
Inbound Policies

Authors Ilya Lobkov

Status Approved

Implementation status Not Started

Design tracking issue

Design PR

Implementation tracking issue

Reviewers

Name Context Status Design Status

 Krzysztof Słonka Approved
Comments: just
minor things, LG
overall

 Approved

 Łukasz Dziedziak Under review Not started

 Charly Molter Approved Approved

 Mike Beaumont Approved Approved

Related Feature board:

Notes 13/12/2024
●​ ✅kind Mesh in top-level makes sense for MeshMetric and MeshTrace

○​ Do we need a “proxyTypes” field? No
○​ when configuration doesn’t makes (i.e. using MeshExternalService inside

“appendRules” for top-level Dataplane) we’re going to ignore it
●​ MeshMetric on ZoneEgress and multitenancy

○​ we need it but probably out of the scope
●​ MeshProxyPatch on ZoneEgress (out of scope)

mailto:ilya.lobkov@konghq.com
mailto:krzysztof.slonka@konghq.com
mailto:lukasz.dziedziak@konghq.com
mailto:charly.molter@konghq.com
mailto:michael.beaumont@konghq.com

●​ ✅“kuma.io/proxy-type” with 2 values, if we want to distinguish between builtin and
delegated we can create additional label “kuma.io/gateway-type: builtin | delegated”

●​ ✅go with “spec.rules[]” and have targetRef inside “matches” and update all examples
●​ ✅book call for Mon

Notes 16/12/2024
●​ ✅Do we need “NOT” in “matches”? Can we do NOT “/prefix” with existing routes in

envoy?
○​ gateway api doesn’t mention “not” in matches
○​ it’s should be possible to express “not” X by adding matching for X and a fallback

case
○​ envoy routes don’t have “not” as well

●​ referencing MeshExternalService from “matches” is OK. But we probably want to name
the field somehow more informative than “matches[].targetRef”

○​ check gateway api, maybe there is something to describe destination based on
the incoming traffic

●​ ✅Does ZoneEgress know about MeshMultiZoneService?
○​ it doesn’t know at this moment, but it should, I opened an issue

https://github.com/kumahq/kuma/issues/12288
○​ added 18th user story to support it

●​ update migration part with what we’ve discussed – we don’t want to generate new
“allow-all” policy, it should be a Kuma CP config flag

Context and Problem Statement
In Kuma 2.9 we completed the redesign of outbound (client-side) policies with the real
MeshService, MeshExternalService, MeshMultiZoneService in mind. Previously, MeshService
was only a logical concept representing a group of DPPs with the same “kuma.io/service” tag.
Introducing MeshService resource allowed us to simplify the matching algorithm and improve
the Inspect API as it’s now possible to associate “conf” with the real resource in the store.

Inbound policies are still falling short. Applying policies on the inbound (server-side) is possible
only by using the "from" array in the policy spec, but this syntax has a number of limitations:

(A) Impossible to configure inbound ports differently on the same
proxy
Kubernetes services can have multiple ports. When Kuma creates a data plane resource, it
maps each individual port to a dedicated inbound listener. In example, service with 2 ports:​

http://kuma.io/proxy-type
http://kuma.io/gateway-type
https://github.com/kumahq/kuma/issues/12288

apiVersion: v1​
kind: Service​
metadata:​
 name: my-service​
spec:​
 selector:​
 app.kubernetes.io/name: my-app​
 ports:​
 - name: http​
 protocol: TCP​
 port: 10000​
 targetPort: 10001​
 - name: https​
 protocol: TCP​
 port: 20000​
 targetPort: 20001

results in the following Dataplane resource (the config is not complete, only relevant fields are
present):

apiVersion: kuma.io/v1alpha1​
kind: Dataplane​
mesh: default​
spec:​
 networking:​
 inbound:​
 - name: http​
 port: 10001​
 tags:​
 kuma.io/service: my-service_kuma-demo_svc_10000​
 k8s.kuma.io/service-port: "10000"​
 - name: https​
 port: 20001​
 tags:​
 kuma.io/service: my-service_kuma-demo_svc_20000​
 k8s.kuma.io/service-port: "20000"

