Index

Programme pour le cycle 2        1

Compétences travaillées        2

Nombres et calculs        3

Grandeurs et mesures        6

Espace et géométrie        9

Croisements entre enseignements        12

Programme pour le cycle 3        13

Compétences        15

Nombres et calculs        17

Grandeurs et mesures        22

Espace et géométrie        25

Repères de progressivité : le cas particulier de la proportionnalité        29

Croisements entre enseignements        29

Programme pour le cycle 4        29

Compétences travaillées        32

Thème A – Nombres et calculs        33

Thème B – Organisation et gestion de données, fonctions        34

Thème C – Grandeurs et mesures        37

Thème D - Espace et géométrie        38

Thème E – Algorithmique et programmation        39

Programme pour le cycle 2

Les textes qui suivent appliquent les rectifications orthographiques proposées par le Conseil supérieur de la langue française, approuvées par l’Académie française et publiées par le Journal officiel de la République française le 6 décembre 1990.

Mathématiques

Au cycle 2, la résolution de problèmes est au centre de l’activité mathématique des élèves, développant leurs capacités à chercher, raisonner et communiquer. Les problèmes permettent d’aborder de nouvelles notions, de consolider des acquisitions, de provoquer des questionnements. Ils peuvent être issus de situations de vie de classe ou de situations rencontrées dans d’autres enseignements, notamment « Questionner le monde ». Ils ont le plus souvent possible un caractère ludique. On veillera à proposer aux élèves dès le CP des problèmes pour apprendre à chercher qui ne soient pas de simples problèmes d’application à une ou plusieurs opérations mais nécessitent des recherches avec tâtonnements.

La composante écrite de l’activité mathématique devient essentielle. Ces écrits sont d’abord des écritures et représentations produites en situation par les élèves eux-mêmes qui évoluent progressivement avec l’aide du professeur vers des formes conventionnelles. Il est tout aussi essentiel qu’une activité langagière orale reposant sur une syntaxe et un lexique adaptés accompagne le recours à l’écrit et soit favorisée dans les échanges d’arguments entre élèves. L’introduction et l’utilisation des symboles mathématiques sont réalisées au fur et à mesure qu’ils prennent sens dans des situations d’action, en relation avec le vocabulaire utilisé.

Les élèves consolident leur compréhension des nombres entiers, déjà rencontrés au cycle 1. Ils étudient différentes manières de désigner les nombres, notamment leurs écritures en chiffres, leurs noms à l’oral, les compositions-décompositions fondées sur les propriétés numériques (le double de, la moitié de, etc.), ainsi que les décompositions en unités de numération (unités, dizaines, etc.).

Les quatre opérations (addition, soustraction, multiplication, division) sont étudiées à partir de problèmes qui contribuent à leur donner du sens, en particulier des problèmes portant sur des grandeurs ou sur leurs mesures. La pratique quotidienne du calcul mental conforte la maitrise des nombres et des opérations.

En lien avec le travail mené dans « Questionner le monde » les élèves rencontrent des grandeurs qu’ils apprennent à mesurer, ils construisent des connaissances de l’espace essentielles et abordent l’étude de quelques relations géométriques et de quelques objets (solides et figures planes) en étant confrontés à des problèmes dans lesquels ces connaissances sont en jeu.

Compétences travaillées

Domaines du socle

Chercher

  • S’engager dans une démarche de résolution de problèmes en observant, en posant des questions, en manipulant, en expérimentant, en émettant des hypothèses, si besoin avec l’accompagnement du professeur après un temps de recherche autonome.
  • Tester, essayer plusieurs pistes proposées par soi-même, les autres élèves ou le professeur.

2, 4

Modéliser

  • Utiliser des outils mathématiques pour résoudre des problèmes concrets, notamment des problèmes portant sur des grandeurs et leurs mesures.
  • Réaliser que certains problèmes relèvent de situations additives, d’autres de situations multiplicatives, de partages ou de groupements.
  • Reconnaitre des formes dans des objets réels et les reproduire géométriquement.

1, 2, 4

Représenter

  • Appréhender différents systèmes de représentations (dessins, schémas, arbres de calcul, etc.).
  • Utiliser des nombres pour représenter des quantités ou des grandeurs.
  • Utiliser diverses représentations de solides et de situations spatiales.

1, 5

Raisonner

  • Anticiper le résultat d’une manipulation, d’un calcul, ou d’une mesure.
  • Raisonner sur des figures pour les reproduire avec des instruments.
  • Tenir compte d’éléments divers (arguments d’autrui, résultats d’une expérience, sources internes ou externes à la classe, etc.) pour modifier son jugement.
  • Prendre progressivement conscience de la nécessité et de l’intérêt de justifier ce que l’on affirme.

2, 3, 4

Calculer

  • Calculer avec des nombres entiers, mentalement ou à la main, de manière exacte ou approchée, en utilisant des stratégies adaptées aux nombres en jeu.
  • Contrôler la vraisemblance de ses résultats.

4

Communiquer

  • Utiliser l’oral et l’écrit, le langage naturel puis quelques représentations et quelques symboles pour expliciter des démarches, argumenter des raisonnements.

1, 3

Nombres et calculs

La connaissance des nombres entiers et du calcul est un objectif majeur du cycle 2. Elle se développe en appui sur les quantités et les grandeurs, en travaillant selon plusieurs axes.

Des résolutions de problèmes contextualisés : dénombrer des collections, mesurer des grandeurs, repérer un rang dans une liste, prévoir des résultats d’actions portant sur des collections ou des grandeurs (les comparer, les réunir, les augmenter, les diminuer, les partager en parts égales ou inégales, chercher combien de fois l’une est comprise dans l’autre, etc.). Ces actions portent sur des objets tout d’abord matériels puis évoqués à l’oral ou à l’écrit ; le travail de recherche et de modélisation sur ces problèmes permet d’introduire progressivement les quatre opérations (addition, soustraction, multiplication, division).

L’étude de relations internes aux nombres : comprendre que le successeur d’un nombre entier c’est « ce nombre plus un », décomposer/recomposer les nombres additivement, multiplicativement, en utilisant les unités de numération (dizaines, centaines, milliers), changer d’unités de numération de référence, comparer, ranger, itérer une suite (+1, +10, +n), etc.

L’étude des différentes désignations orales et/ou écrites : nom du nombre ; écriture usuelle en chiffres (numération décimale de position) ; double de, moitié de, somme de, produit de ; différence de, quotient et reste de ; écritures en ligne additives/soustractives, multiplicatives, mixtes, en unités de numération, etc.

L’appropriation de stratégies de calcul adaptées aux nombres et aux opérations en jeu. Ces stratégies s’appuient sur la connaissance de faits numériques mémorisés (répertoires additif et multiplicatif, connaissance des unités de numération et de leurs relations, etc.) et sur celle des propriétés des opérations et de la numération. Le calcul mental est essentiel dans la vie quotidienne où il est souvent nécessaire de parvenir rapidement à un ordre de grandeur du résultat d’une opération, ou de vérifier un prix, etc.

Une bonne connaissance des nombres inférieurs à mille et de leurs relations est le fondement de la compréhension des nombres entiers et ce champ numérique est privilégié pour la construction de stratégies de calcul et la résolution des premiers problèmes arithmétiques.

Attendus de fin de cycle

  • Comprendre et utiliser des nombres entiers pour dénombrer, ordonner, repérer, comparer.
  • Nommer, lire, écrire, représenter des nombres entiers.
  • Résoudre des problèmes en utilisant des nombres entiers et le calcul.
  • Calculer avec des nombres entiers.

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Comprendre et utiliser des nombres entiers pour dénombrer, ordonner, repérer, comparer

Dénombrer, constituer et comparer des collections.

Utiliser diverses stratégies de dénombrement.

  • Procédures de dénombrement (décompositions/recompositions additives ou multiplicatives, utilisations d’unités intermédiaires : dizaines, centaines, en relation ou non avec des groupements).

Repérer un rang ou une position dans une file ou sur une piste.

Faire le lien entre le rang dans une liste et le nombre d’éléments qui le précèdent.

  • Relation entre ordinaux et cardinaux.

Comparer, ranger, encadrer, intercaler des nombres entiers, en utilisant les symboles =, ≠, <, >.

  • Egalite traduisant l’équivalence de deux désignations du même nombre.
  • Ordre.
  • Sens des symboles =, ≠, <, >.

Dénombrer des collections en les organisant et désigner leur nombre d’éléments (écritures additives ou multiplicatives, écritures en unités de numération, écriture usuelle).

Une importance particulière est accordée aux regroupements par dizaines, centaines, milliers.

Les comparaisons peuvent porter sur des écritures usuelles ou non : par exemple comparer 8+5+4 et 8+3+2+4 en utilisant que 5=3+2 et en déduire que les deux nombres sont égaux.

Nommer, lire, écrire, représenter des nombres entiers

Utiliser diverses représentations des nombres (écritures en chiffres et en lettres, noms à l’oral, graduations sur une demi-droite, constellations sur des dés, doigts de la main…).

Passer d’une représentation à une autre, en particulier associer les noms des nombres à leurs écritures chiffrées.

Interpréter les noms des nombres à l’aide des unités de numération et des écritures arithmétiques.

  • Unités de numération (unités simples, dizaines, centaines, milliers) et leurs relations (principe décimal de la numération en chiffres).
  • Valeur des chiffres en fonction de leur rang dans l’écriture d’un nombre (principe de position).
  • Noms des nombres.

Les connaissances de la numération orale sont approfondies par un travail spécifique à partir des « mots-nombres ».

Utiliser des écritures en unités de numération (5d 6u, mais aussi 4d 16u ou 6u 5d pour 56).

Itérer une suite de 1 en 1, de 10 en 10, de 100 en 100.

Associer un nombre entier à une position sur une demi-droite graduée, ainsi qu’à la distance de ce point à l’origine.

Associer un nombre ou un encadrement à une grandeur en mesurant celle-ci à l’aide d’une unité.

  • La demi-droite graduée comme mode de représentation des nombres grâce au lien entre nombres et longueurs.
  • Lien entre nombre et mesure de grandeurs une unité étant choisie.

Graduer une droite munie d’un point origine à l’aide d’une unité de longueur.

Faire le lien entre unités de numération et unités du système métrique étudiées au cycle 2.

Résoudre des problèmes en utilisant des nombres entiers et le calcul

Résoudre des problèmes issus de situations de la vie quotidienne ou adaptés de jeux portant sur des grandeurs et leur mesure, des déplacements sur une demi-droite graduée…, conduisant à utiliser les quatre opérations.

  • Sens des opérations.
  • Problèmes relevant des structures additives (addition/soustraction).
  • Problèmes relevant des structures multiplicatives, de partages ou de groupements (multiplication/division).

Modéliser ces problèmes à l’aide d’écritures mathématiques.

  • Sens des symboles +, −, ×, :

Étudier les liens, entre :

- addition et soustraction

- multiplication et division.

Distinguer les problèmes relevant des structures additives des problèmes relevant de structures multiplicatives.

Organisation et gestion de données

Exploiter des données numériques pour répondre à des questions.

Présenter et organiser des mesures sous forme de tableaux.

  • Modes de représentation de données numériques : tableaux, graphiques simples, etc.

Ce travail est mené en lien avec « Grandeurs et mesures » et « Questionner le monde ».

Calculer avec des nombres entiers

Mémoriser des faits numériques et des procédures.

  • Tables de l’addition et de la multiplication.
  • Décompositions additives et multiplicatives de 10 et de 100, compléments à la dizaine supérieure, à la centaine supérieure, multiplication par une puissance de 10, doubles et moitiés de nombres d’usage courant, etc.

Répondre aux questions :

7 × 4 = ? ; 28 = 7 × ? ; 28 = 4 × ?, etc.

Utiliser ses connaissances sur la numération :

« 24×10, c’est 24 dizaines, c’est 240 ».

 

Élaborer ou choisir des stratégies de calcul à l’oral et à l’écrit.

Vérifier la vraisemblance d’un résultat, notamment en estimant son ordre de grandeur.

  • Addition, soustraction, multiplication, division.
  • Propriétés implicites des opérations : 

2+9, c’est pareil que 9+2,

3×5×2, c’est pareil que 3×10.

  • Propriétés de la numération :

« 50+80, c’est 5 dizaines + 8 dizaines, c’est 13 dizaines, c’est 130 »

« 4×60, c’est 4×6 dizaines, c’est 24 dizaines, c’est 240 ».

Traiter des calculs relevant des quatre opérations, expliciter les procédures utilisées et comparer leur efficacité.

Pour calculer, estimer ou vérifier un résultat, utiliser divers supports ou instruments : les doigts ou le corps, bouliers ou abaques, ficelle à nœuds, cailloux ou jetons, monnaie fictive, double règle graduée, calculette, etc.

Calcul mental : calculer mentalement pour obtenir un résultat exact ou évaluer un ordre de grandeur.

Calculer mentalement

- sur les nombres 1, 2, 5, 10, 20, 50, 100 en lien avec la monnaie

- sur les nombres 15, 30, 45, 60, 90 en lien avec les durées.

Résoudre mentalement des problèmes arithmétiques, à données numériques simples

Utiliser les propriétés des opérations, y compris celles du type 5×12 = 5×10 + 5×2.

Calcul en ligne : calculer en utilisant des écritures en ligne additives, soustractives, multiplicatives, mixtes.

Exemples de stratégies de calcul en ligne :

5×36 = 5×2x18 = 10x18 = 180

5×36 = 150 + 30 = 180

5×36u = 15d + 30u = 15d + 3d = 180u

Utiliser des écritures en ligne du type 21 = 4×5 + 1 pour trouver le quotient et le reste de la division de 21 par 4 (ou par 5). 

Calcul posé : mettre en œuvre un algorithme de calcul posé pour l’addition, la soustraction, la multiplication.

L’apprentissage des techniques opératoires posées (addition, soustraction, multiplication) se fait en lien avec la numération et les propriétés des opérations.

Repères de progressivité

Il est possible, lors de la résolution de problèmes, d’aller au-delà des repères de progressivité identifiés pour chaque niveau.

Au CP, l’étude systématique des relations numériques entre des nombres inférieurs à 10, puis à 20 (décomposition/recomposition), est approfondie durant toute l’année. Parallèlement, l’étude de la numération décimale écrite en chiffres (dizaines, unités simples) pour les nombres jusqu’à 100 et celle de la désignation orale, permet aux élèves de dénombrer et constituer des collections de plus en plus importantes (la complexité de la numération orale en France doit être prise en compte pour les nombres supérieur à 69). Au CE1, un temps conséquent est consacré à la reprise de l’étude des nombres jusqu’à 100, notamment pour leur désignation orale et pour les stratégies de calcul mental ou écrit. Parallèlement, l’étude de la numération décimale écrite (centaine, dizaines, unités simples) est étendue par paliers, jusqu’à 200, puis 600 et éventuellement 1000, puis au CE2, jusqu’à 10 000 (l’absence de mot spécifique pour désigner le groupement suivant correspondant à 10 000 justifie ce palier).

