
Mobile Camera Enhanced Input

Getting Started

The Mobile Camera Input component is a plug and play product that makes use
of Enhanced Input’s modularity to inject mobile third person camera controls into
any player character.

To implement this product into your
character, open your character
blueprint and click the ‘Add’ button
under the ‘Components’ tab and
search for and select Mobile Camera
Input Component in the
‘Components’ tab.

Your Character will now have third person mobile controls.
For configuration see here.

As of 5.3.1, one extra step may be required if you want dynamic touch mappings.

Note: The component needs a Spring Arm present in the character to function. If
no Spring Arm is present in your character, it will create one, and will either
create and attach a camera or attach an existing camera to it automatically. If you
have multiple cameras, set your desired camera’s component tag to the same
thing as the ‘Camera Tag’ variable in the component.

It is not necessary to create a spring arm or camera, however doing so may
have some benefits related to more advanced configuration, such as when
post-process effects are desired, or to modify camera collision in the spring arm.

Adding a Spring Arm

In your character blueprint, click
the ‘Add’ button under the
components tab and search for
‘Spring Arm’.

Ensure the Spring Arm is
attached to the root Capsule
Component.

Next add a Camera Component, or move
an existing one to attach it to the Spring
Arm.

Make sure the Camera’s locations and
rotations are all 0.

Select the Spring Arm and press E in the viewport to rotate pitch to desired
starting rotation. Later you can define rotation limits so keep that in mind. The
starting pitch will be clamped if it’s not within the defined range.

Features

Core controls within in the Mobile Camera Input Component Include:

● Rotate
● Pan
● Zoom
● Double Tap

By selecting the Mobile Camera Input
Component in your character blueprint
you can access these settings to
configure your camera input, displayed in
the ‘Details’ tab.

Rotate and Pan inputs use separate
Input Actions for analog and touch input
for runtime efficiency and simplicity, as
touch drag uses screen location and
analog uses 0-1 input values.

Rotation

Rotation is controlled by analog input, drag
input, or a two finger touch rotation gesture.

● Keep Relative Rotation -
Affixes camera rotation to
character rotation. Not advised
to be combined with Orbital
Rotation.

● Orbital Rotation - Whether the
controlled character or the
offset location should act as the
axis of rotation

● Additive Rotation - Whether rotation is continuous if held. Has no effect on
virtual joystick controls.

● Camera Rotation Lag Speed - How quickly camera rotation will blend from
current to updating character rotation

● Rotation Y/Z Rate Scale - Multipliers for input speed, use negative values to
invert direction

● Min/Max Camera Y - Limits for camera pitch rotation

Panning

Panning is controlled by either analog or
touch drag input.

● Keep Relative Offset -
Whether the pan offset
should be fixed to the
character's rotation.

● Additive Panning - Whether
panning is continuous if
held

● Pan Radius - Limit for pan
travel in radius

● Pate Rate Scale - Input multiplier for pan speed, use negative value to
invert

● Pan Time to Reset - Delay before returning to origin after completing a
camera panning action. If 0, will not reset

● Pan Offset Interp Speed - Speed which the camera will blend when moving
or panning

● Pan Offset - Starting relative camera offset

By default, the pan input uses a trigger that requires a minimum specified
distance traveled in finger location within a specified timeframe to be accepted.

Zooming

Zooming is controlled by a two finger pinch gesture.

● Additive Zoom - Whether
zoom is continuous if held

● Camera Min/Max Distance -
zoom limits

● Zoom Rate Scale - Multiplier for zoom input, use negative value to invert

● Show Debug Locations -
Draws locations of current
and goal camera targets

● Touch Interface - Reference
to a Touch Interface asset for
digital joystick controls

● Input Config - Reference to a
Player Mappable Input
Config containing enhanced
input configurations. As of 5.3.1 this is now a Data Table Row.

● Double Taps - References to Enhanced Input Actions to trigger when
double tapping the screen. By default the touch 1 double tap triggers a
camera reset. Double Tap delays are handled in the ‘Double Tap’ macro in
the component.

Conflicting Inputs

Due to limitations in input options on mobile devices, developers may have to
manage conflicting inputs. For example the Pan action is mapped to Touch 1 and
Rotate is mapped to Touch 2. If left as is, a rotate gesture will also inadvertently
trigger a pan event. To resolve this I make use of Enhanced Input’s ability to add
and remove Input Mapping Contexts, and thus their actions, from player input.