From-policies use top-level TargetRef to select a proxy (same way as to-policies). Even though
different inbounds could be distinguished by k8s.kuma.io/service-port tag, the current behavior
of top-level targetRef is to select a proxy if at least one inbound on this proxy is selected. That’s
why the policy:

http://k8s.kuma.io/service-port
https://github.com/kumahq/kuma/blob/9c792575a31431a21269b94ee65c45b4b24c1e54/pkg/plugins/policies/core/matchers/dataplane.go#L145

apiVersion: kuma.io/v1alpha1​
kind: MeshTrafficPermission​
spec:​
 targetRef:​
 kind: MeshSubset​
 tags:​
 app: kuma-demo-frontend​
 k8s.kuma.io/service-port: "10000"​
 from:​
 - targetRef:​
 kind: Mesh​
 default:​
 action: Deny

applies to both 10000 and 20000 inbounds.

(B) Impossible to apply inbound policies for MeshExternalService
Policies such as MeshRateLimit, MeshTrafficPermission, MeshAccessLog, MeshFaultInjection,
MeshTimeout, MeshTLS don’t support MeshExternalService at this moment.

In MeshExternalService and ZoneEgress MADR we decided that all the traffic to
MeshExternalServices should always go through ZoneEgress. Though ZoneEgress is now
required to use MeshExternalServices this decision simplifies the logic of applying inbound
policies for MeshExternalServices – we will always apply policies on ZoneEgress no matter
what.

Despite ZoneEgress looks nothing like sidecar and “inbound/outbound” terms don’t really apply
to it, there is still a filterChains and a cluster per MeshExternalService that could be configured.
Which means inbound policies can be applied on filterChain corresponding to
MeshExternalService.

https://github.com/kumahq/kuma/blob/master/docs/madr/decisions/056-meshexternalservice-and-zoneegress.md

(C) Impossible to apply MeshMetrics, MeshTrace and
MeshProxyPatch for zone proxies
These single-item policies are extremely useful for running zone proxies in production. Today,
Kuma policies don’t have a way to target zone proxies (only Sidecar and Gateway are allowed).

(D) Impossible to configure zone proxies for MeshService in cross
zone scenarios
Cross-zone communication between mesh services involves intermediate hops through
ZoneIngress and eventually ZoneEgress. Though these zone proxies are meant to be fully
transparent it might not always be the case. When connections through intermediate
components act in unusual manners it’s helpful to have a way to increase observability and
tweak the configurations. We can’t offer much since cross-zone communication is always TCP
from a zone proxy point of view, but we can add support for MeshTimeout and MeshAccessLog.

(E) Impossible to apply inbound policies on a specific HTTP route
Inbound policies such as MeshRateLimit, MeshTrafficPermission, MeshAccessLog,
MeshFaultInjection, MeshTimeout don’t support per-route configuration at this moment. One of
the reasons for this is lack of inbound routes. MeshHTTPRoute policy when applied always
configures routes on the outbound side. Another reason is similar to the problem (A), inbound
policies don’t have any syntax except “from” array and thus can’t select neither port to configure
(problem A) nor inbound route.

None

(F) Selecting a group of clients subjected for the configuration is
possible only with “kind:MeshSubset”
Previously we’ve made a mistake by not differentiating workload and service in our policy API.
Any running process is a workload, it can act both as a client and consume services or it can be
an endpoint for one or many services. But when it acts as a client we can’t identify it by the
service it implements.

At this moment the only way to select a subset of the traffic that should receive the configuration
is possible only with “from[].targetRef.kind: MeshSubset”. This method selects a group of
workloads by specifying the set of tags the workload should have to be selected. Not only this
method doesn’t allow selecting a subset of the traffic by ServiceAccount or SpiffieID, it is also
inefficient. Taking into account that:

1.​ Subsets can have intersections
2.​ For servers in zone-a there is no way to know what workloads exist in zone-b. That's

why the list of rules for MeshTrafficPermission is O(2^N) where N is the number of
distinct tags.

As a result, the Inspect API for inbound rules is overwhelmingly detailed (i.e. we might not even
have neither zone:east nor namespace:client).

kind: MeshTrafficPermission
spec:
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 zone: east
 default: conf1
 - targetRef:
 kind: MeshSubset
 tags:
 namespace: client
 default: conf2

rules:
 - zone: east
 namespace: client
 action: merge(conf1, conf2)
 - zone: east
 namespace: !client
 action: conf1

 - zone: !east
 namespace: client
 action: conf2
 - zone: !east
 namespace: !client
 action: {}

User stories
In the braces we have a reference to the problem that needs to be solved to unblock the user
story.