Au CP, les élèves commencent à résoudre des problèmes additifs et soustractifs auxquels s’ajoutent des problèmes multiplicatifs dans la suite du cycle. L’étude de la division, travaillée au cycle 3, est initiée au cours du cycle 2 dans des situations simples de partage ou de groupement. Elle est ensuite préparée par la résolution de deux types de problèmes : ceux où l’on cherche combien de fois une grandeur contient une autre grandeur et ceux où l’on partage une grandeur en un nombre donné de grandeurs. Au CE2, les élèves sont amenés à résoudre des problèmes plus complexes, éventuellement à deux étapes, nécessitant par exemple l’exploration d’un tableau ou d’un graphique, ou l’élaboration d’une stratégie de résolution originale.

Le réinvestissement dans de nombreux problèmes arithmétiques élémentaires permet ensuite aux élèves d’accéder à différentes compréhensions de chaque opération.

En ce qui concerne le calcul, les élèves établissent puis doivent progressivement mémoriser :

  • des faits numériques : décompositions/recompositions additives dès début de cycle (dont les tables d’addition), multiplicatives dans la suite du cycle (dont les tables de multiplication) ;
  • des procédures de calculs élémentaires.

Ils s’appuient sur ces connaissances pour développer des procédures de calcul adaptées aux nombres en jeu pour les additions au CP, pour les soustractions et les multiplications au CE1 ainsi que pour obtenir le quotient et le reste d’une division euclidienne par un nombre à 1 chiffre et par des nombres comme 10, 25, 50, 100 en fin de cycle.

Les opérations posées permettent l’obtention de résultats notamment lorsque le calcul mental ou écrit en ligne atteint ses limites. Leur apprentissage est aussi un moyen de renforcer la compréhension du système décimal de position et de consolider la mémorisation des relations numériques élémentaires. Il a donc lieu lorsque les élèves se sont approprié des stratégies de calcul basées sur des décompositions/recompositions liées à la numération décimale, souvent utilisées également en calcul mental ou écrit.

Au CP, les élèves apprennent à poser les additions en colonnes avec des nombres de deux chiffres. Au CE1, ils consolident la maîtrise de l'addition avec des nombres plus grands et avec des nombres de taille différente ; ils  apprennent une technique de calcul posé pour la soustraction. Au CE2, ils consolident la maîtrise de la soustraction ; ils apprennent une technique de calcul posé pour la multiplication, tout d’abord en multipliant un nombre à deux chiffres par un nombre à un chiffre puis avec des nombres plus grands. Le choix de ces techniques est laissé aux équipes d’école, il doit être suivi au cycle 3.

Grandeurs et mesures

Dans les différents enseignements mais aussi dans leur vie quotidienne, les élèves sont amenés à comparer des objets ou des phénomènes en utilisant des nombres. À travers des activités de comparaison, ils apprennent à distinguer différents types de grandeurs et à utiliser le lexique approprié : longueurs (et repérage sur une droite), masses, contenance (et volume contenu), durées (et repérage dans le temps), prix. La comparaison de grandeurs peut être directe, d’objet à objet (juxtaposer deux baguettes), nécessiter la comparaison à un objet intermédiaire (utiliser un troisième récipient pour déterminer laquelle de deux bouteilles a la plus grande contenance) ou à plusieurs objets de même grandeur (mettre bout à bout plusieurs baguettes identiques pour comparer les longueurs de deux lignes tracées au sol). Elle peut également reposer sur la comparaison de mesures des grandeurs.

Dans le cas des longueurs, des masses, des contenances et des durées, les élèves ont une approche mathématique de la mesure d’une grandeur : ils déterminent combien de fois une grandeur à mesurer « contient » une grandeur de référence (l’unité). Ils s’approprient ensuite les unités usuelles et apprennent à utiliser des instruments de mesure (un sablier, une règle graduée, un verre mesureur, une balance, etc.).

Pour résoudre des problèmes liés à des situations vécues, les élèves sont amenés à calculer avec des grandeurs. Ils utilisent les propriétés des nombres et les opérations, et en consolident ainsi la maitrise. Pour comprendre les situations et valider leurs résultats ils doivent aussi donner du sens à ces grandeurs (estimer la longueur d’une pièce ou la distance entre deux arbres dans la cour, juger si un livre peut être plus lourd qu’un autre, etc.) en s’appuyant sur quelques références qu’ils se seront construites. Ces problèmes sont l'occasion de renforcer et de relier entre elles les connaissances numériques et géométriques, ainsi que celles acquises dans « Questionner le monde ».

Attendus de fin de cycle

  • Comparer, estimer, mesurer des longueurs, des masses, des contenances, des durées.
  • Utiliser le lexique, les unités, les instruments de mesures spécifiques de ces grandeurs.
  • Résoudre des problèmes impliquant des longueurs, des masses, des contenances, des durées, des prix.

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Comparer, estimer, mesurer des longueurs, des masses, des contenances, des durées

Utiliser le lexique, les unités, les instruments de mesures spécifiques ces grandeurs

Comparer des objets selon plusieurs grandeurs et identifier quand il s’agit d’une longueur, d’une masse, d’une contenance ou d’une durée.

  • Lexique spécifique associé aux longueurs, aux masses, aux contenances, aux durées.

Un objet peut être plus haut, moins large et plus léger qu’un autre ; identifier que « haut » et « large » font référence à la notion de longueur et que « léger » fait référence à la notion de masse.

Comparer des longueurs, des masses et des contenances, directement, en introduisant la comparaison à un objet intermédiaire ou par mesurage.

  • Principe de comparaison des longueurs, des masses, des contenances.

 

Juxtaposer des objets pour comparer leur longueur.

Estimer à vue des rapports très simples de longueur. Vérifier éventuellement avec une bande de papier.

Estimer les ordres de grandeurs de quelques longueurs, masses et contenances en relation avec les unités métriques.

Vérifier éventuellement avec un instrument.

  • Ordres de grandeur des unités usuelles en les associant à quelques objets familiers.
  • Rapports très simples de longueurs (double et moitié).

À vue ou par manipulation, proposer une estimation de la mesure d’une grandeur attachée à un objet, avant confrontation avec d’autres approches.

 

Mesurer des longueurs avec un instrument adapté, notamment en reportant une unité.

Mesurer des masses et des contenances avec des instruments adaptés.

Encadrer une grandeur par deux nombres entiers d’unités

Exprimer une mesure dans une ou plusieurs unités choisies ou imposées.

  • Notion d’unité : grandeur arbitraire prise comme référence pour mesurer les grandeurs de la même espèce.
  • Unités de mesures usuelles.
  • longueur : m, dm, cm, mm, km.
  • masse : g, kg, tonne.
  • contenance : L, dL, cL.
  • Relations entre les unités de longueur, entre les unités de masses, entre les unités de contenance.

Instruments : règle graduée, bandes de 1 dm de long graduées ou non, bande de papier plus ou moins longue, ficelle, mètre gradué ou non, balance à plateaux, à lecture directe, des récipients pour transvaser, un verre mesureur, …

Les encadrements de grandeurs sont du type : le couloir mesure entre 6 m et 7 m de long.

Les grandeurs peuvent être exprimées avec des expressions complexes (1 m 13 cm, 1 h 20 min, etc.)

Comparer, estimer, mesurer des durées 

  • Unités de mesure usuelles de durées : j, semaine, h, min, s, mois, année, siècle, millénaire.
  • Relations entre ces unités.

Ce travail est mené en lien avec « Questionner le monde »

Utiliser un sablier, des horloges et des montres à aiguilles et à affichage digital, un chronomètre.

Dans des cas simples, représenter une grandeur par une longueur, notamment sur une demi-droite graduée.

  • Des objets de grandeurs égales sont représentés par des segments de longueurs égales.
  • Une grandeur double est représentée par une longueur double.
  • La règle graduée en cm comme cas particulier d’une demi-droite graduée.

Lire les graduations représentant des grandeurs : cadran d’une balance, frise chronologique, progressivement axes d’un graphique.

Résoudre des problèmes impliquant des longueurs, des masses, des contenances, des durées, des prix

Résoudre des problèmes, notamment de mesurage et de comparaison, en utilisant les opérations sur les grandeurs ou sur les nombres.

  • Opérations sur les grandeurs (addition, soustraction, multiplication par un entier, division : recherche du nombre de parts et de la taille d’une part).
  • Quatre opérations sur les mesures des grandeurs.
  • Principes d’utilisation de la monnaie (en euros et centimes d’euros).
  • Lexique lié aux pratiques économiques.

Observer que les longueurs, les masses, les contenances, les durées, sont des grandeurs additives.

Utiliser le résultat d’un mesurage pour calculer une autre grandeur, notamment mesurer des segments pour calculer la longueur d’une ligne brisée, périmètre d’un polygone.

Réinvestir les connaissances de calcul mental, de numération et le sens des opérations.

Connaitre le prix de quelques objets familiers.

Résoudre des problèmes impliquant des conversions simples d’une unité usuelle à une autre.

Convertir avant de calculer si nécessaire.

  • Relations entre les unités usuelles.

Faire des liens entre les unités de mesure décimales et les unités de numération.

Repères de progressivité

Il est possible, lors de la résolution de problèmes, d’aller au-delà des repères de progressivité identifiés pour chaque niveau.

Tout au long du cycle, les élèves travaillent sur des grandeurs diverses en commençant par les comparer pour appréhender le concept, avant de les mesurer au moyen d’instruments adéquats en s’appropriant peu à peu les unités usuelles. Les différentes unités sont introduites et mises en relation progressivement au cours du cycle :

  • la longueur (comparaison, double et moitié dès le CP, en dm, cm, m, km au CE1 puis en mm au CE2) ;
  • la masse (en g et kg, comme unités indépendantes au CE1, puis en g, kg, et tonne en relation au CE2) ;
  • la contenance (en litres au CE1, en cL et dL au CE2) ;
  • la durée (jour et semaine et leur relation tout au long du cycle, relations entre j et h, entre h et min en cours de CE1, j, mois, année et leurs relations, année, siècle, millénaire et leurs relations, min, s et leur relation au CE2) ;
  • le prix (en euros dès le CP, en euros et en centimes d’euros, en relation au CE1).

Les opérations sur les grandeurs sont menées en lien avec l’avancée des opérations sur les nombres, de la connaissance des unités et des relations entre elles. Le lexique suivant est introduit : le double d’une longueur, sa moitié au début du cycle.

Espace et géométrie

Au cycle 2, les élèves acquièrent à la fois des connaissances spatiales comme l’orientation et le repérage dans l’espace et des connaissances géométriques sur les solides et sur les figures planes. Apprendre à se repérer et se déplacer dans l’espace se fait en lien étroit avec le travail dans « Questionner le monde » et « Éducation physique et sportive ». Les connaissances géométriques contribuent à la construction, tout au long de la scolarité obligatoire, des concepts fondamentaux d’alignement, de distance, d’égalité de longueurs, de parallélisme, de perpendicularité, de symétrie.

Les compétences et connaissances attendues en fin de cycle se construisent à partir de problèmes, qui s’enrichissent tout au long du cycle en jouant sur les outils et les supports à disposition, et en relation avec les activités mettant en jeu les grandeurs géométriques et leur mesure.

Dans la suite du travail commencé à l’école maternelle, l’acquisition de connaissances spatiales s’appuie sur des problèmes visant à localiser des objets ou à décrire ou produire des déplacements dans l’espace réel. L’oral tient encore une grande place au CP mais les représentations symboliques se développent et l’espace réel est progressivement mis en relation avec des représentations géométriques. La connaissance des solides se développe à travers des activités de tri, d’assemblages et de fabrications d’objets. Les notions de géométrie plane et les connaissances sur les figures usuelles s’acquièrent à partir de résolution de problèmes (reproduction de figures, activités de tri et de classement, description de figures, reconnaissance de figures à partir de leur description, tracés en suivant un programme de construction simple). La reproduction de figures diverses, simples et composées est une source importante de problèmes de géométrie dont on peut faire varier la difficulté en fonction des figures à reproduire et des instruments disponibles. Les concepts généraux de géométrie (droites, points, segments, angles droits) sont présentés à partir de tels problèmes.

En géométrie comme ailleurs, il est particulièrement important que les professeurs utilisent un langage précis et adapté et introduisent le vocabulaire approprié au cours des manipulations et situations d’action où il prend sens pour les élèves, et que ceux-ci soient progressivement encouragés à l’utiliser.

Attendus de fin de cycle

  • (Se) repérer et (se) déplacer en utilisant des repères et des représentations.
  • Reconnaitre, nommer, décrire, reproduire quelques solides.
  • Reconnaitre, nommer, décrire, reproduire, construire quelques figures géométriques.
  • Reconnaitre et utiliser les notions d’alignement, d’angle droit, d’égalité de longueurs, de milieu, de symétrie.

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

(Se) repérer et (se) déplacer en utilisant des repères

Se repérer dans son environnement proche.

Situer des objets ou des personnes les uns par rapport aux autres ou par rapport à d’autres repères.

  • Vocabulaire permettant de définir des positions (gauche, droite, au-dessus, en dessous, sur, sous, devant, derrière, près, loin, premier plan, second plan, nord, sud, est, ouest,…).
  • Vocabulaire permettant de définir des déplacements (avancer, reculer, tourner à droite/à gauche, monter, descendre, …).

Ce travail est mené en lien avec « Questionner le monde ».

Passer, dans les activités, de l'espace proche et connu à un espace inconnu.

Mises en situations, avec utilisation orale puis écrite d’un langage approprié.

 

Produire des représentations des espaces familiers (les espaces scolaires extérieurs proches, le village, le quartier) et moins familiers (vécus lors de sorties).

  • Quelques modes de représentation de l’espace.

Ce travail est mené en lien avec « Questionner le monde »

Étudier des représentations de l’espace environnant (maquettes, plans, photos), en produire.

Dessiner l’espace de l’école.

S'orienter et se déplacer en utilisant des repères.

Coder et décoder pour prévoir, représenter et réaliser des déplacements dans des espaces familiers, sur un quadrillage, sur un écran.

  • Repères spatiaux.
  • Relations entre l’espace dans lequel on se déplace et ses représentations.

Parcours de découverte et d'orientation pour identifier des éléments, les situer les uns par rapport aux autres, anticiper et effectuer un déplacement, le coder.

Réaliser des déplacements dans l’espace et les coder pour qu’un autre élève puisse les reproduire.

Produire des représentations d’un espace restreint et s’en servir pour communiquer des positions.

Programmer les déplacements d’un robot ou ceux d’un personnage sur un écran.

