Cafepress performance audit

paul irish, PM devtools & performance, google chrome
april 28, 2015

Setup: 2013 Moto X. Chrome Canary (44.0.2384.0). On wifi.

We are evaluating the site using RAIL as a model for best user experience performance.
More details on RAIL: How Users Perceive the Speed of The Web

RAIL performance goals

@ Response

Tap to paint is
< 100ms

Touchmove to
paintis < 16ms

Scenarios investigated

Scenario: Loading the homepage. Empty cache.
Scenario: Loading a product page. Empty cache.
Scenario: Scrolling the homepage.

Scenario: Tapping on the hamburger menu.
Scenario: Add item to the cart.

Each frame
completes in
<16 ms

2/ Idle

Use idle time to
proactively
schedule work

Complete that
work in 50ms
chunks

Ready to use in
1000ms

Satisfy the
goals
during full load

https://docs.google.com/presentation/d/1AwT2vVHzzlsIxEUS-z769awGa-hiHTwR0iWrkeX49Fk/edit?pli=1#slide=id.g6f0232e78_056

Scenario: Loading the homepage. Empty cache.

Goal: Ready to use in 1000ms
Result: Ready to use in 3200ms

Initial Render

We get an initial render after 1.12s. This is on Wifi.

These are all the render blocking requests sitting between the request and the first paint:

Mame

| | www.cafepress.com

| homepage.csshv=99calBB0550b394830. ..

|_| fonts.css?v=0ae29c14997b5785eccdds. ..

| | global.css?tv=8224b3e24dB60147bcdEb. ..

|:| HPbanner_Autism_Mobile_480x230.jpg

|| jquery-1.9.1.min.js?v=397754ba45e%e0. .

|_| global.jstw=48499b15c355815e4c9132. ..

|| homepagev2.min.js?v= 18a7002245f509. .

|_| jguery-ui.min.js?v=6f20378188cab7afs...

Size

122 KB
4.3 KB
60.9 KB
12.3 KB
29.0 KB
32.4KB
34.3 KB
7.7 KB
105 KB

Timeline 40060 ms

The first request (for the HTML) is is within expected bounds.

600 ms

400 ms 1.00s

N |
]
|

Stalled 64,825 ms

DNS Lookup [] 112.468 ms
Initial connection 23.562 ms
Request sent 0.794 ms
Waiting (TTFB)] 112.101 ms
Content Download B 125.271ms
Explanation 453.624 ms

112ms of waiting is a little long, indicating the backend serving HTML probably has a few more caching opportunities. Compare it to the waiting of the
static requests.

But after the HTML we immediately have 7 new render blocking requests.

They come from a new domain so we have a fresh DNS lookup, which is what the big green delay on these are:

Had all of this CSS and JS been two requests instead of 7, I would expect them to complete maybe 30-40% faster. Taking the first paint from 1120ms to
about 1020ms.

The big issue here is that require new assets to render a first paint. jQuery and jQuery UI are not required to be executed before the user sees pixels.

The CSS is scoped to just “/homepage.css”, which is excellent. This should be included inline in the HTML, following critical path guidelines.
https://developers.google.com/speed/docs/insights/OptimizeCSSDelivery

Visually complete

While the user gets some green boxes at 1120ms in, they don’t get text and our hero image until 3400ms.

https://developers.google.com/speed/docs/insights/OptimizeCSSDelivery

Here's the full waterfall with filmstrip. Explanation below

- - &] w 4] w & - - &] w 4] w & - - &] - 4] * 4
= [l i ——— R Iy Iy E—— i —— i ——
Lizs 151s L.75s 189 3035 T14s 3165 3315 3345
200 ms 400 ms 600 ms B00ms 1.00s 1.20% 1.40s Le0s LEDs 2.00% 2205 2.40s 260s 2.80% 3.00 3.20s 3.40s 3|60 3.B0s