1.​ As a service owner I want to expose 1 application port with permissive mTLS so that
external clients (such as health checkers) can use it without being added to the mesh.
(A)

2.​ As a service owner I want to attach an inbound policy to a specific set of conditions
(path, headers...) on an inbound route so that I can apply different policies depending on
endpoints.

3.​ As a service owner I want to have 2 groups of clients – low priority and high priority and

specify different rate limits for these groups of clients so that server resources are
managed efficiently. (E)

4.​ As a mesh operator I want to grant/revoke access to MeshExternalService for a group

of workloads so that I can implement POLP (principle of least privilege). (B, E)

5.​ As a mesh operator I want to use MeshTrafficPermission with MeshExternalServices
with autoreachable services feature enabled so that I can improve the sidecars
performance. (B)

6.​ As a mesh operator I want to apply rate limiting to the service exposed to the mesh only

as a MeshExternalService so that I can protect the service from being overloaded. (B)

7.​ As a mesh operator I want to configure the TLS version and ciphers on ZoneEgress as
it terminates the connection for traffic to MeshExternalServices so that I can fulfill the
security requirements. (B)

8.​ As a mesh operator I want to enable access logging on ZoneEgress to specific

MeshExternalService so that I can see outgoing requests and their statuses in logs. (B,
E)

9.​ As a mesh operator I want to enable access logging on ZoneEgress to specific
MeshService so that I can see outgoing connections and traffic in logs. (D)

10.​As a mesh operator I want to enable access logging on ZoneIngress to specific

MeshService so that I can see outgoing connections and traffic in logs (D)

11.​As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a
group of MeshServices so that I can see outgoing connections and traffic in logs. (D)

12.​As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a

group of MeshExternalServices so that I can see incoming connections and traffic in the
zoneEgress logs. (B)

13.​As a mesh operator I want to have a way to apply a proxy level config on zone proxies

(MeshMetric, MeshTrace, MeshProxyPatch) (C)

14.​As a mesh operator I want to change timeouts on ZoneEgress to specific
MeshExternalService so that I can increase the timeout value if the default is too small
for the use case. (B, E)

15.​As a mesh operator I want to simulate faulty behaviour of a MeshExternalService so

that I can perform chaos testing on the system. (B)

16.​As a mesh operator I want to change timeouts on ZoneEgress/ZoneIngress to specific
MeshService so that I can increase the timeout value if the default is too small for the
use case. (D)

17.​As a service owner I want to allow access to my service for a subset of traffic based on

the Spiffe ID of the client workload so that the client authentication is happening based
on the traffic attributed rather than client deployment attributes (such as tags). (F)

18.​As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a

MeshMultiZoneService so that I can see outgoing connections and traffic in logs. (D)

Out of scope
●​ designing inbound routes

None

None

Design

Proposed actions

Stop relying on inbound tags (solves A)
In Kubernetes, it's not just a theoretical possibility for two services to select the same workload
port – this is exactly how Argo’s BlueGreen deployment strategy works. Today, when Kuma
generates a Dataplane object, it assigns the “kuma.io/service” tag to each inbound, acting as if
two services can never select the same port.

Instead of relying on “inbound[].tags,” we should transition to using “metadata.labels”. Labels on
the Dataplane object are Pod labels plus auto-generated Kuma labels i.e. “kuma.io/zone” or
“kuma.io/origin”.

We won’t cover all the aspects of actually removing “inbound[].tags” in this MADR, but we
believe the long-term the Dataplane object should look something like:

kind: Dataplane
metadata:
 labels: $pod_labels
spec:
 inbound:
 - port: 8080
 name: api
 - port: 9090
 name: admin
status:
 meshServices: [...]

Once the Dataplane resource has “metadata.labels” we can introduce a new kind Dataplane for
the top-level targetRef:

targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api

https://argo-rollouts.readthedocs.io/en/stable/features/bluegreen/

None

None

By using “sectionName” we can select an inbound and solve the problem A. The field
“sectionName” has to work exactly the same way it works for the kind “MeshService”. Given the
MeshService with 2 ports:

kind: MeshService
metadata:
 name: my-service​
spec:​
 ports:
 - port: 8080
 name: http-port
 - port: 9090

we can reference individual ports in outbound policy like:​

spec:
 to:
 - targetRef:
 kind: MeshService
 name: my-service
 sectionName: http-port
 - targetRef:
 kind: MeshService
 name: my-service
 sectionName: "9090"

The field “sectionName” selects the port by name, but if name is not specified it’s possible to
select the port by number passed as a string.