Reconnaitre, nommer, décrire, reproduire quelques solides

Reconnaitre et trier les solides usuels parmi des solides variés. Décrire et comparer des solides en utilisant le vocabulaire approprié.

Reproduire des solides.

Fabriquer un cube à partir d’un patron fourni.

  • Vocabulaire approprié pour :
  • nommer des solides (boule, cylindre, cône, cube, pavé droit, pyramide) ;
  • décrire des polyèdres (face, sommet, arête).
  • Les faces d’un cube sont des carrés.
  • Les faces d’un pavé droit sont des rectangles (qui peuvent être des carrés).

Trier, reconnaitre et nommer les solides à travers des activités de tri parmi des solides variés, des jeux (portrait, Kim…).

Réaliser et reproduire des assemblages de cubes et pavés droits.

Associer de tels assemblages à divers types de représentations (photos, vues, …)

Commander le matériel juste nécessaire pour fabriquer un cube à partir de ses faces.

Observer, compter le nombre de faces et de sommets d’un cube.

Initiation à l’usage d’un logiciel permettant de représenter les solides et de les déplacer pour les voir sous différents angles.

Reconnaitre, nommer, décrire, reproduire, construire quelques figures géométriques

Reconnaitre et utiliser les notions d’alignement, d’angle droit, d’égalité de longueurs, de milieu, de symétrie

Décrire, reproduire des figures ou des assemblages de figures planes sur papier quadrillé ou uni

Utiliser la règle, le compas ou l’équerre comme instruments de tracé.

Reconnaitre, nommer les figures usuelles.

Reconnaitre et décrire à partir des côtés et des angles droits, un carré, un rectangle, un triangle rectangle. Les construire sur un support uni connaissant la longueur des côtés.

Construire un cercle connaissant son centre et un point, ou son centre et son rayon.

  • Vocabulaire approprié pour décrire les figures planes usuelles :
  • carré, rectangle, triangle, triangle rectangle, polygone, côté, sommet, angle droit ;
  • cercle, disque, rayon, centre ;
  • segment, milieu d’un segment, droite.
  • Propriété des angles et égalités de longueur des côtés pour les carrés et les rectangles.
  • Lien entre propriétés géométriques et instruments de tracé :
  • droite, alignement et règle non graduée ;
  • angle droit et équerre ;
  • cercle et compas.

Les jeux du type portrait, Kim etc., la construction de frises, pavages, rosaces peuvent contribuer à développer la connaissance des propriétés des figures du programme et du vocabulaire associé.

Les problèmes de reproduction de figures (éventuellement à partir d’éléments déjà fournis de la figure à reproduire qu’il s’agit alors de compléter) donnent l’occasion de dégager et travailler les propriétés et relations géométriques du programme. Le choix d’un support uni, quadrillé ou pointé et des instruments disponibles se fait suivant les objectifs.

Les problèmes de description de figures permettent de développer le langage géométrique.

Utiliser la règle (non graduée) pour repérer et produire des alignements.

Repérer et produire des angles droits à l'aide d’un gabarit, d'une équerre.

Reporter une longueur sur une droite déjà tracée.

Repérer ou trouver le milieu d’un segment.

  • Alignement de points et de segments.
  • Angle droit.
  • Égalité de longueurs.
  • Milieu d’un segment.

À travers des activités dans l’espace ou des tracés, les élèves perçoivent les notions d'alignement, de partage en deux, de symétrie.

Mobiliser des instruments variés lors des tracés: gabarits, pochoirs, règle non graduée, bande de papier avec un bord droit pour reporter des longueurs ou trouver un milieu, gabarit d’angle droit, équerre, compas.

Le report de longueurs et la recherche du milieu d’un segment peuvent s’obtenir en utilisant la règle graduée en lien avec la mesure mais ils doivent d’abord pouvoir se faire sans règle graduée.

Reconnaitre si une figure présente un axe de symétrie (à trouver).

Compléter une figure pour qu'elle soit symétrique par rapport à un axe donné.

  • Symétrie axiale.
  • Une figure décalquée puis retournée qui coïncide avec la figure initiale est symétrique : elle a un axe de symétrie (à trouver).
  • Une figure symétrique pliée sur son axe de symétrie, se partage en deux parties qui coïncident exactement.

Reconnaitre dans son environnement des situations modélisables par la symétrie (papillons, bâtiments, etc.).

Utiliser du papier calque, des découpages, des pliages, des logiciels permettant de déplacer des figures ou parties de figures.

Repères de progressivité

Il est possible, lors de la résolution de problèmes, d’aller au-delà des repères de progressivité identifiés pour chaque niveau.

Au CP, la représentation des lieux et le codage des déplacements se situent dans la classe ou dans l’école, puis dans le quartier proche, et au CE2 dans un quartier étendu ou le village.

Dès le CE1, les élèves peuvent coder des déplacements à l’aide d’un logiciel de programmation adapté, ce qui les amènera au CE2 à la compréhension, et la production d’algorithmes simples.

Dès le CP, les élèves observent et apprennent à reconnaitre, trier et nommer des solides variés. Le vocabulaire nécessaire pour les décrire (face, sommet, arête) est progressivement exigible.

Ils apprennent dès le CE1 à construire un cube avec des carrés ou avec des tiges que l'on peut assembler. Au CE2, ils approchent la notion de patron du cube. La discussion sur l’agencement des faces d’un patron relève du cycle 3.

Les propriétés géométriques sont engagées progressivement dans la reproduction et la description de figures (alignement, report de longueur sur une droite et égalités de longueur en début de cycle, puis angle droit en milieu de cycle). On aborde la construction d’un cercle sans contraintes au CE1 ; puis à partir du centre et d’un point de son rayon et son centre, et, au CE2, de son diamètre.

L’utilisation des instruments se fait graduellement : règle non graduée, outil de report de longueur (bande de papier ou de carton sur laquelle on peut écrire) sur une droite dès le CP ; puis règle graduée, gabarit d’angle droit ; enfin, équerre, compas pour tracer des cercles. Le report de longueurs sur une droite déjà tracée avec le compas peut être abordé au CE2 mais il relève surtout du cycle 3.

L’initiation à l’utilisation de logiciels de géométrie permettant de produire ou déplacer des figures ou composantes de figures se fait graduellement, en lien avec l’ensemble des activités géométriques et le développement des connaissances et compétences géométriques. L’usage des logiciels de géométrie dynamique relève essentiellement des cycles 3 et 4.

Croisements entre enseignements

Les connaissances sur les nombres et le calcul se développent en relation étroite avec celles portant sur les grandeurs. Elles sont par ailleurs nécessaires à la résolution de nombreux problèmes rencontrés dans « Questionner le monde ».

Le travail sur les grandeurs et leur mesure permet des mises en relations fécondes avec d’autres enseignements : « Questionner le monde » (longueurs, masses, durées), « Éducation physique et sportive » (durées, longueurs), « Éducation musicale » (durées).

Le travail sur l’espace se fait en forte interrelation avec « Questionner le monde » et « Éducation physique et sportive ».

Le travail sur les solides, les figures géométriques et les relations géométriques peut se développer en lien avec « Arts plastiques» et « Éducation physique et sportive ».


Programme pour le cycle 3

Les textes qui suivent appliquent les rectifications orthographiques proposées par le Conseil supérieur de la langue française, approuvées par l’Académie française et publiées par le Journal officiel de la République française le 6 décembre 1990.

Mathématiques

Dans la continuité des cycles précédents, le cycle 3 assure la poursuite du développement des six compétences majeures des mathématiques : chercher, modéliser, représenter, calculer, raisonner et communiquer. La résolution de problèmes constitue le critère principal de la maitrise des connaissances dans tous les domaines des mathématiques, mais elle est également le moyen d’en assurer une appropriation qui en garantit le sens. Si la modélisation algébrique relève avant tout du cycle 4 et du lycée, la résolution de problèmes permet déjà de montrer comment des notions mathématiques peuvent être des outils pertinents pour résoudre certaines situations.

Les situations sur lesquelles portent les problèmes sont, le plus souvent, issues d’autres enseignements, de la vie de classe ou de la vie courante. Les élèves fréquentent également des problèmes issus d’un contexte interne aux mathématiques. La mise en perspective historique de certaines connaissances (numération de position, apparition des nombres décimaux, du système métrique, etc.) contribue à enrichir la culture scientifique des élèves. On veille aussi à proposer aux élèves des problèmes pour apprendre à chercher qui ne soient pas directement reliés à la notion en cours d’étude, qui ne comportent pas forcément une seule solution, qui ne se résolvent pas uniquement avec une ou plusieurs opérations mais par un raisonnement et des recherches par tâtonnements.

Le cycle 3 vise à approfondir des notions mathématiques abordées au cycle 2, à en étendre le domaine d’étude, à consolider l’automatisation des techniques écrites de calcul introduites précédemment (addition, soustraction et multiplication) ainsi que les résultats et procédures de calcul mental du cycle 2, mais aussi à construire de nouvelles techniques de calcul écrites (division) et mentales, enfin à introduire des notions nouvelles comme les nombres décimaux, la proportionnalité ou l’étude de nouvelles grandeurs (aire, volume, angle notamment).

Les activités géométriques pratiquées au cycle 3 s’inscrivent dans la continuité de celles fréquentées au cycle 2. Elles s’en distinguent par une part plus grande accordée au raisonnement et à l’argumentation qui complètent la perception et l’usage des instruments. Elles sont aussi une occasion de fréquenter de nouvelles représentations de l’espace (patrons, perspectives, vues de face, de côté, de dessus…).

En complément de l’usage du papier, du crayon et de la manipulation d’objets concrets, les outils numériques sont progressivement introduits. Ainsi, l’usage de logiciels de calcul et de numération permet d’approfondir les connaissances des propriétés des nombres et des opérations comme d’accroitre la maitrise de certaines techniques de calculs. De même, des activités géométriques peuvent être l’occasion d’amener les élèves à utiliser différents supports de travail : papier et crayon, mais aussi logiciels de géométrie dynamique, d’initiation à la programmation ou logiciels de visualisation de cartes, de plans.

Compétences

Domaines du socle

Chercher

  • Prélever et organiser les informations nécessaires à la résolution de problèmes à partir de supports variés : textes, tableaux, diagrammes, graphiques, dessins, schémas, etc.
  • S’engager dans une démarche, observer, questionner, manipuler, expérimenter, émettre des hypothèses, en mobilisant des outils ou des procédures mathématiques déjà rencontrées, en élaborant un raisonnement adapté à une situation nouvelle.
  • Tester, essayer plusieurs pistes de résolution.

2, 4

Modéliser

  • Utiliser les mathématiques pour résoudre quelques problèmes issus de situations de la vie quotidienne.
  • Reconnaitre et distinguer des problèmes relevant de situations additives, multiplicatives, de proportionnalité.
  • Reconnaitre des situations réelles pouvant être modélisées par des relations géométriques (alignement, parallélisme, perpendicularité, symétrie).
  • Utiliser des propriétés géométriques pour reconnaitre des objets.

1, 2, 4

Représenter

  • Utiliser des outils pour représenter un problème : dessins, schémas, diagrammes, graphiques, écritures avec parenthésages, …
  • Produire et utiliser diverses représentations des fractions simples et des nombres décimaux.
  • Analyser une figure plane sous différents aspects (surface, contour de celle-ci, lignes et points).
  • Reconnaitre et utiliser des premiers éléments de codages d’une figure plane ou d’un solide.
  • Utiliser et produire des représentations de solides et de situations spatiales.

1, 5

Raisonner

  • Résoudre des problèmes nécessitant l’organisation de données multiples ou la construction d’une démarche qui combine des étapes de raisonnement.
  • En géométrie, passer progressivement de la perception au contrôle par les instruments pour amorcer des raisonnements s’appuyant uniquement sur des propriétés des figures et sur des relations entre objets.
  • Progresser collectivement dans une investigation en sachant prendre en compte le point de vue d’autrui.
  • Justifier ses affirmations et rechercher la validité des informations dont on dispose.

2, 3, 4

Calculer

  • Calculer avec des nombres décimaux, de manière exacte ou approchée, en utilisant des stratégies ou des techniques appropriées (mentalement, en ligne, ou en posant les opérations).
  • Contrôler la vraisemblance de ses résultats.
  • Utiliser une calculatrice pour trouver ou vérifier un résultat.

4

Communiquer

  • Utiliser progressivement un vocabulaire adéquat et/ou des notations adaptées pour décrire une situation, exposer une argumentation.
  • Expliquer sa démarche ou son raisonnement, comprendre les explications d’un autre et argumenter dans l’échange.

1, 3


Nombres et calculs

Au cycle 3, l’étude des grands nombres permet d’enrichir la compréhension de notre système de numération (numération orale et numération écrite) et de mobiliser ses propriétés lors de calculs.

Les fractions puis les nombres décimaux apparaissent comme de nouveaux nombres introduits pour pallier l’insuffisance des nombres entiers, notamment pour mesurer des longueurs, des aires et repérer des points sur une demi-droite graduée. Le lien à établir avec les connaissances acquises à propos des entiers est essentiel. Avoir une bonne compréhension des relations entre les différentes unités de numération des entiers (unités, dizaines, centaines de chaque ordre) permet de les prolonger aux dixièmes, centièmes… Les caractéristiques communes entre le système de numération et le système métrique sont mises en évidence. L’écriture à virgule est présentée comme une convention d’écriture d’une fraction décimale ou d’une somme de fractions décimales. Cela permet de mettre à jour la nature des nombres décimaux et de justifier les règles de comparaison (qui se différencient de celles mises en œuvre pour les entiers) et de calcul.

Le calcul mental, le calcul posé et le calcul instrumenté sont à construire en interaction. Ainsi, le calcul mental est mobilisé dans le calcul posé et il peut être utilisé pour fournir un ordre de grandeur avant un calcul instrumenté. Réciproquement, le calcul instrumenté peut permettre de vérifier un résultat obtenu par le calcul mental ou par le calcul posé. Le calcul, dans toutes ses modalités, contribue à la connaissance des nombres. Ainsi, même si le calcul mental permet de produire des résultats utiles dans différents contextes de la vie quotidienne, son enseignement vise néanmoins prioritairement l’exploration des nombres et des propriétés des opérations. Il s’agit d’amener les élèves à s’adapter en adoptant la procédure la plus efficace en fonction de leurs connaissances mais aussi et surtout en fonction des nombres et des opérations mis en jeu dans les calculs. Pour cela, il est indispensable que les élèves puissent s’appuyer sur suffisamment de faits numériques mémorisés et de modules de calcul élémentaires automatisés. De même, si la maitrise des techniques opératoires écrites permet à l’élève d’obtenir un résultat de calcul, la construction de ces techniques est l’occasion de retravailler les propriétés de la numération et de rencontrer des exemples d’algorithmes complexes.

