedly until the stop

condition has been encountered. Repeat loop does not have any condition to terminate the loop, a
programmer must specifically place a condition within the loop’s body and use the declaration of a
break statement to terminate this loop. If no condition is present in the body of the repeat loop then it
will iterate infinitely.

PROGRAM:
R program to demonstrate the use of for loop

using for loop
for (valin 1: 5)
{

statement
print(val)

}

Output:

[1]1

[1]2

[1]3

[1]4

[1]5

R program to demonstrate the use of while loop
val =1

using while loop
while (val <=5)
{

statements
print(val)

val =val + 1

j

Output:

[1]1

[1]2

[1]3

[1]4

[1]5

R program to demonstrate the use of repeat loop
val =1

using repeat loop
repeat

{

statements
print(val)

val =val + 1

checking stop condition
if(val > 5)

{

using break statement

to terminate the loop
break

}

}
Output:
[1]1
[1]2
[1]3
[1]4
[115

RESULT:
The program is executed sucessfully without any error.

7.Data Visualization

AIM:
Write a R program to illustrate Data Visualization

DESCRIPTION:
Data Visualization in R Programming Language

The popular data visualization tools that are available are Tableau, Plotly, R, Google Charts,
Infogram, and Kibana. The various data visualization platforms have different capabilities,
functionality, and use cases. They also require a different skill set. This article discusses the use of R

for data visualization.

R is a language that is designed for statistical computing, graphical data analysis, and scientific
research. It is usually preferred for data visualization as it offers flexibility and minimum required

coding through its packages.

a)Bar chart

> # Creating the data for Bar chart
>H <-¢(12,35,54,32,41)
> M<_ C("Feb","Mar","Apr","May","]ul’l")

>

> # Giving the chart file a name
> png(file = "bar_properties.png")

>

> # Plotting the bar chart
> barplot(H,names.arg=M,xlab="Month",ylab="Revenue",col="Pink",

+ main="Revenue Bar chart",border="Yellow")
> # Saving the file
> dev.off()

Revenue Bar chart

b. Creating Histogram chart

> # Creating data for the graph.

>v<- ¢(12,24,25,26,16,38,36,21,13,55,17,39,42,43,10,58,60)
>

> # Giving a name to the chart file.

> png(file = "histogram_chart.png")

>

> # Creating the histogram.

> hist(v,xlab = "Weight",ylab="Frequency",col = "green",border = "red")
>

> # Saving the file.

> dev.off()

i B histogram_chart.png

Histogram of v

&
=
T
El
=
2
fre

C. Creating Pie chart

Creating data for the graph.
> x <-¢(20, 65, 15, 50)

> labels <- ¢("India", "America", "Shri Lanka", "Nepal")
Giving the chart file a name.

> png(file = "Country.jpg")

Plotting the chart.

> pie(x,labels)

Saving the file.

> dev.off()

India

Shri Lanka

RESULT:
The program is executed sucessfully without any error.

8. Correlation in R

AIM:
Write a program to demonstrate Correlation in R

PROGRAM:

> # R program to illustrate

> # pearson Correlation Testing
> # Using cor()

>

> # Taking two numeric

> # Vectors with same length
>x=c(1,2,3,4,5,6,7)
>y=c(1,3,6,2,7,4,5)

>

> # Calculating

> # Correlation coefficient

> # Using cor() method
> result = cor(x, y, method = "pearson")
>

> # Print the result

OUTPUT:
> cat("Pearson correlation coefficient is:", result)
Pearson correlation coefficient is: 0.5357143

RESULT:
The program is executed sucessfully without any error.

0. R Aggregate function
AIM:

Write a program to demonstrate Aggregate functions in R programming

PROGRAM:

> # create a dataframe with 4 columns

nn

id=c(1, 2, 3, 4, 5, 6),

nn qnmn

names=c("manoj", "sai", "mounika", "durga", "deepika

marks=c(89, 89, 76, 89, 90, 67))
>
> # display
> print(data)
subjects id names marks
1 java 1 manoj 89
2 python 2 sai 89
3 java 3 mounika 76
4 java 4 durga 89
5 php 5deepika 90
6 php 6 roshan 67
>
> # aggregate sum of marks with subjects
> print(aggregate(data$marks, list(data$subjects), FUN=sum))
Group.l x
1 java254
2 php 157
3 python 89
>
> # aggregate minimum of marks with subjects
> print(aggregate(data$marks, list(data$subjects), FUN=min))
Group.1 x
1 java76
2 php 67
3 python 89
>
> # aggregate maximum of marks with subjects
> print(aggregate(data$marks, list(data$subjects), FUN=max))
Group.1 x
1 java &9
2 php 90
3 python 89
>
RESULT:
The program is executed sucessfully without any error.

n"non: n"nong nn

> data = data.frame(subjects=c("java", "python", "java", "java",

nn
3

php", "php"),

roshan"),

10. Scatter Plot using R
AIM:
Write a program to scatter a plot using R programming

PROGRAM:

> #Fetching two columns from mtcars

> data <-mtcars[,c('wt','mpg")]

> # Giving a name to the chart file.

> png(file = "scatterplot.png")

> # Plotting the chart for cars with weight between 2.5 to 5 and mileage between 15 and 30.

> plot(x = data$wt,y = data$mpg, xlab = "Weight", ylab = "Milage", xlim = ¢(2.5,5), ylim =
¢(15,30), main = "Weight v/sMilage")

> # Saving the file.

> dev.off()

Weight visMilage

Weight

RESULT:
The program is executed sucessfully without any error.

	 1. Program on R Data types