Do we keep “kind:Mesh” and “kind:MeshSubset”?

The “MeshSubset” kind should be deprecated. It does not reference actual resources and offers
no functionality that cannot already be achieved with the “Dataplane” kind.

The “Mesh” kind stays and acts as an equivalent to “kind: *” which includes Dataplane,
ZoneIngress and ZoneEgress. When using “kind: Mesh” and the conf makes sense only for
zone proxies then it simply should be ignored for the kind “Dataplane”.

None

None

Also we have to deprecate “proxyTypes” as it’s used only with “MeshSubset” and “Mesh”.

New top-level targetRef order

With added topLevel targetRef Dataplane we will need to update targetRef priorities. New
priorities in order from least to most important:

Mesh -> Dataplane -> MeshSubset (deprecated) -> Dataplane with labels ->
Dataplane with sectionName

For new policies with “rules” we don’t allow using “MeshSubset” in the top-level targetRef since
no backward compatibility is required.

Do we allow using “proxyTypes” with “kind:Dataplane” or should we add the
“kuma.io/proxy-type” label?

The option to add the label to distinguish gateway proxies from sidecars was already considered
in 037-configure-all-gateways MADR with the following pros/cons:

Positive Consequences

●​ Users can set things up for all gateways.
●​ We can use different defaults for gateways than for the whole Mesh.
●​ No need for a new Kind.

Negative Consequences

●​ Less explicit
●​ We need to add the tag to all gateways.

Since we are now adding labels to all Kuma resources, introducing the “kuma.io/proxy-type”
label is no longer a drawback. During the migration, Kuma will reconcile all Dataplane
resources, ensuring the new label is added automatically without requiring any extra effort from
the user.

The new “kuma.io/proxy-type” label requires at least 2 values “sidecar” and “gateway”. By using
kind “Dataplane” and “labels” selector we can fully replicate the functionality of “proxyTypes”
field:

replacement for 'proxyTypes: ["Sidecar"]'

https://github.com/kumahq/kuma/blob/master/docs/madr/decisions/037-configure-all-gateways.md

None

None

spec:
 targetRef:
 kind: Dataplane
 labels:
 kuma.io/proxy-type: sidecar

replacement for 'proxyTypes: ["Gateway"]'
spec:
 targetRef:
 kind: Dataplane
 labels:
 kuma.io/proxy-type: gateway

For delegated gateway “kuma.io/proxy-type” label is equal to “sidecar”. For builtin gateway it’s
“kuma.io/proxy-type: gateway”.

If there is ever a need to distinguish between “builtin” and “delegated” gateways we can
introduce a new label “kuma.io/gateway-type: builtin | delegated” (note that this will not be done
as part of this ongoing work).

Replace all from-policies with the single item equivalent (solves E, F)
All policies with “from” list that look like:

spec:
 targetRef: $top_level_tr
 from:
 - targetRef: $tr1
 default: $conf1
 - targetRef: $tr2
 default: $conf2

should be converted to a policy with “rules”:

spec:
 targetRef: $top_level_tr
 rules:

None

 - matches: CONVERT_FUNC($tr1)
 default: $conf1
 - matches: CONVERT_FUNC($tr2)
 default: $conf2

where CONVERT_FUNC is some way to convert the old-looking targetRef with kinds “Mesh” or
“MeshSubset” to a new style matches.

The existing “spec.from” field must be deprecated in all policies.

Policies that have both “spec.to” and “spec.rules” will be considered invalid. We already don’t
allow mixing “spec.to” and “spec.from” for namespace-scoped policies.

The field “matches” works the same way as explained in gateway api:

Each match is independent, i.e. this rule will be matched if any single match is satisfied.

spec:
 rules:
 - matches:
 - method: GET​
 - method: POST​
 spiffeID: spiffe://trusted-domain/trusted-client

For a request to match against this rule, it must satisfy either of the following conditions:

●​ HTTP method is “GET”
●​ HTTP method is “POST” AND spiffeID is “spiffe://trusted-domain/trusted-client”

Do we need “not” in “matches”?