Les problèmes arithmétiques proposés au cycle 3 permettent d’enrichir le sens des opérations déjà abordées au cycle 2 et d’en étudier de nouvelles. Les procédures de traitement de ces problèmes peuvent évoluer en fonction des nombres en jeu et de leur structure. Le calcul contribuant aussi à la représentation des problèmes, il s’agit de développer simultanément chez les élèves des aptitudes de calcul et de résolution de problèmes arithmétiques (le travail sur la technique et sur le sens devant se nourrir l’un l’autre).

Attendus de fin de cycle                

Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux.

Calculer avec des nombres entiers et des nombres décimaux.

Résoudre des problèmes en utilisant des fractions simples, les nombres décimaux et le calcul.

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux

Composer, décomposer les grands nombres entiers, en utilisant des regroupements par milliers.

  • Unités de numération (unités simples, dizaines, centaines, milliers, millions, milliards) et leurs relations.

Comprendre et appliquer les règles de la numération aux grands nombres (jusqu’à 12 chiffres).

Comparer, ranger, encadrer des grands nombres entiers, les repérer et les placer sur une demi-droite graduée adaptée.

Situations dont la résolution mobilise des connaissances sur la numération ou des conversions d’unités de numération.

Illustrer les grands nombres à l’aide d’exemples d’ordres de grandeurs (population française, population mondiale, rayon de la Terre, âge du système solaire…).

Le travail sur certaines unités de masse ou de longueur et sur leurs relations (gramme, kilogramme, tonne ; centimètre, mètre, kilomètre, etc.) permet un retour sur les règles de numération.

Comprendre et utiliser la notion de fractions simples.

  • Écritures fractionnaires.
  • Diverses désignations des fractions (orales, écrites et décompositions).

Repérer et placer des fractions sur une demi-droite graduée adaptée.

  • Une première extension de la relation d’ordre.

Encadrer une fraction par deux nombres entiers consécutifs.

Établir des égalités entre des fractions simples.

Utiliser des fractions pour :

- rendre compte de partage de grandeurs ou de mesure de grandeurs dans des cas simples ;

- exprimer un quotient.

Situation permettant de relier les formulations la moitié, le tiers, le quart et 1/2 de, 1/3 de, 1/4 de, etc. (fractions vues comme opérateurs).

Par exemple, en utilisant une demi-droite graduée, les élèves établissent que 5/10 = 1/2, que 10/100 = 1/10, etc.

Écrire une fraction sous forme de somme d’un entier et d’une fraction inférieure à 1.

Comprendre et utiliser la notion de nombre décimal.

  • Spécificités des nombres décimaux.

Associer diverses désignations d’un nombre décimal (fractions décimales, écritures à virgule et décompositions).

  • Règles et fonctionnement des systèmes de numération dans le champ des nombres décimaux, relations entre unités de numération (point de vue décimal), valeurs des chiffres en fonction de leur rang dans l’écriture à virgule d’un nombre décimal (point de vue positionnel).

Repérer et placer des décimaux sur une demi-droite graduée adaptée.

Comparer, ranger, encadrer, intercaler des nombres décimaux.

  • Ordre sur les nombres décimaux.

Situations nécessitant :

- d’utiliser des nombres décimaux pour rendre compte de partage de grandeurs ou de mesure de grandeurs dans des cas simples ;

- d’utiliser différentes représentations : mesures de longueurs et aires, une unité étant choisie ;

- de faire le lien entre les unités de numération et les unités de mesure (dixième/dm/dg/dL, centième/cm/cg/cL/centimes d’euros, etc.).

La demi-droite numérique graduée est l’occasion de mettre en évidence des agrandissements successifs de la graduation du 1/10 au 1/1000.

Calculer avec des nombres entiers et des nombres décimaux

Mémoriser des faits numériques et des procédures élémentaires de calcul.

Élaborer ou choisir des stratégies de calcul à l’oral et à l’écrit.

Vérifier la vraisemblance d’un résultat, notamment en estimant son ordre de grandeur.

  • Addition, soustraction, multiplication, division.
  • Propriétés des opérations :
  • 2+9 = 9+2
  • 3×5×2 = 3×10
  • 5×12 = 5×10 + 5×2 
  • Faits et procédures numériques additifs et multiplicatifs.
  • Multiples et diviseurs des nombres d’usage courant.
  • Critères de divisibilité (2, 3, 4, 5, 9, 10).

Exemples de faits et procédures numériques :

- multiplier ou diviser par 10, par 100, par 1000 un nombre décimal,

- rechercher le complément à l’unité, à la dizaine, à la centaine supérieure,

- encadrer un nombre entre deux multiples consécutifs,

- trouver un quotient, un reste,

- multiplier par 5, par 25, par 50, par 100, par 0,1, par 0,5 …

Utiliser différentes présentations pour communiquer les calculs (formulations orales, calcul posé, en ligne, en colonne, etc.).

En lien avec la calculatrice, introduire et travailler la priorité de la multiplication sur l’addition et la soustraction ainsi que l’usage des parenthèses.

Calcul mental : calculer mentalement pour obtenir un résultat exact ou évaluer un ordre de grandeur.

Calcul en ligne : utiliser des parenthèses dans des situations très simples.

  • Règles d’usage des parenthèses.

Calcul posé : mettre en œuvre un algorithme de calcul posé pour l’addition, la soustraction, la multiplication, la division.

  • Techniques opératoires de calcul (dans le cas de la division, on se limite à diviser par un entier).

Calcul instrumenté : utiliser une calculatrice pour trouver ou vérifier un résultat.

  • Fonctions de base d’une calculatrice.

Résoudre des problèmes en utilisant des fractions simples, les nombres décimaux et le calcul

Résoudre des problèmes mettant en jeu les quatre opérations.

  • Sens des opérations.
  • Problèmes relevant :
  • des structures additives ;
  • des structures multiplicatives.

Enrichir le répertoire des problèmes additifs et multiplicatifs, notamment les problèmes relevant de la division.

Organisation et gestion de données

Prélever des données numériques à partir de supports variés. Produire des tableaux, diagrammes et graphiques organisant des données numériques.

Exploiter et communiquer des résultats de mesures.

  • Représentations usuelles :
  • tableaux (en deux ou plusieurs colonnes, à double entrée) ;
  • diagrammes en bâtons, circulaires ou semi-circulaires ;
  • graphiques cartésiens.

Extraire ou traiter des données issues d’articles de journaux.

Organiser des données issues d’autres enseignements (sciences et technologie, histoire et géographie, éducation physique et sportive…) en vue de les traiter.

Proportionnalité

Reconnaitre et résoudre des problèmes relevant de la proportionnalité en utilisant une procédure adaptée.

Situations permettant une rencontre avec des échelles, des vitesses constantes, des taux de pourcentage, en lien avec l’étude des fractions décimales.

Mobiliser les propriétés de linéarité (additives et multiplicatives), de proportionnalité, de passage à l’unité.

Utiliser des exemples de tableaux de proportionnalité.

Repères de progressivité

Il est possible, lors de la résolution de problèmes, d’aller au-delà des repères de progressivité identifiés pour chaque niveau.

En début du cycle, les nombres sont abordés jusqu’à 1 000 000, puis progressivement jusqu'au milliard. Ce travail devra être entretenu tout au long du cycle 3.

Fractions et décimaux : Les fractions sont à la fois objet d'étude et support pour l’introduction et l'apprentissage des nombres décimaux. Pour cette raison, on commence dès le CM1 l'étude des fractions simples (comme ) et des fractions décimales. Du CM1 à la 6ème, on aborde différentes conceptions possibles de la fraction, du partage de grandeurs jusqu’au quotient de deux nombres entiers, qui sera étudié en 6ème. Pour les nombres décimaux, les activités peuvent se limiter aux centièmes en début de cycle pour s'étendre aux dix-millièmes en 6ème.

Le calcul : La pratique du calcul mental s’étend progressivement des nombres entiers aux nombres décimaux, et les procédures à mobiliser se complexifient.

Les différentes techniques opératoires portent sur des nombres entiers et/ou des nombres décimaux :

  • addition et soustraction pour les nombres décimaux dès le CM1 ;
  • multiplication d’un nombre décimal par un nombre entier au CM2, de deux nombres décimaux en 6ème ;
  • division euclidienne dès le début de cycle, division de deux nombres entiers avec quotient décimal, division d'un nombre décimal par un nombre entier à partir du CM2.

La résolution de problème : La progressivité sur la résolution de problèmes, outre la structure mathématique du problème, repose notamment sur :

  • les nombres mis en jeu : entiers (tout au long du cycle) puis décimaux ;
  • le nombre d’étapes de calcul et la détermination ou non de ces étapes par les élèves : selon les cas, à tous les niveaux du cycle 3, on passe de problèmes dont la solution engage une démarche à une ou plusieurs étapes indiquées dans l’énoncé à des problèmes, en 6ème, nécessitant l’organisation de données multiples ou la construction d’une démarche ;
  • les supports envisagés pour la prise d’informations : la collecte des informations utiles peut se faire à partir d’un support unique en CM1 (texte ou tableau ou représentation graphique) puis à partir de deux supports complémentaires pour aller vers des tâches complexes mêlant plusieurs supports en 6ème.

La communication de la démarche et des résultats prend différentes formes et s’enrichit au cours du cycle.

Dès le début du cycle, les problèmes proposés relèvent des quatre opérations, l’objectif est d’automatiser la reconnaissance de l’opération en fin de cycle 3.


Grandeurs et mesures

Au cycle 3, les connaissances des grandeurs déjà fréquentées au cycle 2 (longueur, masse, contenance, durée, prix) sont complétées et structurées, en particulier à travers la maitrise des unités légales du Système International d’unités (numération décimale ou sexagésimale) et de leurs relations. Un des enjeux est d’enrichir la notion de grandeur en abordant la notion d’aire d’une surface et en la distinguant clairement de celle de périmètre. Les élèves approchent la notion d’angle et se familiarisent avec la notion de volume en la liant tout d’abord à celle de contenance.

La notion de mesure d’une grandeur, consiste à associer, une unité étant choisie, un nombre (entier ou non) à la grandeur considérée. Il s’agit de déterminer combien d’unités ou de fractionnements de l’unité sont contenus dans la grandeur à mesurer. Les opérations sur les grandeurs permettent également d’aborder les opérations sur leurs mesures. Les notions de grandeur et de mesure de la grandeur se construisent dialectiquement, en résolvant des problèmes faisant appel à différents types de tâches (comparer, estimer, mesurer). Dans le cadre des grandeurs, la proportionnalité sera mise en évidence et convoquée pour résoudre des problèmes dans différents contextes.

Dans la continuité du cycle 2, le travail sur l’estimation participe à la validation de résultats et permet de donner du sens à ces grandeurs et à leur mesure (estimer en prenant appui sur des références déjà construites : longueurs et aire d’un terrain de basket, aire d’un timbre, masse d’un trombone, masse et volume d’une bouteille de lait…).

Attendus de fin de cycle                

Comparer, estimer, mesurer des grandeurs géométriques avec des nombres entiers et des nombres décimaux : longueur (périmètre), aire, volume, angle.

Utiliser le lexique, les unités, les instruments de mesures spécifiques de ces grandeurs.

Résoudre des problèmes impliquant des grandeurs (géométriques, physiques, économiques) en utilisant des nombres entiers et des nombres décimaux.

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Comparer, estimer, mesurer des grandeurs géométriques avec des nombres entiers et des nombres décimaux :

longueur (périmètre), aire, volume, angle

Utiliser le lexique, les unités, les instruments de mesures spécifiques de ces grandeurs

Comparer des périmètres avec ou sans recours à la mesure.

Mesurer des périmètres en reportant des unités et des fractions d’unités, ou en utilisant une formule.

  • Notion de longueur : cas particulier du périmètre.
  • Formule du périmètre d’un carré, d’un rectangle.
  • Formule de la longueur d’un cercle.
  • Unités relatives aux longueurs : relations entre les unités de longueur et les unités de numération (grands nombres, nombres décimaux).

Utiliser des instruments de mesure : décamètre, pied à coulisse, visée laser (télémètre), applications numériques diverses.

Adapter le choix de l’unité, de l’instrument en fonction de l’objet (ordre de grandeur) ou en fonction de la précision souhaitée.

Aborder la notion de distance comme plus court chemin entre deux points, entre un point et une droite.

Comparer, classer et ranger des surfaces selon leurs aires sans avoir recours à la mesure.

Différencier aire et périmètre d’une surface.

Déterminer la mesure de l’aire d’une surface à partir d’un pavage simple ou en utilisant une formule.

Estimer la mesure d’une aire par différentes procédures.

  • Unités usuelles d’aire : multiples et sous-multiples du m² et leurs relations, are et hectare.
  • Formules de l’aire d’un carré, d’un rectangle, d’un triangle, d’un disque.

Situations amenant les élèves à :

- superposer, découper, recoller des surfaces ;

- utiliser des pavages afin de mieux comprendre l’action de mesurer une aire.

Adapter le choix de l’unité en fonction de l’objet (ordre de grandeur) ou en fonction de la précision souhaitée ou en fonction du domaine numérique considéré.

Relier les unités de volume et de contenance.

Estimer la mesure d’un volume par différentes procédures.

  • Unités usuelles de contenance (multiples et sous multiples du litre).
  • Unités usuelles de volume (cm3, dm3, m3), relations entre les unités.

Déterminer le volume d’un pavé droit en se rapportant à un dénombrement d’unités ou en utilisant une formule.

  • Formule du volume d’un cube, d’un pavé droit.

Comparer ou mesurer des contenances (ou volumes intérieurs d’un récipient) sans avoir recours à la mesure ou en se rapportant à un dénombrement.

Par exemple, trouver le nombre de cubes de 1 cm d’arête nécessaires pour remplir un pavé droit.

Adapter le choix de l’unité en fonction de l’objet (ordre de grandeur) ou en fonction de la précision souhaitée.

Identifier des angles dans une figure géométrique.

Comparer des angles.

Reproduire un angle donné en utilisant un gabarit.

Reconnaitre qu’un angle est droit, aigu ou obtus.

Estimer la mesure d’un angle.

Estimer et vérifier qu’un angle est droit, aigu ou obtus.

Utiliser un instrument de mesure (le rapporteur) et une unité de mesure (le degré) pour :

- déterminer la mesure en degré d’un angle ;

- construire un angle de mesure donnée en degrés.

  • Notion d’angle.
  • Lexique associé aux angles : angle droit, aigu, obtus.
  • Mesure en degré d’un angle.

Avant le travail sur les mesures, établir des relations entre des angles (sommes, partages, référence aux angles du triangle équilatéral, du triangle rectangle isocèle).

Comparer des angles sans avoir recours à leur mesure (par superposition, avec un calque).