Name Size Timeline 1008 1505 2.00: 2505 3.00s 1505
|| www.cafepress.com 122k o NN . . [. . .
|_| homepage.csstv=99cal660550b354830e6c3929da2fbd5 4.3 KB —
| | fonts.css?v=0ae223c14937b5785eccd953ad0b4 1295 60.9 KB & |
| | global.css?v=8224b3e24d860147bc08be?9d 1ff0268 12.3KB o
[=| HPBanner_Autism_Mobile_480x230.jpg 29.0 KB s
|_| jquery-1.9.1.min.js?v=397754ba4%%e0cf4e7c190da78ddals 32.4KB -
| | global.js?v=48499b15c355815e4c9132bd9b601c7d 34.3KB il
| | homepagev2.min.js?v=18a7002245f509e8dfdfo013ae8fbedd 7.7 KB [N |
|_| jquery-ui.min.js?v=6f20378188cab7af5577¢c112854de2ch 105 KB _
|=| Mebile_HPbanner_Family_480x230.jpg 34.8KB [— |
=] HPEanner_MD_Mugs_Mabile_480x230.jpg 25.8KB [E— |
|=| Mebile_HPbanner_Marvel_480x230.jpg 44,5 KB [— |
|o] 82503707_155x155_pad.jpg 19.0 KB [— |
|=| o0806169_155x%155_pad.jpg 5.7KB [— |
[#] 91690102_155x155_pad.jpg 4.5KB — 11 |
z	81133884_155x155_pad.jpg 5.8KB [—	
@	58759490_155x155_pad.png 13.7KB [—	
s	61389437_155x155_pad.jpg 6.8 KB	—
®] 75338153_155x155_pad.jpg 8.4KB	— "	
'] 67506392_155x155_pad.png 6.9KB	—	
=	HPbanner_Autism_480x230.jpg 29.7 KB — il	
=	HPbanner_Family_480x230.jpg 33.7KB ——i	
=	AAOU-Here_CpCom.jpg 29.2 KB — il	
	hero-blank.gif 1.8KB —	
[53] profile-silhouette.jpg 2.3KB]		
	data:application/x- ... 0B]	
#	97675943_225x225.jpg 16.0 KB	—
	data:application/x- ... 0B]	
	44238013_225x225.jpg 14.3KB [—	
=] 98407690_225x225.jpg 10.4 KB [—		
%	98345616_225x225.jpg 12.7 KB [—	
m	55790922_225x%225.jpg 10.B KB	—
=	97906736_225x%225.jpg 9.4 KB [—	
[-] 32.9if 3.2KB [E— 1		
3	sprite-3-17-14v2.png 4.0KB E—.	
m	76905026_225%225.jpg 12.0KB —]	
=] 83272307_225x225.jpg 16.4 KB —		
B6830751_225%225.jpg 12.0KB ——]		
[m] 98321612_225x225.jpg 11.8KB ——		
= 97801647_225x%225 jpg 12.6 KB ——		
[#] 97951559_225x225.jpg 10.0 KB ——]

The visual complete paint comes between the blue & red lines, which is significantly later than when most of the network activity finished.

Why?
The first clue is globalDeferredMobile.js being one of those late requests.

And why is it requested so late, and delaying our paint?
To answer that we go to the Timeline.

4000 ms
4000 ms

3500 ms

W
E
=}
=}
i
"

http:...78817

-
= | I enrEEEEEEE=—=——
—

" =% e _

= 1l | =————
@ S = " =
2 g8 ~ .
= £ = ..."""""”
% i —— —
o HH H 2 el =
5 1- 34424 HE
) o i ——
£ E 1 I
g 2 x
0 N I
>
g —
= -“W
O . W$ﬂ .
a E I... m -
o g g ;
5 s Eif g
) :
g 1
5 i
® g E
= 2 g
E & |
z .-
> § 3
5 g m]
[3:] i Wi
- MM WM n.m _..w
1l & =R 4
I m.um.... -ms mm ﬂm
= T—u mwm
g mmmmu. m
= ﬂnmgmm :

gggEgd S

Summary | Costly Functions

Screenshot

Zoom in a bit and focus on those late requests.

the pencilbanner JSONP request. Pretty harmless.
2. globalDeferredMobile.js

1.

http:/ jwww.cafepress.c.. 478814&_=1430260478815 [J

2900

2800

2700

2300

0 ms

— — —— ———

$.(anony...unction)
$.Widget. . eWidget

§.fn.{ano...unction)

It was requested during a pretty massive handler for document ready -- almost 1000ms in total.

