
Department of Electrical and Computer Engineering

The University of Texas at Austin
EE 460N, Fall 2020
Lab Assignment 3
Due: Sunday, Oct. 18th, 11:59 pm

You must work on this lab by yourself!

Shell Code Provided: shellcode
An Example of simulator run
The control store template in Excel and PDF formats. See clarification 11 on how to use them.

Introduction
For this assignment, you will write a cycle-level simulator for the LC-3b. The simulator will take
two input files:

1.​ A file entitled ucode3 which holds the control store.
2.​ A file entitled isaprogram which is an assembled LC-3b program.

The simulator will execute the input LC-3b program, using the microcode to direct the simulation
of the microsequencer, datapath, and memory components of the LC-3b.

Note: The file isaprogram is the output file from Lab Assignment 1. This file should consist of
4 hex characters per line. Each line of 4 hex characters should be prefixed with '0x'. For
example, the instruction NOT R1, R6 would have been assembled to 1001001110111111.
This instruction would be represented in the isaprogram file as 0x93BF. The file ucode3 is
an ASCII file that consists of 64 rows and 35 columns of zeros and ones.

The simulator is partitioned into two main sections: the shell and the simulation routines. We are
providing you with the shell. Your job is to write the simulation routines.

The Shell
The purpose of the shell is to provide the user with commands to control the execution of the
simulator. In order to extract information from the simulator, a file named dumpsim will be
created to hold information requested from the simulator. The shell supports the following
commands:

http://users.ece.utexas.edu/~patt/20f.460n/labs/lab3/lc3bsim3.c
http://users.ece.utexas.edu/~patt/20f.460n/labs/lab3/Lab3Example.html
http://users.ece.utexas.edu/~patt/20f.460n/labs/lab3/control_store.xls
http://users.ece.utexas.edu/~patt/20f.460n/labs/lab3/control_store.pdf

1.​ go – simulate the program until a HALT instruction is executed.
2.​ run <n>– simulate the execution of the machine for n cycles
3.​ mdump <low> <high> – dump the contents of memory, from location low to location

high to the screen and the dump file. For hex addresses, put “0x” in front of the address,
eg. mdump 0x3000 0x3001

4.​ rdump – dump the current cycle count, the contents of R0-R7, IR, PC, MAR, MDR, and
other status information to the screen and the dump file.

5.​ ? – print out a list of all shell commands.
6.​ quit – quit the shell

The Simulation Routines
The simulation routines carry out the cycle-by-cycle simulation of the input LC-3b program. The
simulation of any cycle is based on the contents of the current latches in the system. The
simulation consists of two concurrently executing phases:

The microsequencer phase uses 9 bits from the microinstruction register and appropriate literals
from the datapath to determine the next microinstruction. Function eval_micro_sequencer
evaluates this phase.

The datapath phase uses 26 bits of the microinstruction to manipulate the data in the datapath.
Each microinstruction must be literally interpreted. For example, if the GateMDR bit is asserted,
then data must go from the MDR onto the bus. You must also establish an order for events to
occur during a machine cycle. For example, data should be gated onto the bus first, and loaded
into a register at the end of the cycle. Simulate these events by writing the code for functions
eval_bus_drivers, drive_bus and latch_datapath_values.

We will assume a memory operation takes five cycles to complete. That is, the ready bit is
asserted at the end of the fourth cycle. Function cycle_memory emulates memory.

What To Do
The shell has been written for you. From your ECE LRC account, copy the following file to your
work directory:

lc3bsim3.c

At present, the shell reads in the microcode and input program and initializes the machine. It is
your responsibility to write the correct microcode file and to complete the simulation routines that
simulate the activity of the LC-3b microarchitecture. In particular, you will be writing the five

http://users.ece.utexas.edu/~patt/20f.460n/labs/lab3/lc3bsim3.c
http://users.ece.utexas.edu/~patt/13s.460N/labs/lab3/lc3bsim3.c

functions described above (eval_micro_sequencer, cycle_memory,
eval_bus_drivers, drive_bus, and latch_datapath_values).
Add your code to the end of the shell code. Do not modify the shell code.

The accuracy of your simulator is your main priority. Specifically, make sure the correct
microarchitectural structures sample the correct signals.

It is your responsibility to verify that your simulator is working correctly. You should write
programs using all of the LC-3b instructions and execute them one cycle at a time (run 1). You
can use the rdump and mdump commands to verify that the state of the machine is updated
correctly after the execution of each cycle.

Because we will be evaluating your code on linux, you must be sure your code compiles on an
ECE linux machine using gcc with the -std=c99 flag. This means that you need to write your
code in C such that it conforms to the C99 standard. You should also make sure that your code
runs correctly on one of the ECE linux machines.

What To Turn In
Please submit your lab assignment electronically. You will submit the following files:

1.​ lc3bsim3.c – adequately documented source code of your simulator
2.​ ucode3 – your microcode file

Important
1.​ Please make sure that you have made the following correction to the ISA handout.
2.​ In Appendix A, please correct the operation of the JSR/JSRR instruction to read:

TEMP = PC†​
if (bit(11)==0)​
 PC = BaseR;​
else​
 PC = PC† + LSHF(SEXT(PCoffset11), 1);​
R7 = TEMP;​
​

* PC†: incremented PC

3.​ Please note that LEA does NOT set condition codes.
4.​ LC-3b registers are 16 bits wide. However, when you perform arithmetic or bitwise

operations in C on int data types on the Linux x86 machines you are using 32 bits.

http://users.ece.utexas.edu/~patt/20f.460n/labs/lab3/Lab3Submit.html

Therefore, you must be careful about not keeping the higher 16 bits of the results in the
architectural state. The shell code includes a macro called Low16bits that you can
use to avoid this problem.