Différencier angles aigus et angles obtus 

Estimer la mesure d’un angle, par exemple à 10° près, et vérifier à l’aide du rapporteur.

Utiliser des gabarits d’angles, l’équerre, le rapporteur. Le rapporteur est un nouvel instrument de mesure qu’il convient d’introduire à l’occasion de la construction et de l’étude des figures.

Résoudre des problèmes impliquant des grandeurs (géométriques, physiques, économiques) en utilisant des nombres entiers et des nombres décimaux

Résoudre des problèmes de comparaison avec et sans recours à la mesure.

Résoudre des problèmes dont la résolution mobilise simultanément des unités différentes de mesure et/ou des conversions.

Situations amenant les élèves à compléter les unités de grandeur (longueur, masse, contenance, durée) et à mettre en évidence les relations entre elles.

Calculer des périmètres, des aires ou des volumes, en mobilisant ou non, selon les cas, des formules.

  • Formules donnant
  • le périmètre d’un carré, d’un rectangle, longueur d’un cercle ;
  • l’aire d’un carré, d’un rectangle, d’un triangle, d’un disque ;
  • le volume d’un cube, d’un pavé droit.

Calculer la durée écoulée entre deux instants donnés.

Déterminer un instant à partir de la connaissance d’un instant et d’une durée.

  • Unités de mesures usuelles: jour, semaine, heure, minute, seconde, dixième de seconde, mois, année, siècle, millénaire.

Utiliser les unités de mesure des durées et leurs relations.

Exploiter des ressources variées :

- tableaux d’horaires ou de réservation de transport,

- tableaux d’horaires de marées, d’activités sportives,

- programmes de cinéma, de théâtre, programmes télévisés.

Ces différentes ressources sont utilisées sur un support papier ou un support numérique en ligne.

Proportionnalité

Identifier une situation de proportionnalité entre deux grandeurs.

  • Graphiques représentant des variations entre deux grandeurs.

Comparer distance parcourue et temps écoulé, quantité d’essence consommée et distance parcourue, quantité de liquide écoulée et temps écoulé, etc.

Repères de progressivité

Il est possible, lors de la résolution de problèmes, d’aller avec certains élèves ou avec toute la classe au-delà des repères de progressivité identifiés pour chaque niveau.

L’étude d’une grandeur nécessite des activités ayant pour but de définir la grandeur (comparaison directe ou indirecte, ou recours à la mesure), d’explorer les unités du système international d’unités correspondant, de faire usage des instruments de mesure de cette grandeur, de calculer des mesures avec ou sans formule. Toutefois, selon la grandeur ou selon la fréquentation de celle-ci au cours du cycle précédent, les comparaisons directes ou indirectes de grandeurs (longueur, masse et durée) ne seront pas reprises systématiquement.

Les longueurs : En 6ème, le travail sur les longueurs permet en particulier de consolider la notion de périmètre, et d’établir la notion de distance entre deux points, entre un point et une droite. L’usage du compas permet de comparer et reporter des longueurs, de comprendre la définition du cercle (comme ensemble des points à égale distance du centre). La construction et l’utilisation des formules du périmètre du carré et du rectangle interviennent progressivement au cours du cycle. La formule donnant la longueur d’un cercle est utilisée en 6ème.

Les durées : Un travail de consolidation de la lecture de l’heure, de l’utilisation des unités de mesure des durées et de leurs relations ainsi que des instruments de mesure des durées est mené en CM1 et en CM2. Tout au long du cycle, la résolution de problèmes s’articule autour de deux types de tâches : calculer une durée à partir de la donnée de l’instant initial et de l’instant final, déterminer un instant à partir de la connaissance d’un instant et d’une durée. La maitrise des unités de mesure de durées et de leurs relations permet d’organiser la progressivité de ces problèmes.

Les aires : Tout au long du cycle, il convient de choisir la procédure adaptée pour comparer les aires de deux surfaces, pour déterminer la mesure d’une aire avec ou sans recours aux formules. Dès le CM1, on compare et on classe des surfaces selon leur aire. La mesure ou l’estimation de l’aire d’une surface à l’aide d’une surface de référence ou d’un réseau quadrillé est ensuite abordée. Une fois ces notions stabilisées, on découvre et on utilise les unités d’aire usuelle et leurs relations. On peut alors construire et utiliser les formules pour calculer l’aire d’un carré, d’un rectangle, puis en 6ème, calculer l’aire d’un triangle rectangle, d’un triangle quelconque dont une hauteur est connue, d’un disque.

Contenance et volume : En continuité avec le cycle 2, la notion de volume sera vue d’abord comme une contenance. Au primaire, on compare des contenances sans les mesurer et on mesure la contenance d’un récipient par un dénombrement d’unités, en particulier en utilisant les unités usuelles (L, dL, cL, mL) et leurs relations. Au collège, ce travail est poursuivi en déterminant le volume d’un pavé droit. On relie alors les unités de volume et de contenance (1 L = 1 dm; 1 000 L = 1 m3).

Les angles : Au primaire, il s’agit d’estimer et de vérifier, en utilisant l’équerre si nécessaire, qu’un angle est droit, aigu ou obtus, de comparer les angles d’une figure puis de reproduire un angle, en utilisant un gabarit. Ce travail est poursuivi au collège, où l’on introduira une unité de mesure des angles et l’utilisation d’un outil de mesure (le rapporteur).

Espace et géométrie

À l’articulation de l’école primaire et du collège, le cycle 3 constitue une étape importante dans l’approche des concepts géométriques. Prolongeant le travail amorcé au cycle 2, les activités permettent aux élèves de passer progressivement d'une géométrie où les objets (le carré, la droite, le cube, etc.) et leurs propriétés sont contrôlés par la perception à une géométrie où ils le sont par le recours à des instruments, par l’explicitation de propriétés pour aller ensuite vers une géométrie dont la validation ne s’appuie que sur le raisonnement et l’argumentation. Différentes caractérisations d’un même objet ou d’une même notion s’enrichissant mutuellement permettent aux élèves de passer du regard ordinaire porté sur un dessin au regard géométrique porté sur une figure.

Les situations faisant appel à différents types de tâches (reconnaitre, nommer, comparer, vérifier, décrire, reproduire, représenter, construire) portant sur des objets géométriques, sont privilégiées afin de faire émerger des concepts géométriques (caractérisations et propriétés des objets, relations entre les objets) et de les enrichir. Un jeu sur les contraintes de la situation, sur les supports et les instruments mis à disposition des élèves, permet une évolution des procédures de traitement des problèmes et un enrichissement des connaissances

Les professeurs veillent à utiliser un langage précis et adapté pour décrire les actions et les gestes réalisés par les élèves (pliages, tracés à main levée ou avec utilisation de gabarits et d’instruments usuels ou lors de l’utilisation de logiciels). Ceux-ci sont progressivement encouragés à utiliser ce langage.

Les activités spatiales et géométriques sont à mettre en lien avec les deux autres thèmes : résoudre dans un autre cadre des problèmes relevant de la proportionnalité ; utiliser en situation les grandeurs (géométriques) et leur mesure. Par ailleurs, elles constituent des moments privilégiés pour une première initiation à la programmation notamment à travers la programmation de déplacements ou de construction de figures.


Attendus de fin de cycle                

  • (Se) repérer et (se) déplacer dans l’espace en utilisant ou en élaborant des représentations.
  • Reconnaitre, nommer, décrire, reproduire, représenter, construire des figures et solides usuels.
  • Reconnaitre et utiliser quelques relations géométriques (notions d’alignement, d’appartenance, de perpendicularité, de parallélisme, d’égalité de longueurs, d’égalité d’angle, de distance entre deux points, de symétrie, d’agrandissement et de réduction).

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

(Se) repérer et (se) déplacer dans l’espace en utilisant ou en élaborant des représentations

Se repérer, décrire ou exécuter des déplacements, sur un plan ou sur une carte.

Accomplir, décrire, coder des déplacements dans des espaces familiers.

Programmer les déplacements d’un robot ou ceux d’un personnage sur un écran.

  • Vocabulaire permettant de définir des positions et des déplacements.
  • Divers modes de représentation de l’espace.

Situations donnant lieu à des repérages dans l’espace ou à la description, au codage ou au décodage de déplacements.

Travailler :

- dans des espaces de travail de tailles différentes (la feuille de papier, la cour de récréation, le quartier, la ville, etc.) ;

- à partir de plans schématiques (par exemple, chercher l’itinéraire le plus court ou demandant le moins de correspondances sur un plan de métro ou d’autobus) ;

- avec de nouvelles ressources comme les systèmes d’information géographique, des logiciels d’initiation à la programmation…

Reconnaitre, nommer, décrire, reproduire, représenter, construire quelques solides et figures géométriques

Reconnaitre, nommer, comparer, vérifier, décrire :

- des figures simples ou complexes (assemblages de figures simples) ;

- des solides simples ou des assemblages de solides simples

à partir de certaines de leurs propriétés.

  • Figures planes et solides, premières caractérisations :
  • triangles dont les triangles particuliers (triangle rectangle, triangle isocèle, triangle équilatéral) ;
  • quadrilatères dont les quadrilatères particuliers (carré, rectangle, losange, première approche du parallélogramme) ;
  • cercle (comme ensemble des points situés à une distance donnée d’un point donné).
  • Vocabulaire approprié pour nommer les solides : pavé droit, cube, prisme droit, pyramide régulière, cylindre, cône, boule.

Situations de reproduction ou de construction mobilisant des gestes élémentaires de mesurage et de tracé et des connaissances sur les figures usuelles

Reproduire (à l’échelle ou non) une figure à partir d’un modèle et d’éléments déjà tracés.

Utiliser des représentations planes de solides (patrons, perspectives, vues de face, de côté, de dessus, …) et représenter des figures planes en traçant des figures à main levée.

Les éléments de vocabulaire associés aux objets et à leurs propriétés (solide, polyèdre, face, arête, polygone, côté, sommet, angle, demi droite, segment, cercle, rayon, diamètre, milieu, médiatrice, hauteur, etc.) sont introduits et utilisés en contexte pour en préciser le sens : jeu du portrait, échange de messages, jeux d’associations (figures, désignations, propriétés, représentations).

Reproduire, représenter, construire :

- des figures simples ou complexes (assemblages de figures simples)

- des solides simples ou des assemblages de solides simples sous forme de maquettes ou de dessins ou à partir d’un patron (donné, dans le cas d’un prisme ou d’une pyramide, ou à construire dans le cas d’un pavé droit).

Réaliser, compléter et rédiger un programme de construction.

Réaliser une figure simple ou une figure composée de figures simples à l’aide d’un logiciel.

Reconnaitre et utiliser quelques relations géométriques

Effectuer des tracés correspondant à des relations de perpendicularité ou de parallélisme de droites et de segments.

Déterminer le plus court chemin entre deux points (en lien avec la notion d’alignement).

Déterminer le plus court chemin entre un point et une droite ou entre deux droites parallèles (en lien avec la perpendicularité).

  • Alignement, appartenance.
  • Perpendicularité, parallélisme (construction de droites parallèles, lien avec la propriété reliant droites parallèles et perpendiculaires).
  • Egalite de longueurs.
  • Egalite d’angles.
  • Distance entre deux points, entre un point et une droite.

Situations conduisant les élèves à utiliser des techniques qui évoluent en fonction des supports et des instruments choisis ; par exemple pour la symétrie axiale, passer du pliage ou de l’utilisation de papier calque à la construction du symétrique d’un point par rapport à une droite à l’équerre ou au compas.

Exemples d’instruments : règle graduée, équerre, compas, gabarits d’angles, bandes de papier, papier calque.

Exemples de supports variés : géoplans, papier quadrillé, papier pointé, papier uni.

Exemples de matériels : papier/crayon, logiciels de géométrie dynamique, d’initiation à la programmation, logiciels de visualisation de cartes, de plans. 

Compléter une figure par symétrie axiale.

Construire la figure symétrique d'une figure donnée par rapport à un axe donné que l’axe de symétrie coupe ou non la figure, construire le symétrique d'une droite, d’un segment, d’un point par rapport à un axe donné.

  • Figure symétrique, axe de symétrie d’une figure, figures symétriques par rapport à un axe.
  • Propriétés de conservation de la symétrie axiale.
  • Médiatrice d’un segment.

Proportionnalité

Reproduire une figure en respectant une échelle.

  • Agrandissement ou réduction d’une figure.

Reproduire une figure à partir d’un modèle (l’échelle pouvant être donnée par des éléments déjà tracés).

Repères de progressivité

Il est possible, lors de la résolution de problèmes, d’aller avec certains élèves ou avec toute la classe au-delà des repères de progressivité identifiés pour chaque niveau.

Les apprentissages spatiaux : Dans la continuité du cycle 2 et tout au long du cycle, les apprentissages spatiaux se réalisent à partir de problèmes de repérage de déplacement d’objets, d’élaboration de représentation dans des espaces réels, matérialisés (plans, cartes…) ou numériques.

Les apprentissages géométriques : Ces apprentissages développent la connaissance de figures planes, de solides mais aussi de relations entre objets et de propriétés des objets. Le parallélogramme ne fait l’objet que d’une première fréquentation en 6ème et est notamment l’occasion d’un retour sur la notion de parallélisme. Le choix des objets considérés et des relations et propriétés à prendre en compte, les contraintes sur les instruments à utiliser, les gestes à réaliser, les justifications et moyens de validation acceptés permettent d’organiser la progressivité des apprentissages et d’enrichir les procédures de résolution des élèves. Ainsi, ce ne sont pas seulement les tâches qui évoluent d’un niveau à l’autre mais les procédures pour réaliser ces tâches.

La progressivité s’organise en prenant en compte :

  • les gestes de géométrie : certaines compétences de construction, comme tracer un segment d’une longueur donnée ou reporter la longueur d’un segment (CM1-CM2) ou encore reproduire un angle (6ème) sont menées conjointement avec les apprentissages du domaine « grandeurs et mesures »,
  • l’évolution des procédures et de la qualité des connaissances mobilisées : ainsi, l’élève doit tout d’abord savoir reconnaitre un carré en prenant en compte la perpendicularité et l’égalité des mesures des côtés (CM1-CM2) puis progressivement de montrer qu’il s’agit d’un carré à partir des propriétés de ses diagonales ou de ses axes de symétrie (6ème),
  • les objets géométriques fréquentés,
  • la maitrise de nouvelles techniques de tracé (par rapport au cycle 2).

Le raisonnement : A partir du CM2, on amène les élèves à dépasser la dimension perceptive et instrumentée pour raisonner uniquement sur les propriétés et les relations. Par exemple, l’usage de la règle et du compas pour tracer un triangle, connaissant la longueur de ses côtés, mobilise la connaissance des propriétés du triangle et de la définition du cercle. Il s'agit de conduire sans formalisme des raisonnements simples utilisant les propriétés des figures usuelles ou de la symétrie axiale. Un vocabulaire spécifique est employé dès le début du cycle pour désigner des objets, des relations et des propriétés.

