Преподаватель Семенова Ольга Леонидовна

Математика

Группа ТЭК 2/3

04.10.2022

Практическое занятие.

Действия над числами в алгебраической форме.

Цели:

- 1. Образовательная: формировать навыки действий над числами в алгебраической форме.
- 2. Воспитательная: воспитать логическое мышление, внимание.
- **3. Развивающая**: развитие коммуникативных качеств, критического мышления, познавательной активности студентов.

Формируемые общие и профессиональные компетенции: Материал практического занятия на тему: «Действие над числами в алгебраической форме» формирует такие общие компетенции:

- OK 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OK 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- OK 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- OK 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Над комплексными числами можно проводить различные операции, а именно:

- Склалывать и вычитать
- Умножать и делить
- Извлекать корни и возводить в степень

<u>Пример 1.</u> Найти сумму и произведение комплексных чисел $z_1 = 2 + 7i; z_2 = 3 + 5i.$

Решение: Сумму находим формальным сложением двучленов 2-7i, 3+5i; $z_1+z_2=(2-7i)+(3+5i)=2-7i+3+5i=5-2i$.

произведение находим перемножив двучлены 2-7i и 3+5i с последующей заменой i^2 на -1.

$$z_1 \cdot z_2 = (2 - 7i) \cdot (3 + 5i) = 6 - 21i + 10i - 35i^2 = 6 - 11i + 35 = 41 - 11i$$
.

Other:
$$z_1 + z_2 = 5 - 2i$$
; $z_1 \cdot z_2 = 41 - 11i$.

Легко увидеть, что слагаемое двух сопряжённых чисел является действительным числом:

$$z \cdot \overline{z} = (a + bi) \cdot (a - bi) = a^2 - bai + abi - (bi)^2 = a^2 - b^2(-1) = a^2 + b^2.$$
 Следовательно,
$$z \cdot \overline{z} = a^2 + b^2$$

Воспользуемся этим свойством для введения действия деления двух комплексных чисел.

При делении комплексных чисел $\frac{z_2}{z_1}$, где $z_1 = a_1 + ib_1$, $z_2 = a_2 + ib_2$ $\underline{a_2 + ib_2}$

достаточно умножить числитель и знаменатель дроби $a_1 + ib_1$ на число сопряжённое к знаменателю, то есть на $a_1 - ib_1$.

<u>Пример 2.</u> Даны комплексные числа $z_1 = 3 - 4i$ и $z_2 = 10 + 5i$. Найдите разность $z_2 = z_1$ и частное $z_2 = z_1$.

Решение:

Находим разность вычитанием двучленов 3-4i и 10+5i. $z_2-z_1=(10+5i)-(3-4i)=10+5i-3+4i=7+9i$.

Чтобы найти частное z_2 : z_1 умножим числитель и знаменатель на число, сопряжённое к знаменателю:

$$\frac{z_2}{z_1} = \frac{10+5i}{3-4i} = \frac{(10+5i)(3+4i)}{(3-4i)(3+4i)} = \frac{30+15i+40i+20i^2}{3^2+4^2} = \frac{10+55i}{25} = 0,4+2,2i.$$

Ответ: $z_2 - z_1 = 7 + 9i$; $z_2 : z_1 = 0,4 + 2,2i$.

Действия над комплексными числами имеют следующие интересные свойства:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \; ; \quad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} \; ; \quad \overline{(z_1/z_2)} = \overline{z_1}/\overline{z_2} \; (\overline{z_2} \neq 0).$$

Доказательство выходит из определения сопряжённых чисел. Действительно,

$$\overline{z_1 + z_2} = \overline{(a_1 + ib_1) + (a_2 + ib_2)} = \overline{(a_1 + a_2) + i(b_1 + b_2)} =$$

$$= (a_1 + a_2) - i(b_1 + b_2) = (a_1 - ib_1) + (a_2 - ib_2) = \overline{z_1} + \overline{z_2} .$$

Аналогично доказываются и другие приведённые свойства.

