Учебная дисциплина «Автомобильные эксплуатационные материалы» Лабораторная работа № 7

«Определение качества пластичной смазки»

1.Цель работы:

- определение параметров пластичных консистентных смазок, характеризующих их основные свойства.

2.Задание:

- ознакомьтесь с требованиями охраны труда, пожарной и экологической безопасности при выполнении работ;
- оцените особенности и внешние признаки пластичных смазок;
- -определите температуру каплепадения пластичной смазки;
- определите число пенетрации смазки;
- -определите предел прочности пластичных смазок.

3.Оснащение работы:

Набор пластичных смазок на кальциевой, натриевой и литиевой основе; углеводородная смазка; дистиллированная вода (100 мл);бензин (100 мл); пробирки (6–7 штук); электроплитка.

4. Основные теоретические сведения

Пластичные смазки по своему назначению делятся: на антифрикционные; защитные; уплотнительные; канатные.

Они используются для уменьшения износа деталей, снижения коэффициента трения и защиты металлов от коррозии. Пластичные смазки представляют собой смесь масла (80–90 %), загустителя, образующего каркас, внутри которого находится масло, и иногда наполнителя. Их применяют в местах, из которых жидкие масла вытекают и к которым допуск ограничен или затруднен.

В процессе работы смазки подвергаются нагреву, загрязнению, старению и т. д., в результате они частично или полностью теряют свою работоспособность, поэтому масла должны удовлетворять следующему ряду требований:

- 1)обладать необходимой теплостойкостью, которая оценивается температурой каплепадения;
 - 2) не должны разрушаться под действием влаги;
- 3)должны обладать требуемыми механическими свойствами, которые оцениваются пределом прочности и эффективной вязкостью;
 - 4) не должны распадаться при хранении и в узлах трения.

Исходя из этих требований возникает необходимость в оценке качества пластичных смазок, поступающих в автотранспортное предприятие, а также оценке их качества после определенной наработки в узлах трения. Для этого нужно проводить лабораторный анализ.

Цвет большинства смазок колеблется от светло-желтого до темно-коричневого, поэтому по цвету трудно установить вид смазки. Только отдельные смазки имеют характерный цвет. Например, графитная смазка имеет черный и черно-зеленый цвет, а технический вазелин – специфический светло-желтый или темно-желтый цвет и прозрачен в темном слое.

Структура смазок бывает зернистой (например, консталин) или волокнистой (например, солидол). Для определения структуры образец смазки наносят с помощью

шпателя на стеклянную пластину слоем толщиной 0,5 мм и просматривают в проходящем свете, оценивая структуру смазки.

Однородность смазки свидетельствует о равномерном перемешивании загустителя с маслом. Чтобы определить однородность, для этого стеклянную пластину со слоем смазки просматривают в проходящем свете. Смазка должна быть однородной, без комков и выделившегося масла.

Наличие механических примесей связано с возможным попаданием в смазку посторонних веществ, например примеси абразивного характера (песок, окалина, ржавчина и т. д.). Наличие этих веществ в смазке недопустимо.

5. Порядок выполнения работы

- 5.1 Ознакомьтесь с требованиями охраны труда, пожарной и экологической безопасности при выполнении работ;
- 5.2 Оцените выданные преподавателем образцы пластичных смазок по внешнему признаку.

Для определения наличия примесей стеклянную пластину со слоем смазки просматривают в проходящем свете. Абразивные примеси также легко обнаружить при растирании смазки на стекле и просмотре ее на ярком свете.

Водостойкость характерна для солидолов и вазелина (в отличие от консталинов). Водостойкость смазок можно проверить следующими способами:

- 1) стеклянную пластину с нанесенными смазками нужно поместить в стакан с водой на 20–30 мин и после истечения этого времени заметить, что консталин смоется водой, а солидол и вазелин останутся без изменений;
- 2) поочередно растирая отдельно кусочки каждой смазки между пальцами в присутствии воды, можно заметить, что консталин, имеющий натриевую основу, намывается, а солидол и технический вазелин нет, так как у них кальциевая основа.