Vocabulaire et notations : Au primaire, lorsque les points seront désignés par des lettres, les professeurs veilleront à toujours préciser explicitement l’objet dont il parle : « le point A », « le segment [AB] », « le triangle ABC », etc. Aucune maitrise n’est attendue des élèves pour ce qui est des codages usuels (parenthèses ou crochets) avant la dernière année du cycle. Le vocabulaire et les notations nouvelles (, [AB], (AB), [AB), AB, ) sont introduits au fur et à mesure de leur utilité, et non au départ d’un apprentissage.

Les instruments : Au primaire, les élèves auront recours à différentes règles (graduées ou non, de diverses tailles), à des gabarits, à l’équerre, au compas. Ils commenceront à utiliser le rapporteur au collège.

Symétrie axiale : Un travail préalable sur les figures permet d’illustrer l’aspect global de la symétrie plutôt que de procéder de façon détaillée (par le point, le segment, la droite). Pour construire ou compléter des figures planes par symétrie, différentes procédures seront abordées au cours du cycle. Elles évoluent et s’enrichissent par un jeu sur les figures, sur les instruments à disposition et par l’emploi de supports variés.

Initiation à la programmation : Une initiation à la programmation est faite à l’occasion notamment d’activités de repérage ou de déplacement (programmer les déplacements d’un robot ou ceux d’un personnage sur un écran), ou d’activités géométriques (construction de figures simples ou de figures composées de figures simples). Au CM1, on réserve l’usage de logiciels de géométrie dynamique à des fins d’apprentissage manipulatoires (à travers la visualisation de constructions instrumentées) et de validation des constructions de figures planes. À partir du CM2, leur usage progressif pour effectuer des constructions, familiarise les élèves avec les représentations en perspective cavalière et avec la notion de conservation des propriétés lors de certaines transformations.

Repères de progressivité : le cas particulier de la proportionnalité 

La proportionnalité doit être traitée dans le cadre de chacun des trois domaines « nombres et calculs », « grandeurs et mesures » et « espace et géométrie ».

En CM1, le recours aux propriétés de linéarité (additive et multiplicative) est privilégié dans des problèmes mettant en jeu des nombres entiers. Ces propriétés doivent être explicitées ; elles peuvent être institutionnalisées de façon non formelle à l’aide d’exemples (« si j’ai deux fois, trois fois… plus d’invités, il me faudra deux fois, trois fois… plus d’ingrédients » ; « si 6 stylos coutent 10 euros et 3 stylos coutent 5 euros, alors 9 stylos coutent 15 euros » ). Les procédures du type passage par l’unité ou calcul du coefficient de proportionnalité sont mobilisées progressivement sur des problèmes le nécessitant et en fonction des nombres (entiers ou décimaux) choisis dans l’énoncé ou intervenant dans les calculs. À partir du CM2, des situations impliquant des échelles ou des vitesses constantes peuvent être rencontrées. Le sens de l’expression « …% de » apparait en milieu de cycle. Il s’agit de savoir l’utiliser dans des cas simples (50 %, 25 %, 75 %, 10 %) où aucune technique n’est nécessaire, en lien avec les fractions d’une quantité. En fin de cycle, l’application d’un taux de pourcentage est un attendu.

Croisements entre enseignements

L’utilisation des grands nombres entiers et des nombres décimaux permet d’appréhender et d’estimer des mesures de grandeur : approche de la mesure non entière de grandeurs continues, estimation de grandes distances, de populations, de durées, de périodes de l’histoire, de superficies, de prix, de mémoire informatique… Les élèves apprennent progressivement à résoudre des problèmes portant sur des contextes et des données issus des autres disciplines. En effet, les supports de prises d’informations variés (textes, tableaux, graphiques, plans) permettent de travailler avec des données réelles issues de différentes disciplines (histoire et géographie, sciences et technologie, éducation physique et sportive, arts plastiques). De plus, la lecture des données, les échanges oraux pour expliquer les démarches, et la production de réponses sous forme textuelle contribuent à travailler plusieurs composantes de la maitrise de la langue dans le cadre des mathématiques. Enfin, les contextes des situations de proportionnalité à explorer au cours du cycle peuvent être illustrés ou réinvestis dans d’autres disciplines : problèmes d’échelle, de vitesse, de pourcentage (histoire et géographie, éducation physique et sportive, sciences et technologie), problèmes d’agrandissement et de réduction (arts plastiques, sciences).

Les activités de repérage ou de déplacement sur un plan ou sur une carte prennent sens à travers des activités physiques (course d’orientation), mais aussi dans le cadre des enseignements de géographie (lecture de cartes) ou de technologie (réalisation d’un objet simple). Les activités de reconnaissance et de construction de figures et d’objets géométriques peuvent s’appuyer sur des réalisations artistiques (peinture, sculpture, architecture, photographie…).

Programme pour le cycle 4

Les textes qui suivent appliquent les rectifications orthographiques proposées par le Conseil supérieur de la langue française, approuvées par l’Académie française et publiées par le Journal officiel de la République française le 6 décembre 1990.


Mathématiques

Le programme de mathématiques est rédigé pour l'ensemble du cycle. Les connaissances et compétences visées sont des attendus de la fin du cycle. Pour y parvenir, elles devront être travaillées de manière progressive et réinvesties sur toute la durée du cycle. Des repères de progressivité indiquent en particulier quelles notions ne doivent pas être introduites dès le début du cycle, mais seulement après que d'autres notions ont été rencontrées, puis stabilisées.

Ce programme est ancré dans les cinq domaines du socle et il est structuré selon les quatre thèmes classiques : nombres et calculs ; organisation et gestion de données, fonctions ; grandeurs et mesures ; espace et géométrie. En outre, un enseignement de l’informatique est dispensé conjointement en mathématiques et en technologie. Ces domaines du socle et ces thèmes du programme ne sont évidemment pas étanches.

La mise en œuvre du programme doit permettre de développer les six compétences majeures de l'activité mathématique : chercher, modéliser, représenter, raisonner, calculer, communiquer, qui sont détaillées dans le tableau ci-après.

Pour ce faire, une place importante doit être accordée à la résolution de problèmes, qu’ils soient internes aux mathématiques ou liés à des situations issues de la vie quotidienne ou d’autres disciplines. Le programme fournit des outils permettant de modéliser des situations variées sous forme de problèmes mathématisés.

La résolution de problèmes nécessite de s’appuyer sur un corpus de connaissances et de méthodes. Les élèves doivent disposer de réflexes intellectuels et d'automatismes tels que le calcul mental, qui, en libérant la mémoire, permettent de centrer la réflexion sur l'élaboration d'une démarche.

La formation au raisonnement et l’initiation à la démonstration sont des objectifs essentiels du cycle 4. Le raisonnement, au cœur de l'activité mathématique, doit prendre appui sur des situations variées (par exemple problèmes de nature arithmétique ou géométrique, mais également mise au point d’un programme qui doit tourner sur un ordinateur ou pratique de jeux pour lesquels il faut développer une stratégie gagnante, individuelle ou collective, ou maximiser ses chances). Les pratiques d'investigation (essai-erreur, conjecture-validation, etc.) sont essentielles et peuvent s’appuyer aussi bien sur des manipulations ou des recherches papier/crayon, que sur l'usage d’outils numériques (tableurs, logiciels de géométrie, etc.). Il est important de ménager une progressivité dans l’apprentissage de la démonstration et de ne pas avoir trop d’exigences concernant le formalisme.

L'explicitation de la démarche utilisée et la rédaction d'une solution participent au développement des compétences de communication orale et écrite.

Le programme donne une place importante à l’utilisation des nombres. L’introduction de nouveaux nombres (nombres rationnels, racine carrée) peut utilement s’appuyer sur un travail des grandeurs et mesures ou de la géométrie. L’extension des procédures de calcul (addition, soustraction, multiplication, division) aux nombres rationnels et l’introduction du calcul littéral doivent s'appuyer sur des situations permettant de construire le sens des nombres et des opérations.

Au cycle 3, l’élève a commencé à passer d’une géométrie où les objets et leurs propriétés sont contrôlés par l’observation et l’instrumentation à une géométrie dont la validation s’appuie sur le raisonnement et l’argumentation. Ces nouvelles formes de validation sont un objectif majeur du cycle 4. En fin de cycle, de nouvelles transformations géométriques sont étudiées à travers des activités de description et de construction, pouvant s'appuyer sur l’utilisation de logiciels.

Au cycle 4, l'élève développe son intuition en passant d'un mode de représentation à un autre : numérique, graphique, algébrique, géométrique, etc. Ces changements de registre sont favorisés par l’usage de logiciels polyvalents tels que le tableur ou les logiciels de géométrie dynamique. L'utilisation du tableur et de la calculatrice est nécessaire pour gérer des données réelles et permet d'inscrire l'activité mathématique dans les domaines 3, 4 et 5 du socle.

L’enseignement de l’informatique au cycle 4 n’a pas pour objectif de former des élèves experts, mais de leur apporter des clés de décryptage d’un monde numérique en évolution constante. Il permet d’acquérir des méthodes qui construisent la pensée algorithmique et développe des compétences dans la représentation de l’information et de son traitement, la résolution de problèmes, le contrôle des résultats. Il est également l’occasion de mettre en place des modalités d’enseignement fondées sur une pédagogie de projet, active et collaborative. Pour donner du sens aux apprentissages et valoriser le travail des élèves, cet enseignement doit se traduire par la réalisation de productions collectives (programme, application, animation, sites, etc.) dans le cadre d'activités de création numérique, au cours desquelles les élèves développent leur autonomie, mais aussi le sens du travail collaboratif.

La pratique des mathématiques, en particulier les activités de recherche, amène les élèves à travailler sur des notions ou des objets mathématiques dont la maîtrise n'est pas attendue en fin de troisième (par exemple, irrationalité de certains nombres, caractéristiques de dispersion d’une série statistique autres que l’étendue, modélisation de phénomènes aléatoires, calculs de distances astronomiques, droites remarquables dans un triangle, travail sur les puissances et capacité de stockage) ; c'est aussi l'occasion d'enrichir leur culture scientifique.

  1. Compétences travaillées

Domaines du socle

Chercher

  • Extraire d'un document les informations utiles, les reformuler, les organiser, les confronter à ses connaissances.
  • S’engager dans une démarche scientifique, observer, questionner, manipuler, expérimenter (sur une feuille de papier, avec des objets, à l’aide de logiciels), émettre des hypothèses, chercher des exemples ou des contre-exemples, simplifier ou particulariser une situation, émettre une conjecture.
  • Tester, essayer plusieurs pistes de résolution.
  • Décomposer un problème en sous-problèmes.

2, 4

Modéliser

  • Reconnaître des situations de proportionnalité et résoudre les problèmes correspondants.
  • Traduire en langage mathématique une situation réelle (par exemple à l'aide d'équations, de fonctions, de configurations géométriques, d'outils statistiques).
  • Comprendre et utiliser une simulation numérique ou géométrique.
  • Valider ou invalider un modèle, comparer une situation à un modèle connu (par exemple un modèle aléatoire).

1, 2, 4

Représenter

  • Choisir et mettre en relation des cadres (numérique, algébrique, géométrique) adaptés pour traiter un problème ou pour étudier un objet mathématique.
  • Produire et utiliser plusieurs représentations des nombres.
  • Représenter des données sous forme d’une série statistique.
  • Utiliser, produire et mettre en relation des représentations de solides (par exemple perspective ou vue de dessus/de dessous) et de situations spatiales (schémas, croquis, maquettes, patrons, figures géométriques, photographies, plans, cartes, courbes de niveau).

1, 5

Raisonner

  • Résoudre des problèmes impliquant des grandeurs variées (géométriques, physiques, économiques) : mobiliser les connaissances nécessaires, analyser et exploiter ses erreurs, mettre à l’essai plusieurs solutions.
  • Mener collectivement une investigation en sachant prendre en compte le point de vue d’autrui.
  • Démontrer : utiliser un raisonnement logique et des règles établies (propriétés, théorèmes, formules) pour parvenir à une conclusion.
  • Fonder et défendre ses jugements en s’appuyant sur des résultats établis et sur sa maîtrise de l’argumentation.

2, 3, 4

Calculer

  • Calculer avec des nombres rationnels, de manière exacte ou approchée, en combinant de façon appropriée le calcul mental, le calcul posé et le calcul instrumenté (calculatrice ou logiciel).
  • Contrôler la vraisemblance de ses résultats, notamment en estimant des ordres de grandeur ou en utilisant des encadrements.
  • Calculer en utilisant le langage algébrique (lettres, symboles, etc.).

4

Communiquer

  • Faire le lien entre le langage naturel et le langage algébrique. Distinguer des spécificités du langage mathématique par rapport à la langue française.
  • Expliquer à l’oral ou à l’écrit (sa démarche, son raisonnement, un calcul, un protocole de construction géométrique, un algorithme), comprendre les explications d’un autre et argumenter dans l’échange.
  • Vérifier la validité d’une information et distinguer ce qui est objectif et ce qui est subjectif ; lire, interpréter, commenter, produire des tableaux, des graphiques, des diagrammes.

1, 3


Thème A – Nombres et calculs

Au cycle 4, les élèves consolident le sens des nombres et confortent la maitrise des procédures de calcul. Les différentes composantes de ce thème sont reliées entre elles. Les élèves manipulent des nombres rationnels de signe quelconque. Ils prennent conscience du fait qu’un même nombre peut avoir plusieurs écritures (notamment écritures fractionnaire et décimale). Les élèves abordent les bases du calcul littéral, qu’ils mettent en œuvre pour résoudre des problèmes faisant intervenir des équations ou inéquations du premier degré. A l’occasion d’activités de recherche, ils peuvent rencontrer la notion de nombres irrationnels, par exemple lors d’un travail sur les racines carrées.

Attendus de fin de cycle

  • Utiliser les nombres pour comparer, calculer et résoudre des problèmes
  • Comprendre et utiliser les notions de divisibilité et de nombres premiers
  • Utiliser le calcul littéral

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Utiliser les nombres pour comparer, calculer et résoudre des problèmes

Utiliser diverses représentations d’un même nombre (écriture décimale ou fractionnaire, notation scientifique, repérage sur une droite graduée) ; passer d’une représentation à une autre.

  • Nombres décimaux.
  • Nombres rationnels (positifs ou négatifs), notion d’opposé.
  • Fractions, fractions irréductibles, cas particulier des fractions décimales.
  • Définition de la racine carrée ; les carrés parfaits entre 1 et 144.
  • Les préfixes de nano à giga.