Возведение комплексного числа в степень выполняется по формулам возведения двучлена в степень. При этом следует учитывать, что

$$i^0=1$$
, $i^1=i$, $i^2=-1$, $i^3=-i$, $i^4=1$, $i^n=i^{4m+k}=(i^4)^m\cdot i^k=i^k$, где $k=0,1,2,3$.

Например:

$$i^{24}=i^{4\cdot 6}=1$$
, $i^{59}=i^{4\cdot 14+3}=i^3=-i$; $i^{42}=i^{4\cdot 10+2}=i^2=-1$.

 $z = \frac{12 + 5i}{(2 + 3i)^2}.$ Пример 3. Найти комплексное число

Решение:

Выполнив в знаменателе возведение в степень, получим:

$$z = \frac{12+5i}{4+12i+9i^2} = \frac{12+5i}{4+12i-9} = \frac{12+5i}{-5+12i}.$$

Умножив числитель и знаменатель на число, сопряжённое к знаменателю, то есть на -5-12i, получим:

$$z = \frac{(12+5i)(-5-12i)}{(-5+12i)(-5-12i)} = \frac{-60-25i-144i-60i^2}{5^2+12^2} = \frac{-60-169i+60}{25+144} = \frac{-169i}{169} = -i$$

Ответ: z = i.

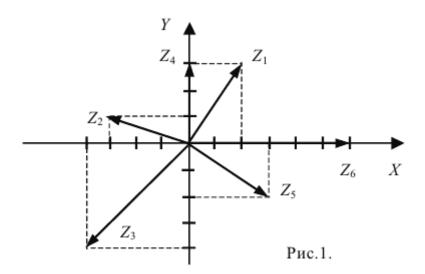
Каждому комплексному числу z = a + ib можно поставить в соответствие упорядоченную пару действительных чисел (a;b) и наоборот. Такая упорядоченная пара действительных чисел определяет точку или вектор на плоскости.

Следовательно, комплексное число вида z = a + ib изображается на координатной плоскости точкой M(a, b) или вектором, начало которого совпадает с началом координат, а конец с т. М.

Сама координата плоскости называется при этом комплексной плоскости, ось абсцисс — действительной осью, ось ординат — мнимой осью.

Например, изобразим числа

$$z_1 = 2 + 3i$$
, $z_2 = -3 + i$, $z_3 = -4 - 4i$, $z_4 = 3i$, $z_5 = 3 - 2i$, $z_6 = 6$ (puc. 1).

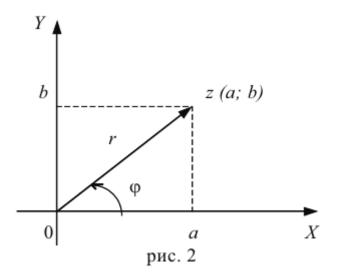


Представление комплексного числа как вектора на плоскости позволяет ввести понятие модуля и аргумента комплексного числа.

<u>Модулем</u> комплексного числа называют длину вектора, которая соответствует данному числу (обозначают г либо р).

<u>Аргументом</u> комплексного числа $(z \neq 0)$ называют величину угла ϕ между положительным направлением действительной оси и вектора, который соответствует данному комплексному числу.

Рассмотрим рисунок:



На основе теоремы Пифагора получаем $r = \sqrt{a^2 + b^2}$.

Например, комплексное число z = 8 - 6i имеет модуль равный 10, так как

$$r = \sqrt{8^2 + (-6)^2} = \sqrt{64 + 36} = \sqrt{100} = 10$$
.

Аргумент комплексного числа $z \neq 0$, в отличии от модуля, вычисляется неоднозначно. Так аргументом числа 5 являются следующие углы $\phi_1 = 0$; $\phi_2 = 2\pi$; $\phi_3 = -2\pi$, ... $\phi_k = 2\pi k \ (k = 0, \pm 1, \pm 2...)$. Среди бесконечного множества значений аргумента только одно принадлежит промежутку $(-\pi; \pi)$ или $(0; 2\pi)$. Эти значения аргумента мы и будем вычислять.