No. Gateway API doesn’t provide an explicit way to express “not”, instead if we need “not X”
we’d have to match “X” and create a fallback rule. Additionally, Envoy doesn’t provide a way to
express “not” with HTTP routes.

Merging behaviour
Same as MeshHTTPRoute merging:

1.​ Pick policies that select the DPP with top-level targetRef

https://github.com/kumahq/kuma/blob/3aef2b26560e7634f0688065f1be630863c0eaa3/pkg/core/resources/model/resource.go#L583
https://github.com/kumahq/kuma/blob/3aef2b26560e7634f0688065f1be630863c0eaa3/pkg/core/resources/model/resource.go#L583
https://gateway-api.sigs.k8s.io/api-types/httproute/#matches

None

2.​ Sort these policies by top-level targetRef
3.​ Concatenate all “rules” arrays from these policies
4.​ Merge rules items with the same “hash(rules[i].matches)”

a.​ the new rule position is the highest of two merged rules
5.​ Stable sort rules based on the Extended GAPI matches order

a.​ we need to split individual matches into separate rules

Extended GAPI matches order (based on gateway-api)

1.​ “Exact” spiffeID
2.​ “Prefix” spiffeID
3.​ “Exact” path match.
4.​ “Prefix” path match with largest number of characters.
5.​ Method match.
6.​ Largest number of header matches.
7.​ Largest number of query param matches.

The resulting list of rules will be translated to the appropriate envoy mechanism (HTTP route,
RBAC policies or matching API in the future), assuming the rule with the most priority is going to
be hit first by the request.

Policies examples

MeshTrafficPermission

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api
 rules:
 - matches:
 - serviceAccount: frontend
 default:
 action: Allow
 - matches:
 - spiffeID: spiffe://trusted-domain/trusted-client
 default:
 action: Allow

https://gateway-api.sigs.k8s.io/reference/spec/#gateway.networking.k8s.io/v1.HTTPRouteRule

None

None

With the new design MeshTrafficPermission is going to lose the ability to select a subset of
incoming traffic based on the inbound tags that are encoded as “kuma://” URIs into the client’s
cert. The approach with multiple URIs is not sustainable as it violates the SVID format:​
​
Validators encountering an SVID containing more than one URI SAN MUST reject the SVID.

Selecting a subset of incoming traffic will be possible either based on the identity (spiffeID or
service account) or based on the L7 matchers.

Rewrites of existing MTPs:

allow all
apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
spec:
 from:
 - targetRef:
 kind: Mesh
 default:
 action: Allow

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
spec: # empty targetRef has kind "Mesh", so it applies on zone proxies as well
 rules:
 - default:
 action: Allow

MeshTLS

apiVersion: kuma.io/v1alpha1
kind: MeshTLS
metadata:
 name: backend-strict
 namespace: kuma-system
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: tls
 rules:

https://github.com/spiffe/spiffe/blob/main/standards/X509-SVID.md?plain=1#L39

None

None

 - matches:
 - path:
 type: PathPrefix
 value: "/metrics"
 default:
 mode: Permissive
 - matches:
 - path:
 type: PathPrefix
 value: "/"
 default:
 mode: Strict

MeshRateLimit

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:
 namespace: kuma-system
 name: mrl
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api
 rules:
 - matches:
 - method: POST
 default:
 local:
 http:
 requestRate:
 num: 5
 interval: 10s

MeshTimeout

apiVersion: kuma.io/v1alpha1

None

kind: MeshTimeout
metadata:
 name: inbound-timeout
 namespace: kuma-demo
 labels:
 kuma.io/mesh: default
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api
 rules:
 - matches:
 - method: POST
 default:
 idleTimeout: 20s
 connectionTimeout: 2s
 http:
 requestTimeout: 10s

MeshAccessLog

kind: MeshAccessLog
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api
 rules:
 - matches: [] # http matching when supported
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

None

None

MeshFaultInjection

kind: MeshFaultInjection
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api
 rules:
 - matches: [] # http matching when supported
 default:
 http:
 - abort:
 httpStatus: 500
 percentage: "20"