Rencontrer diverses écritures dans des situations variées (par exemple nombres décimaux dans des situations de vie quotidienne, notation scientifique en physique, nombres relatifs pour mesurer des températures ou des altitudes).

Relier fractions, proportions et pourcentages.

Associer à des objets des ordres de grandeurs (par exemple la taille d’un atome, d’une bactérie, d’une alvéole pulmonaire, la longueur de l’intestin, la capacité de stockage d’un disque dur, la vitesse du son et de la lumière, la population française et mondiale, la distance de la Terre à la Lune et au Soleil, la distance du Soleil à l’étoile la plus proche).

Prendre conscience que certains nombres ne sont pas rationnels.

Comparer, ranger, encadrer des nombres rationnels.

Repérer et placer un nombre rationnel sur une droite graduée.

  • Ordre sur les nombres rationnels en écriture décimale ou fractionnaire.
  • Égalité de fractions.

Montrer qu’il est toujours possible d’intercaler des rationnels entre deux rationnels donnés, contrairement au cas des entiers.

Pratiquer le calcul exact ou approché, mental, à la main ou instrumenté.

Calculer avec des nombres relatifs, des fractions ou des nombres décimaux (somme, différence, produit, quotient).

Vérifier la vraisemblance d’un résultat, notamment en estimant son ordre de grandeur.

Effectuer des calculs numériques simples impliquant des puissances, notamment en utilisant la notation scientifique.

  • Définition des puissances d’un nombre (exposants entiers, positifs ou négatifs). 

Pratiquer régulièrement le calcul mental ou à la main, et utiliser à bon escient la calculatrice ou un logiciel.

Effectuer des calculs et des comparaisons pour traiter des problèmes (par exemple comparer des consommations d’eau ou d’électricité, calculer un indice de masse corporelle pour évaluer un risque éventuel sur la santé, déterminer le nombre d’images pouvant être stockées sur une clé USB, calculer et comparer des taux de croissance démographique).

Comprendre et utiliser les notions de divisibilité et de nombres premiers

Déterminer si un entier est ou n’est pas multiple ou diviseur d’un autre entier.

Simplifier une fraction donnée pour la rendre irréductible.

  • Division euclidienne (quotient, reste).
  • Multiples et diviseurs.
  • Notion de nombres premiers.

Recourir à une décomposition en facteurs premiers dans des cas simples.

Exploiter tableurs, calculatrices et logiciels, par exemple pour chercher les diviseurs d’un nombre ou déterminer si un nombre est premier.

Démontrer des critères de divisibilité (par exemple par 2, 3, 5 ou 10) ou la preuve par 9.

Etudier des problèmes d’engrenages (par exemple braquets d’un vélo, rapports de transmission d’une boîte de vitesses, horloge), de conjonction de phénomènes périodiques (par exemple éclipses ou alignements de planètes).

Utiliser le calcul littéral

Mettre un problème en équation en vue de sa résolution.

Développer et factoriser des expressions algébriques dans des cas très simples.

Résoudre des équations ou des inéquations du premier degré.

  • Notions de variable, d’inconnue.

Utiliser le calcul littéral pour prouver un résultat général, pour valider ou réfuter une conjecture.

Comprendre l’intérêt d’une écriture littérale en produisant et employant des formules liées aux grandeurs mesurables (en mathématiques ou dans d’autres disciplines).

Tester sur des valeurs numériques une égalité littérale pour appréhender la notion d’équation.

Etudier des problèmes qui se ramènent au premier degré (par exemple, en factorisant des équations produits simples à l’aide d’identités remarquables).

Montrer des résultats généraux, par exemple que la somme de trois nombres consécutifs est divisible par 3.

Repères de progressivité :

La maitrise des techniques opératoires et l’acquisition du sens des nombres et des opérations appréhendés au cycle 3 sont consolidées tout au long du cycle 4.

Les élèves rencontrent dès le début du cycle 4 le nombre relatif qui rend possible toutes les soustractions. Ils généralisent l'addition et la soustraction dans ce nouveau cadre et rencontrent la notion d'opposé. Puis ils passent au produit et au quotient, et, quand ces notions ont été bien installées, ils font le lien avec le calcul littéral.

Au cycle 3, les élèves ont rencontré des fractions simples sans leur donner le statut de nombre. Dès le début du cycle 4, les élèves construisent et mobilisent la fraction comme nombre qui rend toutes les divisions possibles. En 5ème, les élèves calculent et comparent proportions et fréquences, justifient par un raisonnement l'égalité de deux quotients, reconnaissent un nombre rationnel. À partir de la 4ème, ils sont conduits à additionner, soustraire, multiplier et diviser des quotients, à passer d'une représentation à une autre d'un nombre, à justifier qu'un nombre est ou non l'inverse d'un autre. Ils n’abordent la notion de fraction irréductible qu’en 3ème.

La notion de racine carrée est introduite en lien avec le théorème de Pythagore ou l’agrandissement des surfaces. Les élèves connaissent quelques carrés parfaits, les utilisent pour encadrer des racines par des entiers et utilisent la calculatrice pour donner une valeur exacte ou approchée de la racine carrée d’un nombre positif.

Les puissances de 10 d'exposant entier positif sont manipulées dès la 4ème, en lien avec les problèmes scientifiques ou technologiques. Les exposants négatifs sont introduits progressivement. Les puissances positives de base quelconque sont envisagées comme raccourci d'un produit.

Dès le début du cycle 4, les élèves comprennent l'intérêt d’utiliser une écriture littérale. Ils apprennent à tester une égalité en attribuant des valeurs numériques au nombre désigné par une lettre qui y figure. A partir de la 4ème, ils rencontrent les notions de variables et d’inconnues, la factorisation, le développement et la réduction d’expressions algébriques. Ils commencent à résoudre, de façon exacte ou approchée, des problèmes du 1er degré à une inconnue et apprennent à modéliser une situation à l'aide d'une formule, d'une équation ou d'une inéquation. En 3ème, ils résolvent algébriquement équations et inéquations du 1er degré et mobilisent le calcul littéral pour démontrer. Ils font le lien entre forme algébrique et représentation graphique.

Thème B – Organisation et gestion de données, fonctions

La plupart des notions travaillées dans ce thème ont déjà été abordées aux cycles précédents. Au cycle 4, les élèves apprennent à utiliser une représentation adaptée de données pour en faire une interprétation critique. Ils abordent les notions d’incertitude et de hasard, afin de construire une citoyenneté critique et rationnelle. Ils apprennent à choisir une méthode adaptée au problème de proportionnalité auquel ils sont confrontés. Ils découvrent progressivement la notion de fonction, qui leur permet d'accéder à de nouvelles catégories de problèmes.

Attendus de fin de cycle

  • Interpréter, représenter et traiter des données
  • Comprendre et utiliser des notions élémentaires de probabilités
  • Résoudre des problèmes de proportionnalité
  • Comprendre et utiliser la notion de fonction

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Interpréter, représenter et traiter des données

Recueillir des données, les organiser.

Lire des données sous forme de données brutes, de tableau, de graphique.

Calculer des effectifs, des fréquences.

  • Tableaux, représentations graphiques (diagrammes en bâtons, diagrammes circulaires, histogrammes).

Calculer et interpréter des caractéristiques de position ou de dispersion d'une série statistique.

  • Indicateurs : moyenne, médiane, étendue.

Utiliser un tableur, un grapheur pour calculer des indicateurs et représenter graphiquement les données.

Porter un regard critique sur des informations chiffrées, recueillies, par exemple, dans des articles de journaux ou sur des sites web.

Organiser et traiter des résultats issus de mesures ou de calculs (par exemple des données mises sur l’environnement numérique de travail par les élèves dans d’autres disciplines) ; questionner la pertinence de la façon dont les données sont collectées.

Lire, interpréter ou construire un diagramme dans un contexte économique, social ou politique : résultats d’élections, données de veille sanitaire (par exemple consultations, hospitalisations, mortalité pour la grippe), données financières relatives aux ménages (par exemple impôts, salaires et revenus), données issues de l’étude d’un jeu, d’une œuvre d’art…

Comprendre et utiliser des notions élémentaires de probabilités

Aborder les questions relatives au hasard à partir de problèmes simples.

Calculer des probabilités dans des cas simples.

  • Notion de probabilité.
  • Quelques propriétés : la probabilité d’un événement est comprise entre 0 et 1 ; probabilité d’évènements certains, impossibles, incompatibles, contraires.

Faire le lien entre fréquence et probabilité, en constatant matériellement le phénomène de stabilisation des fréquences ou en utilisant un tableur pour simuler une expérience aléatoire (à une ou à deux épreuves).

Exprimer des probabilités sous diverses formes (décimale, fractionnaire, pourcentage).

Calculer des probabilités dans un contexte simple (par exemple, évaluation des chances de gain dans un jeu et choix d’une stratégie).

Résoudre des problèmes de proportionnalité

Reconnaitre une situation de proportionnalité ou de non-proportionnalité.

Etudier des relations entre deux grandeurs mesurables pour identifier si elles sont proportionnelles ou non ; ces relations peuvent être exprimées par :

- des formules (par exemple la longueur d’un cercle ou l’aire d’un disque comme fonction du rayon, la loi d’Ohm exprimant la tension comme fonction de l’intensité) ;

- des représentations graphiques (par exemple des nuages de points ou des courbes) ;

- un tableau (dont des lignes ou des colonnes peuvent être proportionnelles ou non).

Résoudre des problèmes de recherche de quatrième proportionnelle.

Résoudre des problèmes de pourcentage.

  • Coefficient de proportionnalité.

Compléter un tableau de proportionnalité en utilisant, par exemple, le produit en croix.

Calculer et interpréter des proportions (notamment sous forme de pourcentages) sur des données économiques ou sociales ; appliquer des pourcentages (par exemple taux de croissance, remise, solde, taux d’intérêt) à de telles données.

Etablir le fait que, par exemple, augmenter de 5% c’est multiplier par 1,05 et diminuer de 5% c’est multiplier par 0,95 ; proposer quelques applications (par exemple que l’on n’additionne pas les remises).

Comprendre et utiliser la notion de fonction

Modéliser des phénomènes continus par une fonction.

Résoudre des problèmes modélisés par des fonctions (équations, inéquations).

  • Dépendance d’une grandeur mesurable en fonction d’une autre.
  • Notion de variable mathématique.
  • Notion de fonction, d'antécédent et d'image.
  • Notations f(x) et x  f(x).
  • Cas particulier d’une fonction linéaire, d’une fonction affine.

Utiliser différents modes de représentation et passer de l’un à l’autre, par exemple en utilisant un tableur ou un grapheur.

Lire et interpréter graphiquement les coefficients d’une fonction affine représentée par une droite.

Etudier et commenter des exemples (fonction reliant la tension et l’intensité dans un circuit électrique, fonction reliant puissance et énergie, courbes de croissance dans un carnet de santé, tests d’effort, consommation de carburant d’un véhicule en fonction de la vitesse, production de céréales en fonction des surfaces ensemencées, liens entre unités anglo-saxonnes et françaises, impôts et fonctions affines par morceaux…).

Faire le lien entre fonction linéaire et proportionnalité.

Repères de progressivité :

Les caractéristiques de position d'une série statistique sont introduites dès le début du cycle. Les élèves rencontrent des caractéristiques de dispersion à partir de la 4ème.

Les activités autour de la proportionnalité prolongent celles du cycle 3. Au fur et à mesure de l'avancement du cycle, les élèves diversifient les points de vue en utilisant les représentations graphiques et le calcul littéral. En 3ème, les élèves sont en mesure de faire le lien entre proportionnalité, fonctions linéaires, théorème de Thalès et homothéties et peuvent choisir le mode de représentation le mieux adapté à la résolution d'un problème.

En 5ème, la rencontre de relations de dépendance entre grandeurs mesurables, ainsi que leurs représentations graphiques, permet d'introduire la notion de fonction qui est stabilisée en 3ème, avec le vocabulaire et les notations correspondantes.

Dès le début et tout au long du cycle 4 sont abordées des questions relatives au hasard, afin d'interroger les représentations initiales des élèves, en partant de situations issues de la vie quotidienne (jeux, achats, structures familiales, informations apportées par les médias, etc.), en suscitant des débats. On introduit et consolide ainsi petit à petit le vocabulaire lié aux notions élémentaires de probabilités (expérience aléatoire, issue, probabilité). Les élèves calculent des probabilités en s’appuyant sur des conditions de symétrie ou de régularité qui fondent le modèle équiprobable. Une fois ce vocabulaire consolidé, le lien avec les statistiques est mis en œuvre en simulant une expérience aléatoire, par exemple sur un tableur. A partir de la 4ème, l’interprétation fréquentiste permet d’approcher une probabilité inconnue et de dépasser ainsi le modèle d’équiprobabilité mis en œuvre en 5ème.

Thème C – Grandeurs et mesures

En continuité avec le travail engagé au cycle 3, ce thème se prête particulièrement à des connexions avec les autres thèmes du programme et offre de nombreux liens avec la physique-chimie ou les sciences de la vie et de la Terre. C’est aussi l’occasion d’activités de recherche (par exemple pour déterminer la formule donnant le volume de certains solides).

Les élèves doivent disposer de références concrètes (savoir, par exemple, que la circonférence de la Terre est environ 40000 km) et être capables d’estimer l'ordre de grandeur d'une mesure. Par ailleurs, le travail autour des formules s'inscrit parfaitement dans l'introduction du calcul littéral.

Attendu de fin de cycle

  • Calculer avec des grandeurs mesurables ; exprimer les résultats dans les unités adaptées
  • Comprendre l’effet de quelques transformations sur des grandeurs géométriques

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Calculer avec des grandeurs mesurables ; exprimer les résultats dans les unités adaptées

Mener des calculs impliquant des grandeurs mesurables, notamment des grandeurs composées, en conservant les unités.

Vérifier la cohérence des résultats du point de vue des unités.

  • Notion de grandeur produit et de grandeur quotient.
  • Formule donnant le volume d’une pyramide, d’un cylindre, d’un cône ou d’une boule.

Identifier des grandeurs composées rencontrées en mathématiques ou dans d’autres disciplines (par exemple aire, volume, vitesse, allure, débit, masse volumique, concentration, quantité d’information, densité de population, rendement d’un terrain).

Commenter des documents authentiques (par exemple factures d’eau ou d’électricité, bilan sanguin).

Comprendre l’effet de quelques transformations sur des grandeurs géométriques

Comprendre l’effet d’un déplacement, d'un agrandissement ou d'une réduction sur les longueurs, les aires, les volumes ou les angles.

  • Notion de dimension et rapport avec les unités de mesure (m, m2, m3).

Utiliser un rapport de réduction ou d'agrandissement (architecture, maquettes), l’échelle d’une carte.