Аргумент легко вычислить, если комплексное число расположено в I четверти. Действительно, согласно тригонометрическим соотношениям в прямоугольном треугольнике (рис. 2) имеем:

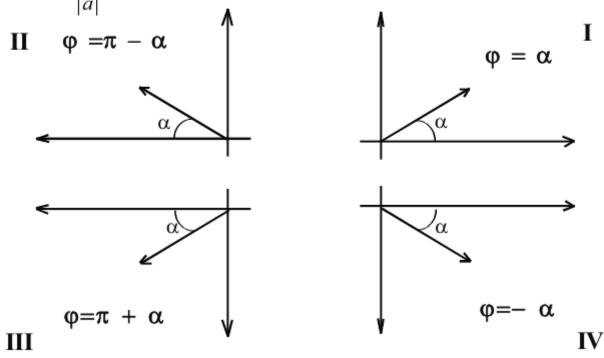
$$\operatorname{tg} \varphi = \frac{b}{a}, \quad \varphi = \operatorname{arctg} \frac{b}{a}$$
.

Если комплексные числа размещены в других четвертях, то необходимо провести дополнительные рассуждения. Рассмотрим рис. 3. Видим, что для

II четверти
$$\varphi = p - \arctan\left|\frac{b}{a}\right|;$$
 для III четверти $\varphi = p + \arctan\left|\frac{b}{a}\right|;$

для IV чверті
$$\varphi = -\arctan\left|\frac{b}{a}\right|$$
, либо $\varphi = 2p - \arctan\left|\frac{b}{a}\right|$,

если за $\arctan \left| \frac{b}{a} \right|$ принимать значение острого угла α .



Таким образом, алгоритм нахождения аргумента комплексного числа следующий:

1.Определить коэффициент a, b заданного комплексного числа.

$$\alpha = \operatorname{arctg} \left| \frac{b}{a} \right|$$
.

- 2. Найти
- 3. Установить, в какой четверти расположено комплексное число.
- 4. Вычислить аргумент φ согласно приведённым формулам.

Возможны и другие способы нахождения аргумента комплексного числа, например:

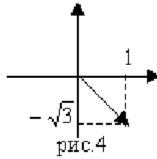
$$\varphi = \begin{cases} \arctan \frac{b}{a}, & \textit{если точка} \ (a;b) \ \textit{принадлежит I либо IV четверти;} \\ \pi - \arctan \frac{b}{a}, & \textit{если точка} \ (a;b) \ \textit{принадлежит II либо III четверти;} \end{cases}$$

либо аргумент ј определяют по системе
$$\begin{cases} \cos \varphi = \frac{a}{r}\,;\\ \sin \varphi = \frac{b}{r}\,. \end{cases}$$

<u>Пример 4.</u> Найти аргумент комплексного числа $z = 1 - i\sqrt{3}$.

Решение:

- 1, Вычислить
- $a=1, b=-\sqrt{3}$.



- коэффициенты $2. \mbox{ Найти острый угол } \qquad \alpha = \arctan \left| \frac{-\sqrt{3}}{1} \right| = 60^{0}.$
- 3. Выяснить, в какой четверти находится данное число (рис. 4).
- 4. Аргумент, который соответствует данному комплексному числу принадлежит IV четверти, то есть $\varphi = -\alpha = -60^{\circ}$.

Ответ:
$$\varphi = -60^{\circ} = -\frac{\pi}{3}$$
.

Домашнее задание

Найти сумму, разность и произведение чисел.

$$z_1 = 2+7i$$
; $z_2 = 3+5i$.

Ответы присылать на электронную почту: teacher-m2022@yandex.ru