5.​ The control signals in your ucode3 file must be encoded according to Tables C.1 and
C.2 in Appendix C. For each signal, the first (leftmost or the topmost) signal value must
be encoded as 0, the next value as 1, the value after that as 2 (binary 10) and so on. For
example, Table C.1 lists the signal values for the two bit signal ALUK as follows: ADD,
AND, XOR, PASSA. This means that ADD must be encoded as binary 00, AND as 01,
XOR as 10, and PASSA as 11. Please use a 0 whenever a particular signal is a don't
care.

6.​ Please fill in all 0s for any unused state.

Lab Assignment 3 Clarifications
NOTE: FAQ’s for this semester will be posted here. Please check back regularly.
1. What could be the cause of “Warning: Extra bit(s) in control store file ucode3.”?
This means that the ucode3 file has more than 35 columns. One reason why this can happen is
if you've transferred the ucode3 file from Windows to Unix. Run dos2unix program on UNIX
machines to remove the extra control characters inserted by Windows. You can do this by
typing:

dos2unix ucode3
on any LRC Linux machine. If this doesn't work, check to make sure that your ucode3 file has at
most 35 columns.

2. What is CYCLE_COUNT? Is this the counter for memory access?
CYCLE_COUNT is a global variable used by the simulator to count the number of machine
cycles elapsed since the program started execution. Do not change this variable. You will need
to use another variable for simulating memory latency.

3. How do we handle Memory Mapped I/O for this lab?
You do not need to implement Memory Mapped I/O for this lab.

4. You do not have to implement the RTI instruction for this lab. You can assume that the input
file to your simulator will not contain any RTI instructions.

5. For this assignment, you can assume that the programmer will always give aligned
addresses, and your simulator does not need to worry about unaligned cases.

6. You may assume that the code running on your simulator has been assembled correctly and
that the instructions your simulator sees comply with the ISA specifications, i.e. all instructions
are valid and there are no unaligned accesses.

7. In your code that you write for lab 3, do not assign the current latches to the next latches.
This is already done in the shell code.

8. I am getting values like xFFFFFFFF in my registers when they should be xFFFF instead,
why is this?
The variables in your c program are 32 bit values, so the number -1 is xFFFFFFFF. You need
to make sure that when you store values in a variable you mask them properly. For instance you
would need to assign var1 to var2 using the statement var1 = var2 & 0xFFFF, or its
equivalent var1 = Low16bits(var2). This zeroes out the top 16 bits before writing var2
into var1.

9. Do we need to implement the TRAP routines?
No. Whenever a TRAP instruction is processed, after the last state, PC will be set to 0, if you
implement the TRAP instruction correctly. The simulator halts whenever PC becomes 0. You
are still implementing states 15, 28, and 30 associated with the TRAP instruction.

10. Why am I not getting the result I expect from a C expression?
Please read and make sure you understand the precedence of C operators. Examples:

●​ a & b == 0 means a & (b == 0), therefore you might want to write (a & b)
== 0

●​ a >> 1 + b means a >> (1 + b), therefore you might want to write (a >> 1)
+ b

●​ a = b + c? d : e means a = (b + c)? d : e, therefore you might want to
write a = b + (c? d : e)

●​ there are other examples from some lab 2 implementations... If you do not want to
remember or to think too much about this, just use parentheses!

11. How do I convert my control store spreadsheet into the ucode3 file to use in my simulator?

●​ Windows machine: Once you have filled in the control store spreadsheet, select only the
cells that contain the 0s and 1s that form the microinstructions (rows 2-65, columns
B-AJ). Choose “copy” from the Edit menu. Open up a new Word document and choose
“paste special” from the Edit menu. Then, choose “unformatted text” and click on OK.
Finally, select “replace” from the Edit menu. In the “Find what” box, type “^t” (without the
quotes); leave the “Replace with” box empty. Click on the “Replace All” button. Save
your file as a plain text file with filename “ucode3.” To use this file on a linux machine
with the simulator, you will need to change the filename from “ucode3.txt” to “ucode3”.
You will also need to run dos2unix on this file.

●​ Linux machine: Use the OpenOffice spreadsheet program (oocalc) to open and fill in the
spreadsheet. Select the cells that contain the 0s and 1s that form the microinstructions
(rows 2-65, columns B-AJ). Choose “copy” from the Edit menu. Open up a text editor
(eg. gedit, gvim, oowriter) and choose “paste” from the Edit menu (with OpenOffice
oowriter, select “paste special” and choose “unformatted text”). Do a search and replace,

http://www.cppreference.com/operator_precedence.html

searching for “\t” (without the quotes), and leaving the replace field empty. Save your file
as “ucode3”.

12. If none of the tri-state buffers (GatePC, GateALU, etc.) are driving the bus in a given cycle,
please put zero onto the bus in that cycle.

13. If a state can be done with more than 1 way, it should be done through the path that does
not involve the bus.

	Department of Electrical and Computer Engineering
	The University of Texas at Austin

	Introduction
	The Shell
	The Simulation Routines
	What To Do
	What To Turn In
	Important
	Lab Assignment 3 Clarifications

