Student ID:	_Section	Name			
Department: Electrical Engineering			Program: BS (EL)		
Assignment 2 EL-425 Renewable Energy Systems					
Announced date: 25/04/2024	Due Date: 06/05/2	024	Total Marks = 2.5 Marks Obtained =		
Teacher Name: Engr. Fawad Sh	naukat				

Sr. NO	Course Learning Outcomes	PLOS	New Blooms Taxonomy			
CLO_2	Knowledge of renewable energy technology and parametric interpretation of wind energy conversion systems	PLO_4 Investigation	C2 (Understanding)			

Problem:

The cubic relationship between power in the wind and wind velocity tells us that we cannot determine the average power in the wind by simply substituting average wind speed. We can begin to explore this important nonlinear characteristic of wind by rewriting the equation in terms of average values: $P_{avg} = \left(\frac{1}{2}\rho Av^3\right)_{avg} = \frac{1}{2}\rho A(v^3)_{avg}$.

Generalize an equation that interprets the average value of the cube of velocity as stated above.