
Message Metadata (aka Headers) in
Kafka

TL;DR
Add (String, byte[]) pairs to the ProducerRecord and ConsumerRecord. Maybe put this into the
underlying message format. Use ints as keys only if you need ultimate performance, but
probably just don’t use headers in that case.

Author: Sean McCauliff <smccauliff@linkedin.com>
Last Modification: 23 January 2016

Introduction

Terminology
Kafka clients (producers and consumers) have an abstraction of the data that are written or read
from Kafka. These are known as ProducerRecord or ConsumerRecord. When speaking about
user data we use the term “record” to mean both the ProducerRecord and the
ConsumerRecord.

What are headers
Many different data storage and transport systems provide a way to augment to the data being
stored or sent in order to provide a common system of augmentations that allows for suppliers
of data to interact with the users of that data without changing the semantics of the data being
stored or transported. In a storage context this additional data is often known as metadata in
the networking context this additional data is often known as headers (although it may physically
be implemented as footer, that is the headers bytes are physically located at the tail end of the
data). Additionally when we talk about headers we mean use extensible headers as opposed to
system headers, although there is no technical reason the system itself can not use them.

Examples of other systems implementing headers:

●​ Other message queuing APIs and protocols such as JMS and AMQP.
●​ Protocols such as HTTP and SMTP.
●​ Filesystem extended attributes.
●​ Media files such as MP3 and JPEG.
●​ Scientific file formats such as FITS.

mailto:smccauliff@linkedin.com

We assert that headers will also be useful for Kafka for some of the same reasons that it is
useful in these other case and in some cases that are more specific to Kafka. Headers would
be added to each record rather than adding the headers to some collection of records; as Kafka
does not have a user visible abstraction that embodies a collection of records although Kafka
may at times operate over a collection of records.

Specifically this is talking about adding an API to add a number of (key, value) pairs to each
record.

Header Implementation Trade-Offs

Headers in Container
Put the headers in a container. This means users use KafkaProducer<K,
ContainerWithHeaders<V>> and KafkaConsumer<K, ContainerWithHeaders<V>>.
ContainerWithHeaders has the header CRUD. The user payload is now the V in
ContainerWithHeaders.

Headers in Value
Put the headers in the value but hide this from the end user. This means users still use
KafkaConsumer<K, V> and KafkaProducer<K,V> but the underlying message that is sent to
the broker never knows about the headers. ProduceRecord and ConsumeRecord have the
CRUD methods associated with header key, value pairs. It’s possible for users to implement
this without it being part of the open source but at the cost of interoperability.

Headers as first class feature
As Headers in Value but the message format used internally by Kafka is now aware of the
headers.

Issue Headers in
Container (which
gets stored in value)

Headers in Value
(broker not aware)

Headers as first
class (broker aware)

Changes to user
code not using
headers

All user code needs
to be changed. If
user code needs to
use their legacy
serialization format it
must now be packed
into the value.

None. None.

Long term code
maintenance

Having CRUD
functionality for each
header, separate from
the constructor ,allows
for the implementation
details to be hidden from
the the user. Interceptor
functionality would need
to be carefully
considered each time
the producer or
consumer code is
touched.

As Headers in Value
and also: The internal
message format used
by Kafka needs to be
considered. On the
plus side many
modifications to the
internal message
format can be
implemented with this
feature rather
potentially saving
substantial of long
term maintenance.

Adoption Most people that
want this already
have their own so
there is no advantage
to adopting a new
container format.
This is probably not
sufficient reason for
LinkedIn to move to a
new container format.

LinkedIn and several
other large users of
Kafka have expressed
interest in this feature.
We believe this
represents a large
number of the active
Kafka clusters.

LinkedIn and several
other large users of
Kafka have
expressed interest in
this feature. We
believe this
represents a large
number of the active
Kafka clusters.

Performance User code may need
to serialize twice.

Serializing to bytes twice
means an extra copy.

Potentially no extra
copies.

Online Upgrade Only user code
upgrade needs to be
coordinated.

Consumers need to be
upgraded and then
producers.

Consumers and
brokers need to be
upgraded and then
producers.
Upgrading the

https://xkcd.com/927/

brokers is definitely
more complicated. If
new features
requiring changes to
the message format
are implemented
using headers then
future online
upgrades for such
features only require
producer and
consumer
coordination.

Ability to
implement outside
of Kafka open
source project.

Yes. LinkedIn
already has
something like this
and we would rather
move off of this
solution.

Yes. This requires
wrapping
KafkaProducer<K,
byte[]> and
KafkaProducer<K,
byte[]>. But this
hampers interoperability
between organizations.

Difficult. Only by
maintaining a fork of
Kafka which needs to
be message
compatible with the
master. Probably no
interoperability.

