

2025 Abstract Submission Guidelines

Event registration includes abstract submission via this form:

https://rfums.wufoo.com/forms/asrc-2025-registration/

ASRC abstracts are limited to 300 words.

Submissions exceeding this limit will be returned for editing.

Submitter:

This is the person filling out the form. List both first and last name. The submitter may be the same name as the presenter if you are submitting your own registration. Please use your RFUMS email.

Presenter:

This is the person who will attend the event to <u>present</u> the research work at the poster and symposium, if elected. **Each presenter may submit ONLY ONE abstract for consideration.** This name may be the same as the *Submitter*. Again, please list the RFUMS email.

<u>Groups</u>: As with most organized scientific conferences, only one person may register to present the work for judging. Group members may attend the Keynote address, poster sessions, and research talks. However, these contributors will not be a part of the formal presentation or judging.

Institutional Affiliation:

List the college or school and program at RFUMS in which the presenter is currently enrolled or training. Research interns should choose from the two undergraduate institutions listed.

Those holding multiple affiliations, such as dual degree students, should choose the primary professional program or the <u>phase of the program</u> in which the presenter is actively training. For instance, Combined MD/PhD, DPM/PhD or PharmD/PhD Program students list SGPS if they are currently training in the doctoral phase and SCPM, COP, or CMS if they have returned to the clinical phase.

If the presenter's affiliation is not listed or unclear, please select "Other" and you will be contacted to clarify.

Presenter's Role:

The RFUMS Status reflects the presenter's relationship to the university: Student, Postdoc, Resident, Undergraduate Research Intern, etc. If these do not apply, please designate a status that most accurately describes the presenter's position.

Please note that faculty and staff are not eligible to participate and that participants who do not fall under one of the trainee categories listed above will not be eligible for awards.

Oral Presentation:

Designate whether the participant is interested in giving a scientific talk. Three (3) students from each college and 3 postgraduates (postdocs or residents) to present their research at the Student Talk Session of ASRC. If selected, the participant will be assigned to one of the three talk sessions, based on the topic of the abstract. Participants will have 10 minutes to present the talk and another 5 minutes for questions from the audience.

All scientific talk participants <u>must also present a poster</u>, and those who are not chosen to give a talk will remain registered to present posters at the poster session.

The following information, in connection with the *presenter* name will be printed in the abstract book distributed to the judges and guests the day of the event.

Project Title: Enter the title of the research work. Poster and research talk titles are the same.

Project Abstract: Enter the abstract for your work here, following the general example below. Poster and research talk abstracts are the same.

ASRC abstracts are limited to 300 words.

Submissions exceeding this limit will be returned for editing.

An abstract is an all-inclusive summary of the research work. This brief paragraph should be able to stand alone without reference to a larger body of work and should quickly and concisely tell the audience about the work. It describes:

- Main objective or goal of the work
- Methods employed
- A brief summary of the results
- Principal conclusions of the work

Don't know how to write an abstract? Check out these resources:

https://users.ece.cmu.edu/~koopman/essays/abstract.html

- http://writingcenter.unc.edu/handouts/abstracts/
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136027/

ABSTRACT BOOK ENTRY SAMPLE

HCN1 expression pattern in distinct cell populations within the amygdala complex

Maria Bompolaki 1, William F. Colmers 2, Janice H. Urban 1

1 Department of Physiology & Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064; 2 Department of Pharmacology, University of Alberta, Edmonton, Alberta, CA

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels carry the hyperpolarization activated current (I_h) . I_h is a noninactivating, nonselective cation current which can contribute to resting membrane dendritic integration and neuroplasticity. We recently demonstrated that application of neuropeptide Y (NPY) to brain slices containing the basolateral amygdala (BL) suppressed the H current, resulting in hyperpolarization of the pyramidal projection neurons and reduction of their excitability. Administration of NPY in the BLA has an anxiolytic effect that is consistent with HCN1-mediated inhibition of the BLA output. While HCN channels are apparently important for the regulation of BLA function, their anatomical distribution within the amygdala has not been elucidated. These studies were designed to examine the association of with glutamatergic (identified subunits by expression calcium-calmodulin dependent kinase II, CaMKII) and GABAergic (identified by expression of glutamic acid decarboxylase, GAD) cells of the BLA using multiple label immunohistochemistry. There was extensive coexpression of HCN1 and CaMKII within the neuropil of the BLA and association of HCN1 immunoreactivity with CaMKII immunopositive cell bodies. This association was more prevalent in the basolateral (BL) than the lateral (La) amygdala, and in general, HCN1 expression was more robust in the BL than the amyqdala. Some CaMKII positive cells lateral expressed immunoreactivity within the cytoplasm. There were GAD-immunopositive cells scattered throughout the BLA, which exhibited sporadic coexpression HCN1-ir. Punctate GAD immunoreactivity was associated around pyramidal shaped neurons, typical for pericellular terminals as seen with parvalbumin-ir neurons, and many of these punctae also exhibited HCN1 staining. Understanding the distribution of the HCN1 channels within different cell populations of the amygdala will reveal the functional neuroanatomy of these cells, further elucidating our knowledge of the regulation of amygdala output related with stress responses.