Установить состав смазки с большей степенью достоверности позволяет способ оценки жирового пятна. Основные сорта смазок дают характерные жировые пятна. Чтобы отличить солидол от консталина и обнаружить механический вазелин, нужны образцы типовых смазок: технического вазелина, солидола, консталина и графитной смазки в форме комочков размером 3—5 мм, которые следует поместить на листке фильтровальной бумаги, затем эту бумагу с комочками смазок осторожно подогреть на электроплите и сравнить характер плавления испытуемой смазки с расплавлением типовых смазок. При этом легкоплавящиеся части смазок впитываются бумагой, а остальная часть должна остаться в виде плотного остатка.

Обычно при проведении такого опыта результаты будут следующие:

технический вазелин расплавится быстро, впитается бумагой почти полностью, и оставит ровное светлое пятно;

солидол при расплавлении образует жировое пятно с небольшим остатком посредине и выделением пузырьков за счет испарения воды, содержащейся в солидолах (до 30%);

консталин останется на бумаге в виде комочка без пузырьков с небольшим масляным ореолом по краям и не расплавится, даже если при сильном нагреве бумага обуглится;

графитная смазка оставит темное жировое пятно с ясно различимыми включениями частиц графита, и если в смазке будут механические примеси, то они будут также различимы.

На основании проведенных наблюдений по внешним признакам необходимо сделать предварительное заключение о сорте и качестве каждой испытуемой пластичной (консистентной) смазки.

Определение температуры каплепадения смазок

Температурой каплепадения пластичных (консистентных) смазок считается температура, при которой происходит падение первой капли смазки, помещенной в капсуль прибора и нагреваемой в строго определенных условиях.

Температура каплепадения условно определяет среднюю температуру плавления смазки и должна превышать рабочую температуру трущихся деталей не меньше чем на 15–20 °C.

Оборудованием для определения температуры каплепадения смазки является прибор уббелоид, собранный, как показано на рисунке 7.1 и 7.2.

Основной частью этого прибора (см. рисунок 7.1) является специальный термометр 1 с металлической гильзой 5. В гильзу вставлена металлическая чашечка (капсуль) 6 с отверстием диаметром 3 мм. Термометр 1 с металлической гильзой 5 вставлен в пробирку 3, которая помещена в стакан с водой (глицерином), установленный на электроплитке.

Порядок выполнения работы:

- 1) вынуть чашечку (капсуль) 6 из гильзы 5 и с помощью шпателя плотно наполнить его испытуемой смазкой так, чтобы в ней не было пузырьков воздуха;
 - 2) излишки смазки удалить с ее верхней чашечки (капсуля) шпателем.
- 3) чашечку (капсуль) 6 вставить в гильзу 5 с термометром до упора о внутренний буртик гильзы 5;
- 4) смазку, выдавленную шариком термометра через отверстие чашечки (капсуля) 6, срезать шпателем;
- 5) собранный таким образом термометр 1 с гильзой 5 и чашечкой (капсулем) 6 с испытуемой смазкой вставить в пробирку 2;

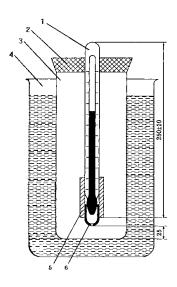


Рисунок 7.1 - Схема прибора определения температуры каплепадения смазок: 1 – термометр; 2 – пробка; 3 – пробирка; 4 – стакан; 5 – гильза; 6 – чашечка

- 6) на дно пробирки положить фильтровальную бумагу;
- 7) пробирку поместить в стакан с водой (глицерином) и при помощи штатива закрепить вертикально в стакане 4;
- 8) стакан 4 с водой (глицерином) установить на электроплитку и начать подогревать так, чтобы скорость нагрева была равной 1-2 °C в минуту;
- 9) начинать нагрев нужно с температуры на 20 $^{\circ}$ C ниже ожидаемой температуры каплепадения;