Example of merging

When merging the rules section we need to merge entries by matches to get effective
configuration for incoming traffic subset. For example with given policies applied:

mesh opeator policy to allow requests from infra on /heatlh
kind: MeshTrafficPermission
metadata:
 name: mtp-1
spec:
 rules:
 - matches:
 - path:
 type: Exact
 value: /health
 spiffe:
 type: Prefix
 value: spiffe://infra/
 default:
 action: Allow

kind: MeshTrafficPermission
metadata:
 name: mtp-2

spec:
 targetRef:
 kind: Dataplane
 labels:
 app: demo-app
 rules:
 - matches:
 - method: GET
 - method: POST
 spiffe:
 type: Prefix
 value: spiffe://frontend/
 default:
 action: Allow

kind: MeshTrafficPermission
metadata:
 name: mtp-3
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: demo-app
 sectionName: http-api
 rules:
 - matches:
 - method: GET
 default:
 action: Deny

kind: MeshTrafficPermission
metadata:
 name: mtp-4
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: demo-app
 sectionName: http-api
 rules:
 - matches:
 - path:
 type: Exact
 value: /health

None

 spiffe:
 type: Prefix
 value: spiffe://infra/
 default:
 action: Deny

Let’s find the configuration for “http-api” port of the “demo-app”:

1.​ Pick policies that select the DPP with top-level targetRef
​ All 4 policies will be picked for “http-api” port

2.​ Sort these policies by top-level targetRef (most to least priority)
mtp-4 > mtp-3 > mtp-2 > mtp-1

3.​ Concatenate all “rules” arrays from these policies

rules:
 - matches: # from mtp-4
 - path:
 type: Exact
 value: /health
 spiffe:
 type: Prefix
 value: spiffe://infra/
 default:
 action: Deny
 - matches: # from mtp-3
 - method: GET
 default:
 action: Deny
 - matches: # from mtp-2
 - method: GET
 - method: POST
 spiffe:
 type: Prefix
 value: spiffe://frontend/
 default:
 action: Allow
 - matches: # from mtp-1
 - path:
 type: Exact
 value: /health
 spiffe:

None

None

 type: Prefix
 value: spiffe://infra/
 default:
 action: Allow

4.​ Merge rules items with the same “hash(rule[i].matches)”

rules:
 - matches: # merge of mtp-1 and mtp-4
 - path:
 type: Exact
 value: /health
 spiffe:
 type: Prefix
 value: spiffe://infra/
 default:
 action: Deny
 - matches: # from mtp-3
 - method: GET
 default:
 action: Deny
 - matches: # from mtp-2
 - method: GET
 - method: POST
 spiffe:
 type: Prefix
 value: spiffe://frontend/
 default:
 action: Allow

5.​ Stable sort rules based on the extended GAPI matches order

we need to split individual matches into separate rules

rules:
 - matches: # merge of mtp-1 and mtp-4
 - path:

None

 type: Exact
 value: /health
 spiffe:
 type: Prefix
 value: spiffe://infra/
 default:
 action: Deny​
 - matches: # from mtp-2
 - method: POST
 spiffe:
 type: Prefix
 value: spiffe://frontend/
 default:
 action: Allow
 - matches: # from mtp-3
 - method: GET
 default:
 action: Deny
 - matches: # from mtp-2
 - method: GET
 default:
 action: Allow

Add top-level targetRef kind ZoneEgress/ZoneIngress (solves B,C,D)
To simplify this experience for users we want to introduce new topLevel targetRef kind:
ZoneIngress and ZoneEgress. To select all zone egresses you could just create policy with
topLevel targetRef:

spec:
 targetRef:
 kind: ZoneEgress

We should be able to use ZoneEgress/ZoneIngress with labels to select a subset of proxies.
For example, a user is creating a policy on global but wants it to be applied only on one zone.
Example of this targeting:

None

None

spec:
 targetRef:
 kind: ZoneEgress
 labels:
 kuma.io/zone: zone-1

Applying config to MeshExternalService/MeshService on ZoneEgress/ZoneIngress
For targeting MeshExternalService and MeshService on zone proxies we basically have two
options:

1.​ Treat is as now as destination and put it in to section
2.​ Use proposed in this madr structure with rules

Ad 1. Example with MeshTimeout configuration

kind: MeshTimeout
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 default:
 idleTimeout: 30s

Advantages:

-​ We treat MeshExternalService as destination as we do now
-​ We already have mechanism for targeting MES in to section

Disadvantages:
-​ It is not consistent with how we target zone proxies in inbound policies, and zone proxy

does not use inbound/outbound concepts. For example you could apply timeout to whole
ZoneEgress like this:

None

None

None

kind: MeshTimeout
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - default:
 idleTimeout: 30s

But when you want to apply it to MES you would need to use form with to:

kind: MeshTimeout
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 default:
 idleTimeout: 30s

Ad 2. Example with MeshTimeout configuration

kind: MeshTimeout
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 matches:
 - path: /slow-endpoint
 default:
 idleTimeout: 30s

None

For targetRef inside rules, we allow: Mesh, MeshService, MeshMultizoneService and
MeshExternalService. When targetRef is empty, Mesh kind will be used by default. Which
means it matches every resource from this Mesh.