Utiliser un système d’information géographique (cadastre, géoportail, etc.) pour déterminer une mesure de longueur ou d’aire ; comparer à une mesure faite directement à l’écran.

Repères de progressivité :

Le travail sur les grandeurs mesurables et les unités de mesure, déjà entamé au cycle 3, est poursuivi tout au long du cycle 4, en prenant appui sur des contextes issus d’autres disciplines ou de la vie quotidienne. Les grandeurs produits et les grandeurs quotients sont introduites dès la 4ème. L'effet d'un déplacement, d’un agrandissement ou d'une réduction sur les grandeurs géométriques est travaillé en 3ème, en lien avec la proportionnalité, les fonctions linéaires et le théorème de Thalès.

Thème D - Espace et géométrie

Au cycle 3, les élèves ont découvert différents objets géométriques, qui continuent à être rencontrés au cycle 4. Ils valident désormais par le raisonnement et la démonstration les propriétés qu'ils conjecturent. Les définitions et propriétés déjà vues au cycle 3 ainsi que les nouvelles propriétés introduites au cycle 4 (relations entre angles et parallélisme, somme des angles d’un triangle, inégalité triangulaire, caractérisation de la médiatrice, théorèmes de Thalès et de Pythagore) fournissent un éventail d'outils nourrissant la mise en œuvre d'un raisonnement. Les transformations font l'objet d'une première approche, consistant à observer leur effet sur des configurations planes, notamment au moyen d'un logiciel de géométrie.

Attendus de fin de cycle

  • Représenter l’espace
  • Utiliser les notions de géométrie plane pour démontrer

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

 Représenter l’espace

(Se) repérer sur une droite graduée, dans le plan muni d'un repère orthogonal, dans un parallélépipède rectangle ou sur une sphère.

  • Abscisse, ordonnée, altitude.
  • Latitude, longitude.

Utiliser, produire et mettre en relation des représentations de solides et de situations spatiales.

Développer sa vision de l’espace.

Repérer une position sur carte à partir de ses coordonnées géographiques. 

Mettre en relation diverses représentations de solides (par exemple, vue en perspective, vue de face, vue de dessus, vue en coupe) ou de situations spatiales (par exemple schémas, croquis, maquettes, patrons, figures géométriques).

Utiliser des solides concrets (en carton par exemple) pour illustrer certaines propriétés.

Utiliser un logiciel de géométrie pour visualiser des solides et leurs sections planes afin de développer la vision dans l’espace. Faire le lien avec les courbes de niveau sur une carte.

Utiliser les notions de géométrie plane pour démontrer

Mettre en œuvre ou écrire un protocole de construction d’une figure géométrique.

Coder une figure.

Comprendre l’effet d’une translation, d’une symétrie (axiale et centrale), d’une rotation, d’une homothétie sur une figure.

Construire des frises, des pavages, des rosaces.

Utiliser un logiciel de géométrie dynamique, notamment pour transformer une figure par translation, symétrie, rotation, homothétie.

Faire le lien entre parallélisme et translation, cercle et rotation.

Résoudre des problèmes de géométrie plane, prouver un résultat général, valider ou réfuter une conjecture.

  • Position relative de deux droites dans le plan.
  • Caractérisation angulaire du parallélisme, angles alternes / internes.
  • Médiatrice d'un segment.
  • Triangle : somme des angles, inégalité triangulaire, cas d’égalité des triangles, triangles semblables, hauteurs, rapports trigonométriques dans le triangle rectangle (sinus, cosinus, tangente).
  • Parallélogramme : propriétés relatives aux côtés et aux diagonales.
  • Théorème de Thalès et réciproque.
  • Théorème de Pythagore et réciproque.

Distinguer un résultat de portée générale d’un cas particulier observé sur une figure.

Faire le lien entre théorème de Thalès, homothétie et proportionnalité.

Utiliser la trigonométrie du triangle rectangle pour calculer des longueurs ou des angles.

Démontrer, par exemple, que des droites sont parallèles ou perpendiculaires, qu’un point est le milieu d’un segment, qu’une droite est la médiatrice d’un segment, qu’un quadrilatère est un parallélogramme, un rectangle, un losange ou un carré.

Etudier comment les notions de la géométrie plane ont permis de déterminer des distances astronomiques (estimation du rayon de la Terre par Eratosthène, distance de la Terre à la Lune par Lalande et La Caille, etc.).

Repères de progressivité :

Les problèmes de construction constituent un champ privilégié de l'activité géométrique tout au long du cycle 4. Ces problèmes, diversifiés dans leur nature et la connexion qu'ils entretiennent avec différents champs mathématiques, scientifiques, technologiques ou artistiques, sont abordés avec les instruments de tracé et de mesure. Dans la continuité du cycle 3, les élèves se familiarisent avec les fonctionnalités d'un logiciel de géométrie dynamique ou de programmation pour construire des figures.

La pratique des figures usuelles et de leurs propriétés, entamée au cycle 3, est poursuivie et enrichie dès le début et tout au long du cycle 4, permettant aux élèves de s'entraîner au raisonnement et de s'initier petit à petit à la démonstration.

Le théorème de Pythagore est introduit dès la 4ème, et est réinvesti tout au long du cycle dans des situations variées du plan et de l'espace. Le théorème de Thalès est introduit en 3ème, en liaison étroite avec la proportionnalité et l’homothétie, mais aussi les agrandissements et réductions.

La symétrie axiale a été introduite au cycle 3. La symétrie centrale est travaillée dès le début du cycle 4, en liaison avec le parallélogramme. Les translations, puis les rotations sont introduites en milieu de cycle, en liaison avec l’analyse ou la construction des frises, pavages et rosaces, mais sans définition formalisée en tant qu’applications ponctuelles. Une fois ces notions consolidées, les homothéties sont amenées en 3ème, en lien avec les configurations de Thalès, la proportionnalité, les fonctions linéaires, les rapports d’agrandissement ou de réduction des grandeurs géométriques.

Thème E – Algorithmique et programmation

Au cycle 4, les élèves s’initient à la programmation, en développant dans une démarche de projet quelques programmes simples, sans viser une connaissance experte et exhaustive d’un langage ou d’un logiciel particulier. En créant un programme, ils développent des méthodes de programmation, revisitent les notions de variables et de fonctions sous une forme différente, et s’entraînent au raisonnement.

Attendus de fin de cycle

  • Écrire, mettre au point et exécuter un programme simple

Connaissances et compétences associées

Exemples de situations, d’activités et de ressources pour l’élève

Décomposer un problème en sous-problèmes afin de structurer un programme ; reconnaître des schémas.

Écrire, mettre au point (tester, corriger) et exécuter un programme en réponse à un problème donné.

Écrire un programme dans lequel des actions sont déclenchées par des évènements extérieurs.

Programmer des scripts se déroulant en parallèle.

  • Notions d’algorithme et de programme.
  • Notion de variable informatique.
  • Déclenchement d'une action par un événement, séquences d'instructions, boucles, instructions conditionnelles.

Jeux dans un labyrinthe, jeu de Pong, bataille navale, jeu de nim, tic tac toe.

Réalisation de figure à l'aide d'un logiciel de programmation pour consolider les notions de longueur et d'angle.

Initiation au chiffrement (Morse, chiffre de César, code ASCII…). 

Construction de tables de conjugaison, de pluriels, jeu du cadavre exquis… 

Calculs simples de calendrier.

Calculs de répertoire (recherche, recherche inversée...).

Calculs de fréquences d’apparition de chaque lettre dans un texte pour distinguer sa langue d’origine : français, anglais, italien, etc.

Repères de progressivité :

En 5ème, les élèves s'initient à la programmation événementielle. Progressivement, ils développent de nouvelles compétences, en programmant des actions en parallèle, en utilisant la notion de variable informatique, en découvrant les boucles et les instructions conditionnelles qui complètent les structures de contrôle liées aux évènements.

Croisements entre enseignements

Les mathématiques occupent une place essentielle dans les enseignements pratiques interdisciplinaires. Elles fournissent des outils de calcul et de représentation (à l’aide de tableaux, de schémas, de graphiques), des méthodes (prenant appui sur différents types de raisonnement) qui permettent d’organiser, de hiérarchiser et d’interpréter des informations d’origines diverses. Elles sont porteuses de concepts et proposent des outils de modélisation.

Pour autant, les élèves doivent aussi percevoir que les mathématiques ne sont pas figées, qu’elles se développent et affrontent parfois des crises. Elles sont le produit de la pensée humaine, peuvent être objets de créativité et sont constitutives de la culture de toute société.

Quelques exemples de thèmes qui peuvent être travaillés avec plusieurs autres disciplines sont proposés ci-dessous. La variété des métiers dans lesquels les mathématiques jouent un rôle important ou essentiel peut être explorée dans l’EPI Monde économique et professionnel. L’utilisation de supports en langue étrangère ou régionale, outre une plus grande exposition à la langue, offre une ouverture à une autre approche des mathématiques et permet de s’inscrire dans l’EPI Langues et cultures étrangères ou, le cas échéant, régionales.

Corps, santé, bien-être et sécurité

Sport et sciences ; alimentation et entraînement ; physiologie de l’effort et performances.

Statistiques, proportionnalité, représentation de données, vitesse.

Rythmes circadiens, fréquences respiratoires, fréquences cardiaques.

Relevé, interprétation des données ; mesure de durées, fréquences.

Les séismes et raz-de-marée.

Proportionnalité, échelles, vitesse.

Culture et création artistiques

L’architecture, art, technique et société.

Proportionnalité, agrandissement réduction, géométrie.

Les représentations en perspectives.

Perspectives parallèles ; expérience de Brunelleschi.

Les relations entre arts et sciences dans la civilisation médiévale musulmane. 

Translations, symétries, figures géométriques, frises et pavages.

Transition écologique et développement durable

L’aménagement du territoire.

Cartes ; réduction, agrandissement.

Les phénomènes météorologiques et climatiques.

Différentes échelles de temps ; statistiques.

Gestion des ressources naturelles. 

Calcul de consommation d’eau, d’énergie… ; prix d'extraction, de production, de marché ;  grandeurs quotient et grandeurs produit.

 

Information, communication, citoyenneté

L’information chiffrée et son interprétation. 

Représentations, choix des échelles.

Le stockage de l’information sur support numérique.

Calcul, puissances.

Langues et cultures de l’Antiquité

Questions de sciences dans l’Antiquité.

Mesure de la circonférence de la Terre par Eratosthène ; racines carrées ; Thalès, Pythagore ; fractions égyptiennes ; différents systèmes et formes de numération.

Sciences, technologie et société.

Les théories scientifiques qui ont changé la vision du monde Ptolémée, Copernic, Galilée, Kepler.

Rotation, périodicité.

Les sciences à l’époque de la Révolution française.

Système métrique ; méridien ; triangulation ; incertitude.

Réel et virtuel, de la science-fiction à la réalité.

Programmer un robot, concevoir un jeu.


Éducation aux médias et à l’information

L’éducation aux médias et à l’information, présente dans tous les champs du savoir transmis aux élèves, est prise en charge par tous les enseignements.

Tous les professeurs, dont les professeurs documentalistes, veillent collectivement à ce que les enseignements dispensés en cycle 4 assurent à chaque élève :

Il s’agit de faire accéder les élèves à une compréhension des médias, des réseaux et des phénomènes informationnels dans toutes leurs dimensions : économique, sociétale, technique, éthique. Quelques connaissances sur l’histoire de l’écrit, des différentes étapes de sa diffusion et de ses supports mettent en perspective sa place dans la société contemporaine.

Les élèves sont formés à une lecture critique et distanciée des contenus et des formes médiatiques. Ils sont incités à s'informer suffisamment, notamment par une lecture régulière de la presse en français et en langues vivantes, ainsi qu’à produire et diffuser eux-mêmes de l'information.

L'acquisition des compétences de l'éducation aux médias et à l’information est mise en œuvre tout au long du cycle, notamment dans le cadre des enseignements pratiques interdisciplinaires ; chaque compétence présentée ici peut être réinvestie d'une année à l'autre selon les projets.

Compétences travaillées

Domaines du socle

Utiliser les médias et les informations de manière autonome

  • Utiliser des dictionnaires et encyclopédies sur tous supports.
  • Utiliser des documents de vulgarisation scientifique.
  • Exploiter le centre de ressources comme outil de recherche de l'information.
  • Avoir connaissance du fonds d’ouvrages en langue étrangère ou régionale disponible au CDI et les utiliser régulièrement.
  • Se familiariser avec les différents modes d’expression des médias en utilisant leurs canaux de diffusion.
  • Utiliser les genres et les outils d'information à disposition adaptés à ses recherches.
  • Découvrir comment l’information est indexée et hiérarchisée, comprendre les principaux termes techniques associés.
  • Exploiter les modes d’organisation de l’information dans un corpus documentaire (clés du livre documentaire, rubriquage d'un périodique, arborescence d’un site).
  • Classer ses propres documents sur sa tablette, son espace personnel, au collège ou chez soi sur des applications mobiles ou dans le « nuage ». Organiser des portefeuilles thématiques.
  • Acquérir une méthode de recherche exploratoire d’informations et de leur exploitation par l’utilisation avancée des moteurs de recherche.
  • Adopter progressivement une démarche raisonnée dans la recherche d’informations.

2

Exploiter l’information de manière raisonnée

  • Distinguer les sources d’information, s’interroger sur la validité et sur la fiabilité d’une information, son degré de pertinence.
  • S’entrainer à distinguer une information scientifique vulgarisée d’une information pseudo-scientifique grâce à des indices textuels ou paratextuels et à la validation de la source.
  • Apprendre à distinguer subjectivité et objectivité dans l’étude d’un objet médiatique.
  • Découvrir des représentations du monde véhiculées par les médias.
  • S’interroger sur l’influence des médias sur la consommation et la vie démocratique.

1,3, 5

Utiliser les médias de manière responsable

  • Comprendre ce que sont l’identité et la trace numériques.
  • Se familiariser avec les notions d’espace privé et d’espace public.
  • Pouvoir se référer aux règles de base du droit d'expression et de publication en particulier sur les réseaux.
  • Se questionner sur les enjeux démocratiques liés à la production participative d’informations et à l’information journalistique.
  • S’initier à la déontologie des journalistes.

3

Produire, communiquer, partager des informations

  • Utiliser les plates formes collaboratives numériques pour coopérer avec les autres.
  • Participer à une production coopérative multimédia en prenant en compte les destinataires.
  • S'engager dans un projet de création et publication sur papier ou en ligne utile à une communauté d’utilisateurs dans ou hors de l’établissement qui respecte droit et éthique de l’information.
  • Développer des pratiques culturelles à partir d'outils de production numérique.
  • Distinguer la citation du plagiat.
  • Distinguer la simple collecte d’informations de la structuration des connaissances.  

1