- 10) температуру, при которой упадет из нижнего отверстия чашечки (капсуля) 6 первая капля, нужно принимать за температуру каплепадения;
 - 11) при испытании смазки нужно фиксировать две температуры:
- а) каплеобразования (размягчения смазки), при которой из чашечки (капсуля) появляется первая капля смазки;
 - б) каплепадения (плавления), когда капля отрывается от чашечки

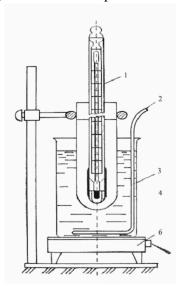


Рисунок 7.2 - Прибор для определения температуры смазок: 1 — термометр с капсюлем; 2 — широкая пробирка; 3 — стакан с термостатирующей жидкостью; 4 — капсюль для испытуемой смазки; 5 — пробка; 6 — электроплитка

Опыт необходимо провести не менее 2 раз с каждой смазкой. Допустимое расхождение температур между двумя параллельными опытами не более 1 °C.

Определение числа пенетрации

Механические свойства смазок характеризуются консистенцией (густотой смазки). Консистенция — это условная мера прочности, твердости смазки. Она выражается в числах пенетрации. Пенетрация (лат. penetrare проникать) — это мера проникновения конусного тела в смазку. Выражается она в десятых долях миллиметра. Число пенетрации определяется при температуре смазки +25 °C после механического воздействия (перемешивания) на нее.

В США требования к качеству автомобильных смазок зафиксированы в нормативных документах NLGI. Норма консистенции смазок NLGI в зависимости от диапазона пенетрации показана в таблице 7.1.

Таблица 7.1- Норма консистенции смазок по NLGL

NLGL,	Пенетрация 0,1 мм	Состояние смазки	Применение смазки
номер			
000			Для
			централизованных
	445-475	Как вязкое масло	систем смазывания и
			для смазывания
			передач и шестерен

00	400-430	Полужидкая	Для смазывания
0	355-385	Очень мягкая	подшипников
1	310-340	Очень мягка	скольжения и
			качения
2	265-295	Мягкая смазка	
3	220-250	Густоватая	
4	175-205	Густая	Для создания герметичности
5	130-160	Очень густая	термети шости
6	85-115	Очень твердая, как	
		мыло	

В густую смазку конус проникает меньше, поэтому число пенетрации тоже меньше. NLGI N 1 используется в холодных зимних условиях, NLGI N 2 является универсальным, NLGI N 3 используется в теплых летних условиях.

Таким образом, пенетрация — это условный показатель механических свойств смазки, численно равный глубине погружения в них конуса стандартного прибора за 5 с (рис. 20 и 21). Пенетрация не имеет физического смысла и не определяет поведение смазок в эксплуатации. Но по пенетрации судят о густоте смазки и о ее способности выдерживать повышенные нагрузки в узлах трения скольжения.

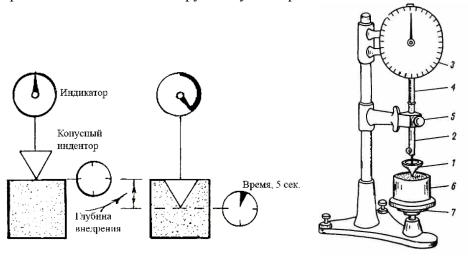


Рисунок 7.3 – Схема определения пенетрации

Рисунок 7.4 - Рис. 21. Пенетрометр:

- 1- конус; 2 стержень; 3-циферблат;
- 4 зубчатая рейка; 5- пусковая кнопка;
- 6 металлический стакан со смазкой;
- 7 подвижной столик

Описание пенетрометра

На стойке пенетрометра (см. рисунок 7.4) помещены два кронштейна. На нижнем крепится подвижной стержень с металлическим конусом, удерживаемым тормозом пусковой кнопки. Вес стержня с конусом 150 г. На верхнем кронштейне расположен диск с циферблатом на 360 делений, причем цена деления равна 0,1 мм погружения конуса, т. е. одной единице пенетрации.