Interoperability
between different
organizations.

… so basically no.

Only if implemented in
open source.

Only if implemented
in open source.

Log compaction Not with the current
implementation.

Not with current
implementation.

Broker can see zero
length value and
compact.

String vs Int Keys: Fight

Collections

This is a plot of different collection implementations for headers and the time it takes to populate
one of them (y-axis) with the specified number of headers (x-axis). This is the mean time for 1M

https://xkcd.com/927/

instantiations. A warmup of 100k iterations over each container is performed before
benchmarking. The same value is always used: a byte array of length zero.

HashMap is HashMap<Integer, byte[]>.
Trove is the TIntObjectHashMap<byte[]> implementation from GNU Trove. It uses primitive int
for keys and open addressing rather than chaining. This is to test the effects of a different hash
table algorithm.
ImmutableSortedMap is the sorted map implementation from Guava. It backs the map with an
array rather than a binary search tree. This is see if hashing is some kind of problem.
ISM-PreSorted is a guava ImmutabledSortedMap, but the keys are added in order so sorting is
not needed.
ArrayList<Header<Integer, byte[]>>. A Header is just the key,value pair that is the header. If we
allowed for duplicate header keys (i.e. they are not keys) and we don't care about lookup
performance then this is probably close to the best we can do.
String - HashMap is HashMap<FakeString, byte[]>. A wrapper around char[] is used rather than
an actual String since String caches the results of computing hashCode() and String(String)
propagates the computed hashCode. FakeString uses the same hashCode() and equals()
algorithm as String.

There is a jump at 10 headers for Map<String, byte[]> creation time. It’s not clear why this
happens as the plot has the same shape even when the HashMap is preallocated to a capacity
of 30 (not shown).

At the low end all the implementations and key representations are probably within the
measurement error of this benchmark (not shown).

Going with other Map implementations only differ in CPU performance by a factor of two. They
don't seem worth considering. Requiring ordering of headers so that an ordered map can used
also does not seems like a worthwhile optimization.

Map<String, V> is probably ok with respect to map computation time, for small numbers of
headers. When the number of headers is more than 10 it looks like there are performance
issues.

Selecting a map implementation other than HashMap is probably not worth it with respect to
header representations. Probably it's worth considering Radai's proposal of lazy parsing the
headers in the ConsumerRecord so that it can be done in a different thread if needed.

machine mac laptop

Parse Header, create collection, populate collection search
collection
This benchmark measures:

1.​ create a map
2.​ deserializes a key, value pair
3.​ populates the map with the key value pairs
4.​ searches the map for the known key value pairs (20)

create a map: Uses HashMap, TreeMap or a ListMap. This last one is a map backed by an ArrayList.
deserializes: There is a fixed set of strings that look kind of like keys one might actually use. For some of the
string tests String.intern() is called (this is Java's Flightweight implementation for Strings). Integers are just in
some increasing range much larger than 255.
searches the map: There is a fixed table of random permutations that are generated and reused. These are
used to generate searches generated map. This is done 20 times regardless of how many items were added
to the map.

machine Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz which is probably more like a server than a mac
laptop.

Conclusions.
* String as header keys are fine unless you need ultimate performance in which case you should probably not
use headers which his still a viable option.
* String intern() is expensive and you only really need to do this if the ConsumerRecord is going to hang around
for some time. So probably no.
 desktop machine Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

Table of string keys used in these benchmarks:
static char[][] keys = new char[][] {
 "linkedin.consumer.class".toCharArray(),
 "kafka.feature1".toCharArray(),
 "kafka.feature2".toCharArray(),
 "LinkedIn.group.id".toCharArray(),
 "LinkedIn.avro.schema.id".toCharArray(),
 "something.something.darkside.something.something.complete".toCharArray(),
 "cats.don't.care.about.kafka".toCharArray(),
 "argle bargle".toCharArray(),
 "org.apache.kafka.something.something.too.long".toCharArray(),
 "LinkedIn.priority".toCharArray(),
 "LinkedIn.one-more-key".toCharArray(),
 "header-11".toCharArray(),
 "header-12a".toCharArray(),

 "header-13aa".toCharArray(),
 "header-14".toCharArray(),
 "header-15".toCharArray(),
 "header-16aaa".toCharArray(),
 "header-17".toCharArray(),
 "header-18".toCharArray(),
 "header-19".toCharArray()
 };
​

	Message Metadata (aka Headers) in Kafka
	TL;DR
	Introduction
	Terminology
	What are headers
	
	Header Implementation Trade-Offs
	Headers in Container
	Headers in Value
	Headers as first class feature

	String vs Int Keys: Fight
	Collections
	Parse Header, create collection, populate collection search collection