We can find the request in the source:

83| =script type="text/javascript">

B4 f/This loads the global deferred file. For now this includes tracking/facebook/3rd party scripts
a5 S/The media query checks if screen width is below 578FX.

a6 fi-saif

a7 S{document). ready(function(){

28 cafepress.globalHeader.matchMedia(57@, function(mg){

a9 ifilmg.matches){

1@ if (!window.deferLoaded){

11 window.deferLoaded = true;

12 if {!window.mobileDeferLoaded){

13 $.g0etScriptl http://content.cpcache. com/minify/is/globalleferraed. js');
14 } oelse {

15 %.getScript(http://content.cpcache. com/minify/is/globallDeferredExtendad. js*);
16 }

7 }

18 }oelse {

19 if | !window.deferloaded && !'window.mobileDeferlLoaded){

28 window.mobileDeferloaded = true;

21 S.getScript('http: //content.cpcache. com/minify/js globalleferredMobile. js');
22 1

23 I3

It's unclear to me if globalDeferredMobile.js is required for finishing the rendering of the homepage.

if it is, then it doesnt load the deferred file, otherwise it does.

o Ifitis required: It's request doesn't’ start until %5 of the way through the DOMContentLoaded (DCL) handler, but more importantly... If this file
is required for the first view, it should be started WAY before DCL, because at this point we're already 2600ms after the page was requested.
e Ifit's not required: Requesting in DCL is fine, you may even want to delay until window.load, as things are still fairly busy.

Of all the images to be downloaded, most of them are decoded before our hero image.

CompositorTileWorkerl/11181

Summary | Costly Functions
Type

Total Time

Self Time

Preview

Image URL

Rast...aint R...

Image Decode
5.952 ms

5.952 ms

e
YN
B

HPbanner Autism Mobile 48@8x238.ipg

3

R

Ra..

.t

i
Rasterize Paint
Imagk D...25.jpg)

Ilh...nl: Ilastdrize Paint | |

Mame Initiator

|_| www.cafepress.com Other

B homepage.cssPv=99cal660550b394830e6c3929dazfbds (index): 17

u fonts.css?v=0ae29c14997b5785eccd953ad0b4 1295 (index}:45

|| global.css?v=8224b3e24d860147bc08be79d 1ff0268 lindex):46
However it was the first image to be downloaded.] HPkanner_Autism_Moblle_450x230.Jpg .

Very curious.
Something to investigate.

Scenario: Loading a product page. Empty cache.

Goal: Ready to use in 1000ms
Result: Ready to use in 5000ms

The display of the primary product image is massively delayed. Initial render in under a second but takes 5 more to get the product up.

864 ms

What's happening in those 5 seconds?

il == Capture: [| Network B Stacks B Profile S (I Memory [|Paint [|Screenshots

[oomszooms) | [somoms

¥ View:

® O WV

5000 ms

2000 ms

'

E _

3500 ms 4000 ms 45!]!] ms 5l]l]l.'l ms

3000 ms

2500 ms

What do we see?

1.5s of it is angular booting up

.7s of it is the init() stuff for cafepress
e Then another 1s of it is handling the product details in JS and doing clientside templating.

Ideally the product page wouldn't rely on javascript to render its first view. Perhaps explore serverside rendering.

Removing angular, handlebars and relying on the HTML to render the view would reduce 5000ms to ~2200ms.

Scenario: Scrolling the homepage.

Goal: 60fps scrolling
Result: ~60fps scrolling.

Looks good!

~_ Response

Scenario: Tapping on the hamburger menu.

Goal: Tap to paintis < 100ms
Result: Tap to paintis ~ 80ms

Tapping on the hamburger menu.