На основании стойки помещен вращающийся столик для металлического стакана с испытуемой смазкой.

Дополнительным оборудованием является смеситель для перемешивания смазки и термостат для ее нагрева до требуемой температуры.

Порядок проведения опыта

- 1) металлический стакан с испытуемым образцом смазки поместить в термостат и выдерживать его там в течение 1 ч при температуре +25 °C.
- 2) затем стакан с подогретой смазкой закрепить на подставке смесителя, закрыть плотно крышкой и перемешать смазку, поднимая и опуская рукоятку смесителя 60 раз в течение одной минуты.
- 3) по окончании перемешивания стакан со смазкой вновь выдержать в термостате в течение 15 мин, после чего поверхность смазки тщательно выровнять шпателем, стакан установить на подвижный столик пенетрометра.
- 4) конус пенетрометра установить так, чтобы его острие касалось поверхности смазки и чтобы он во время погружения не задевал за стенки стакана.
- 5) после этого рукой опустить зубчатую рейку до соприкосновения со стержнем, на котором закреплен конус, и отметить начальное показание стрелки.
- 6) одной рукой нажать на пусковую кнопку, другой одновременно включить секундомер.
- 7) через 5 с остановить секундомер и отпустить пусковую кнопку.

За это время стержень с конусом под влиянием силы собственной тяжести погрузить в смазку.

- 8) зубчатую рейку вновь подвести к верхнему концу стержня (при этом передвинется и стрелка на циферблате) и отметить ее конечное показание. Разность между начальным и конечным показаниями стрелки укажет число пенетрации.
- 9) поднять конус в исходное положение, обтереть его, выровнять поверхность смазки и повторить это испытание еще три раза.
- 10) из полученных результатов вычислить среднюю величину пенетрации.

Определение предела прочности пластичных (консистентных) смазок

Пластичные смазки, являясь коллоидными образованиями, могут проявлять механические свойства (таблица 7.2, 7.3), характеризуемые рядом признаков, одним из которых является предел прочности.

Таблица 7.2 - Основные показатели качества пластичных смазок

Показатели	См	См Солидолы			Граф	Конс	Смаз	
качества	азк а	синтети	ические	жир	овые	итна я	тали н	ка 1-13
	ПК	Прес	Соли	УС-1	УС-2	смаз	УТ-1	1-13
	В	c-	дол			ка		
		соли	C					
		дол						
Цвет смазки	O	т светло-х	келтого до	коричнен	вого	Черная	Светло-ж	келтая
Водостой-кост								
Ь			Водос	стойкие			Несто	ойкие
Температура								
каплепаде-ния	60	85+3	95+3	75	75	77	130	120
, C								
Число								
пенетрации	-	250	200	300-35	230-29	200	225-27	250-29
при 25 С				0	0		5	0
Предел проч-								
ности при 50	-	1,0	2,0	1,0	2,0	-	-	-
C								

Содержание								
воды, %	-	2,5	2,5	1,5	2,0	3,0	0,5	0,15

Под пределом прочности смазки понимается то минимальное давление (напряжение сдвига), которое вызывает разрушение коллоидной структуры каркаса, в результате чего происходит сдвиг смазки и она начинает течь, как вязкая жидкость. Предел прочности определяют с помощью капиллярного пластометра по методу К.И. Климова (рисунок 7.5 и 7.6).

Предел прочности характеризует способность смазок не вытекать из узлов трения, противостоять сбросу с движущихся деталей (например, с подшипников) под влиянием инерционных сил и удерживаться на наклонных и вертикальных поверхностях, не стекая и не сползая.

Когда напряжение сдвига превышает предел прочности, смазка начинает течь.

Предел прочности смазки зависит: от температуры (с ее повышением он снижается); скорости приложения силы.