Touch 1 and Touch 2 events are separated, each in their own input mapping
context. Logic follows that if a user triggers a Touch 2 event, they are making a
conscious decision to physically place 2 fingers on the screen and thus that is the
highest priority action. So naturally all Touch 1 actions are disabled when a Touch
2 action is triggered by toggling ‘Touch1’ contexts.

Therefore it is advised to add any new Touch 1 inputs to IMC_Camera_1Touch.

Maintain Value Input Trigger

Another method of managing conflicting inputs, this product includes
an input trigger named InputTrigger_MaintainValue.

By default, the pan and touch movement inputs each use a trigger
that remedies an input conflict between them. It requires the input
value be maintained (with tolerance) for a specified duration to
be accepted. Touch movement requires touch and hold in place, and panning
requires the opposite - to exceed the tolerance before time runs out.

This allows touch movement to coexist with other touch actions, as they will both
use Touch 1 input.

NOTE: In UE 5.1, there appears to be a bug in which this trigger only works
properly if placed in the Input Action itself and NOT the Input Mapping
Context. This appears to have been resolved in UE 5.2. If you experience
issues with this trigger, try moving it to the input action. The trigger can be
disabled by removing it from the Input Action assets ‘IA_Camera_Pan’ and
‘IA_Set_Destination_Touch’ or any duplicates.

The tolerance in deviance from the initial value and the required hold time can
both be modified.

● Tolerance defines maximum permitted deviance from initial value before the
trigger fails or succeeds and locks the input to that conclusion.

● Actuation Threshold defines required hold time

‘Starting Point’, ‘Last Update’ and ‘Conclusion’ are internal usage and
should not be modified.

Combining Existing Inputs

See Enhanced Input in Unreal Engine 5.3 for how to configure Enhanced Input in
general.

Any Player Mappable Input Config can be initiated by the
component. Two config types are included, one for touch
and one for analog joystick input, with variations A and B.

To combine with your existing
player input, simply edit or copy
one of the aforementioned
configs and add your Input
Mapping Context(s) to the
‘Contexts’ array.

Ensure the config is selected in the component’s ‘Input Config’ variable.

Epic Games has deprecated PMICs, as of 5.3.1 the PMICs have been
replaced by a data table DT_InputConfigs, in which each row acts as a
single config.

This component uses Input Mapping Context
Descriptions as tags for remapping. Here any
context with ‘Touch1’ tag will be deactivated
temporarily to avoid input conflicts. This
function may be useful for further expansion. It
will return any contexts from the config with
matching descriptions.

https://docs.unrealengine.com/5.3/en-US/enhanced-input-in-unreal-engine/

Touch Offset

Digital joysticks don't trigger Touch events but they still count as a finger on the
screen, and the challenge is they don’t register any touch index state as being
pressed, at least as of UE 5.3.1, so they will ‘silently’ block any Touch actions
that collide. It's not possible to prevent them from consuming touch events but it
is possible to dynamically increase the finger mappings of following inputs, so
touch 2 events temporarily become touch 3 events, etc. Touch Offset is a feature
that dynamically adjusts the touch index mappings of actions to compensate for
certain actions consuming their input. The result is, as an example, the ability to
trigger Touch 1 events while using a digital joystick, or two, or while using touch
movement. Running and tapping (picking up items or strafing and attacking)
without canceling either action is now possible.

This is not necessary for physical gamepad joysticks. This is a mobile product
but if you want to use a physical gamepad anyway, or otherwise disable this
feature, just remove the IA_TouchOffset action from any input mapping contexts.

This works via Player Mappable Options (now Player Mappable Key Settings) in
the Mapping Contexts. Name is used as a tag and set by default to
‘Touch1Offset’ for Touch 1 actions or ‘Touch2Offset’ for Touch 2 actions. The tags
to search are set by the ‘Dynamic Mapping Names’ variable in the mobile camera
input component.

5.3.1
“Add Player Mapped Key in Slot” node pictured above has been completely
deprecated, now replaced by “Map Player Key”. Touch Offset now relies on an
experimental alternative system, ‘Enhanced Input User Settings’, this is not
enabled by default, so it requires checking this box in project settings - “Enable
User Settings”.

Feedback and Questions

If any questions remain please do not hesitate to ask on the store page.
Additionally, feel free to make feature requests and especially bug reports.

Thank you!

https://www.unrealengine.com/marketplace/en-US/profile/Peanut+Games