Advantages:

-​ This is consistent with redesigned inbound policies
-​ Single way of configuring zone proxies
-​ Consistent with Gateway API

Disadvantages:
-​

Merging

When applying configuration on ZoneEgress/ZoneIngress we would need to merge
configuration per targetRef. To get effective configuration for real resources on a given zone
proxy.

1.​ Pick policies that select the zone proxies with top-level targetRef
2.​ Sort these policies by top-level targetRef

Mesh > ZoneEgress/ZoneIngress > ZoneEgress/ZoneIngress with labels

3.​ Concatenate all “rules” arrays from these policies
4.​ Resolve “rules[i].targetRef” to the real resources (to avoid ambiguity when using

name/namespace vs labels)
5.​ Group rules by “rules[i].targetRef”

a.​ map[ResourceIdentifier]Rules
6.​ Do steps 4 and 5 from the original merging algo for each (ResourceIdentifier, Rules) pair

Decision

We have decided that we will go with option 2. We will use the rules section with targetRef
pointing at MeshExternalService should be at the same level as matches. This gives us a clear
distinction between incoming and outgoing traffic. This will also be easier for merging policies.
This approach is also consistent with Gateway API backendRef. Example from Gateway API
docs with timeout on route:
https://gateway-api.sigs.k8s.io/api-types/httproute/?h=httproute#timeouts-optional

Examples
1. As a service owner I want to expose 1 application port with permissive mTLS so that
external clients (such as health checkers) can use it without being added to the mesh. (A)

https://gateway-api.sigs.k8s.io/api-types/httproute/?h=httproute#timeouts-optional

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshTLS
metadata:
 name: backend-strict
 namespace: kuma-system
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: tls
 rules:
 - default:
 mode: Strict

apiVersion: kuma.io/v1alpha1
kind: MeshTLS
metadata:
 name: backend-permissive
 namespace: kuma-system
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: plaintext
 rules:
 - default:
 mode: Permissive

2. As a service owner I want to attach an inbound policy to a specific set of conditions (path,
headers...) on an inbound route so that I can apply different policies depending on endpoints.

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 name: mtp-on-route
 namespace: kuma-demo
spec:
 targetRef:
 kind: Dataplane

None

 labels:
 app: backend
 rules:
 - matches:
 - path: /secured
 spiffeId: spiffe://trusted-domain/trusted-client
 default:
 action: Allow

3. As a service owner I want to have 2 groups of clients – low priority and high priority and
specify different rate limits for these groups of clients so that server resources are managed
efficiently. (E)

apiVersion: kuma.io/v1alpha1
kind: MeshHTTPRoute
metadata:
 namespace: backend-ns
 name: compute-to-hp-compute
 labels:
 kuma.io/policy-role: producer
spec:
 targetRef:
 kind: Dataplane
 labels:
 backend-access: priority
 to:
 - targetRef:
 kind: MeshService
 name: backend
 rules:
 default:
 filter:
 type: RequestHeaderModifier
 requestHeaderModifier:
 add:
 - name: priority-access
 value: enabled

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:

None

 namespace: backend-ns
 name: high-priority
spec:
 rules:
 - matches:
 - headers:​
 type: Exact
 name: priority-access
 value: enabled
 default:
 local:​
 http:
 requestRate:
 num: 100
 interval: 1s

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:
 namespace: backend-ns
 name: default
spec:
 rules:
 - default:
 local:
 http:
 requestRate:
 num: 10
 interval: 1s

4. As a mesh operator I want to grant/revoke access to MeshExternalService for a group of
workloads so that I can implement POLP (principle of least privilege). (B)

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 name: mtp-on-mes
 namespace: kuma-system
spec:
 targetRef:
 kind: ZoneEgress

None

 rules:
 - matches:
 - spiffeId: spiffe://trusted-domain/trusted-client
 targetRef:
 kind: MeshExternalService
 name: httpbin
 default:
 action: Allow