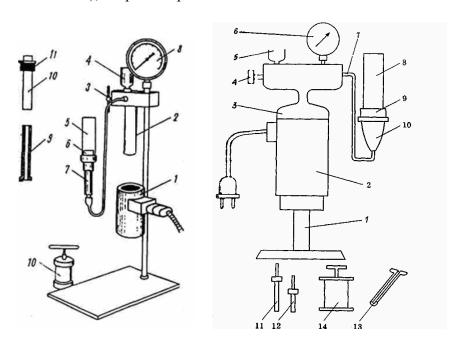


Рисунок 7.5 - Пластометр для определения предела прочности смазки: 1 — электропечь; 2 — резервуар с маслом; 3 — игольчатый кран; 4 — воронка для масла; 5 — защитное стекло; 6 — зажимная гайка; 9-гайка; 7 — корпус; 8 — манометр; 9 — капилляр в увеличенном виде; 10 — оправка для капилляра;

11 – резиновая прокладка; 12 – смеситель

Рисунок 7.6 – Пластометр:

1 — основание со стойкой; 2-электропечь; 3 — резервуар с маслом; 4-кран; 5-воронка; 6-манометр; 7-трубка; 8-защитное стекло; 9-гайка; 10-корпус манометра; 11-капиляр с оправкой (длинный); 12-капилляр с оправкой (короткий); 13-часть капилляра; 14-мешалка

Описание прибора

Основной частью пластометра (см. рисунок 7.5) является корпус, в который вставляется рабочий капилляр в специальной оправке. Корпус соединен трубкой, нагреваемой электропечкой. Для заполнения масляной системы маслом служит воронка, отключаемая от системы игольчатым краном. Давление в масляной системе замеряется манометром.

Рабочий капилляр представляет собой разрезанную вдоль оси латунную трубку длиной 50 или 100 мм и внутренним диаметром 4 мм. Внутренняя поверхность капилляра нарезьбована с глубиной резьбы 0,5 мм.

При давлении на смазку вдоль капилляра происходит разрушение структуры смазки и сдвиг смазки по поверхности, образуемой концами резьбы. Давление на смазку осуществляется маслом («жидкий поршень») при завертывании зажимной гайки или подогреве масла в замкнутой масляной системе.

Сущность метода заключается в определении давления, при котором происходит сдвиг смазки в капилляре пластометра при заданной температуре.

Перед проведением испытаний необходимо выполнять следующие действия:

- 1) с начала испытаний все детали пластометра, соприкасающиеся со смазкой, промыть бензином и высушить;
- 2) цилиндр мешалки 14 (см. рис. 23) заполнить смазкой, не допуская воздушных пустот, и закрыть крышками с двух сторон;
- 3) перед установкой верхней крышки отверстие в поршне также заполнить испытуемой смазкой;
- 4) мешалку со смазкой выдержать в термостате при температуре 20 ± 1 °C в течение 30 мин, после чего перемешать смазку, сообщив поршню 100 двойных ходов;
- 5) поршень поставить в крайнее верхнее положение и снять нижнюю крышку мешалки;
- 6) заполнить длинный капилляр (100 мм), состоящий из двух половин 13, испытуемой смазкой и соединить их;
 - 7) смазать наружную поверхность капилляра и внутреннюю поверхность оправки;
 - 8) вставить капилляр в оправку, медленно вращая и поднимая его вдоль оси
- 9) короткий (50 мм) капилляр применить в том случае, когда при испытании на длинном капилляре давление превышает допустимое для манометра;
- 10) надеть на нижний обрез буртика оправки резиновую прокладку и установить оправку на выступ в корпусе пластометра 10;
- 11) заполнить пластометр маслом, для чего открыть кран 4 воронки с маслом 5 и держать его открытым, пока уровень масла в корпусе не достигнет верхнего буртика оправки капилляра, следя за тем, чтобы в воронке всегда оставалось масло;
- 12) закрепить оправку с капилляром в корпусе 10 гайкой 9. При этом нужно следить за манометром и в случае повышения давления открывать кран воронки;
 - 13) на верхнюю часть корпуса закрепить защитное стекло 8;
- 14) поместить корпус пластометра в термостат, уровень жидкости в котором не должен превышать 30 мм верхнего конца капилляра;
- 15) заданная температура (20 ± 1 °C) должна поддерживаться в течение 29 мин. При этом кран 4 должен быть открытым;
- 16) время после перемешивания смазки и до начала испытаний не должно превышать 30–40 мин;