Q Elements Network SourcesHmelles Resources Audits Console Scratch]S DOMListener

® © 5 W View (il == Capture: [Network & Stacks & Profile J5 [/ Memory [Paint [Screenshots
200ms 400ms | 500 ms l 500 ms 1000 ms 1200 ms 1400 ms 1600 ms
-
ul 1] | W | [y R

500ms 510ms 520ms 530 ms 540ms 550ms 560 ms 570mg

Seems good!

. Response

Scenario: Add item to the cart.
Adding an item to the cart does an animation to place it in the topnav cart icon.
We will break it into two parts, the initial response and the subsequent animation.

|
| BARACK@ OBAM,

9.

B

Goal: Tap to paintis < 100ms, then 60fps animation thereafter

$3.99 ¢5.00

In stock

Result: Tap to paintis ~ 180ms, then~33fps animation.

fiew: il == Capture: [Network & Stacks & Profile JS [Memory [JPaint []Screenshots
Ofns 1000 ms l 1500 ms 2000 ms 2500ms 3000 ms l 3500ms 4000 ms A500ms 5000 ms
1 , .
{SEL LIRS O A s o e {1 NI | m il
| [B C R (IR |)] B NI N . 1
300 ms 1400 ms 1500ms 1600 ms 1700ms 1800 ms 1500 ms 2000 ms 2100 ms 2200ms 2300ms 2400 ms 2500 ms 2600 ms 2700 ms 2800ms 2500 ms 3000 ms 3100 ms
I 319.7ms | i i i I i 72.7ms 102.5ms | i i | | 78.1ms I
Event (click) I ITHEEEEE DREE O I | N D el LR Py s Eannmerpeeen mNue |
F..) Functic...596:12) Fu..5) | |
n...r nrwrapper r | |
v.handle 3
b.event.dispatch p....th
(anc*w.,.ctlon) C
cnﬁ!bre,_.ncllan (a...n}

er

The addToCart takes 180ms. No low-hanging fruit, just a lot of work that happens before anything is shown to the user:

Event (click) |I
Function Call...53626596:12) Function Call (http: f /www.cafepress.com/mf/...age_bumper-sticker?productld=653626596:12)
nriWrapper nrWrapper
v.handle [v.handle
b.event.dispatch e b.event.dispatch
[anony. . ction) (a...m} [anonymaous function)
sendT...gData n |cafepress.pdp.addToCartFunction | | |]
b.ext. .ajax @ b.fn... alize cafepre. ToCart bt b.fn.extend.animate
bl.. n b b.fn....rray b.exten...et)SON .' Il b.fn.extend.queue
b...r b.{anon. .ction) b.fn.b.each
fr b.extend.ajax b.extend.each
b... send {anonymo...unction)
(...} nr...er b.extend.degueue
(... a
er
Zn I
b...ch u
st (an...n}
wt Qn.*
I

After that we animate the product across the screen.

The bottom gray bar is 60fps and we're rarely hitting it. We're missing the frame budget mostly due to heavy painting.

N B T I T L R S]

e.cssi
position: "absolute”,
zIndex: 999490,
left: a.offset().left,
top: a.offseti).top

}i.animate({
height: "@px",
width: "@px",
top: b.offset().top + b.height{) 7 2,
left: b.offset().left + b.width(}) / 2,
opacity: B

}, 2E3, functioni) {

. sithis).remove()
In addToCartFunction we can see why: 1

The product is animated using left/top which causes paint storms. It should animate using transforms instead. High Performance Animations - HTML5
Rocks
Additionally, jQuery should not be used for this animation, and it should be set up using CSS transitions

Cafepress inights

Critical path CSS for a quick first paint.

Defer homepage JS to bottom of <body>. Put [async] on them.

Explore why the hero image of the homepage carousel is decoded so late.

Explore serverside rendering to get rid of depending on JS & Handlebars to render product page
Don't use jQuery for animation, use CSS transitions.

Animate transforms and never top/left

Consider deferring some addToCartLogic until later, so the feedback can begin sooner.

http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/
http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/

Blink insights
e Investigate why homepage hero image is decoded so late
e Natural animations ftw!
e Some decodes were massively descheduled. This is a two-core phone. Anything we can do there?