Порядок испытаний:

- 1. Закрыть кран 4 воронки 5.
- 2. Включить электропечь 2, обогревающую резервуар 3 с маслом, и наблюдать за манометром 6.
- 3. Следить, чтобы скорость повышения давления в системе была не более 5 кПа $(0,005 \, \text{кг/см} \, 2)$ в минуту при использовании длинного $(100 \, \text{мм})$ капилляра 11. Если будет использоваться короткий $(50 \, \text{мм})$ капилляр 12, то давление в системе должно повышаться со скоростью 2,5 кПа $(0,025 \, \text{кг/см} \, 2)$ в минуту.

- 4. Скорость повышения давления регулировать подниманием и опусканием вдоль резервуара с маслом электропечи 2 или, не убирая термостат, начинать завертывать зажимную гайку 9 с такой скоростью, чтобы давление повышалось так же, как описано в п. 3. При этом резиновая прокладка оправки будет сжиматься и давление в масляной системе будет повышаться.
- 5. Если при завертывании зажимной гайки созданного давления будет достаточно для разрушения структуры смазки, тогда из капилляра выдавить столбик смазки и давление в масляной системе упадет до нуля.
- 6. Испытание прекратить и записать величину достигнутого давления с точностью до 0.01 кг/см 2 .
- 7. Если давление, создаваемое завертыванием зажимной гайки, окажется недостаточным для разрушения смазки, то в дальнейшем его повышать подогревом масляной системы электропечью.
- 8. Предел прочности вычислить по формуле

$$\tau = P \cdot r / 2l$$

где P — максимальное давление при разрушении смазки, кг/см 2 ; r — радиус капилляра, см; l — длина капилляра, см.

Содержание отчета

По результатам анализов необходимо заполнить таблицы по приведенным далее формам.

Таблица 7.3 -Оценка образца по внешним признакам

Внешние признаки	Образцы		
	№ 1	№2	
Цвет			
Прозрачность			
Запах			
Растворимость в воде			
Растворимость в бензине			
Плавление смазки			

Таблица 7.4 -Температурные характеристики смазки

Температура, С:	Опыты		
	№ 1	№ 2	
размягчения			
каплепадения			

Таблица 7.5 - Определение числа пенетрации для смазок

Образцы		Средняя			
	№ 1	№ 2	№3	№4	величина пенетрации
№1				-	
№2					

Таблица 7.6 -Результаты определения предела прочности

Показатели	Опыты		
	№ 1	<u>№</u> 2	

Максимальное давление, кг/см2	
Предел прочности, кг/см2	

Показатели качества оцениваемых образцов, полученные на основании проведенных анализов, необходимо сравнить с показателями ГОСТ и сделать заключение о пригодности данных образцов к применению в узлах автомобилей.

Контрольные вопросы

- 1. Что такое пластичные смазки, их назначение и эксплуатационные требования, предъявляемые к ним?
- 2. Основные свойства пластичных смазок?
- 3. Классификация пластичных (консистентных) смазок?
- 4. Приборы для оценки качества пластичных (консистентных) смазок?
- 5. Марки смазок? Узлы автомобилей, в которых они находят применение?
- 6. Как определяется температура каплепадения?
- 7. Как определяется предел прочности смазок?
- 8. Что такое число пенетрации?

Список литературы

- 1. В.А. Хитрюк, А.К.Трубилов «Автомобильные эксплуатационные материалы» М.Транспорт,2013г.
- 2. И.Л.Трофименко Н.А.Коваленко, В.П.Лобах «Автомобильные эксплуатационные материалы» Мн., Вышэйшая школа, 2008г.