5. As a mesh operator I want to use MeshTrafficPermission with MeshExternalServices with
autoreachable services feature enabled so that I can improve the sidecars performance. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 name: httpbin-access
 namespace: kuma-system
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - matches:
 - method: POST
 spiffeId: spiffe://trusted-domain/trusted-client
 targetRef:
 kind: MeshExternalService
 name: httpbin
 default:
 action: Allow

When building the reachable service graph the client should know what SPIFFE identity or
service account is in use. By iterating over the list of rules it’s possible to take only rules that’re
matched for the client’s identity. The HTTP section of the rule under “matches” has to be
disregarded. From the resulting list of rules it’s possible to figure out what MeshExternalServices
are accessible to the client.

6. As a mesh operator I want to apply rate limiting to the service exposed to the mesh only as a
MeshExternalService so that I can protect the service from being overloaded. (B)

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:
 namespace: kuma-system
 name: mrl-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - matches:
 - spiffeID: spiffe://trusted-domain/hello
 path: ...
 targetRef:
 kind: MeshExternalService
 name: httpbin
 default:
 local:
 http:
 requestRate:
 num: 5
 interval: 10s

7. As a mesh operator I want to configure the TLS version and ciphers on ZoneEgress as it
terminates the connection for traffic to MeshExternalServices so that I can fulfill the security
requirements. (B)

Updating TLS version and ciphers is possible only when both “targetRef.kind” and
“from[].targetRef.kind” are “Mesh”. With the new inbound policies we have to validate top-level
targetRef is “Mesh” and “rules” has the only one item with empty matches.

apiVersion: kuma.io/v1alpha1
kind: MeshTLS
metadata:
 name: backend-strict
 namespace: kuma-system
spec:
 targetRef:
 kind: Mesh
 rules:
 - default:

None

None

 tlsVersion:
 min: TLS13
 max: TLS13
 tlsCiphers:
 - ECDHE-ECDSA-AES256-GCM-SHA384

8. As a mesh operator I want to enable access logging on ZoneEgress to specific
MeshExternalService so that I can see outgoing requests and their statuses in logs. (B, E)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

9. As a mesh operator I want to enable access logging on ZoneEgress to specific MeshService
so that I can see outgoing connections and traffic in logs. (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 targetRef:

None

 kind: ZoneEgress
 rules:
 - targetRef:
 kind: MeshService
 labels:
 kuma.io/display-name: backend
 k8s.kuma.io/namespace: backend-ns
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

10. As a mesh operator I want to enable access logging on ZoneIngress to specific
MeshService so that I can see outgoing connections and traffic in logs (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ingress
spec:
 targetRef:
 kind: ZoneIngress
 rules:
 - targetRef:
 kind: MeshService
 name: demo-app
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

11. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a group
of MeshServices so that I can see outgoing connections and traffic in logs. (D)

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 targetRef:
 kind: ZoneEgress # or ZoneIngress
 rules:
 - targetRef:
 kind: MeshService
 labels:
 kuma.io/zone: zone-of-interest
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

12. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a
group of MeshExternalServices so that I can see outgoing connections and traffic in logs. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - targetRef:
 kind: MeshExternalService
 labels:
 access-logging: enabled
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

None

None

13. As a mesh operator I want to have a way to apply a proxy level config on zone proxies
(MeshMetric, MeshTrace, MeshProxyPatch)

DISCLAIMER: since Zone proxies are multi mesh policies like MeshMetric and MeshTrace will
need extra work to accommodate it to this. This is out of scope of this MADR, it will be covered
in a separate document.

apiVersion: kuma.io/v1alpha1
kind: MeshMetric
metadata:
 name: metrics-default
 namespace: kuma-system
 labels:
 kuma.io/mesh: default
spec:
 targetRef:
 kind: ZoneEgress
 default:
 backends:
 - type: Prometheus
 prometheus:
 port: 5670
 path: "/metrics"

14. As a mesh operator I want to change timeouts on ZoneEgress to specific
MeshExternalService so that I can increase the timeout value if the default is too small for the
use case. (B, E)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service

None

None

 default:
 idleTimeout: 30s

15. As a mesh operator I want to simulate faulty behaviour of a MeshExternalService so that I
can perform chaos testing on the system. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshFaultInjection
metadata:
 name: faults-on-httpbin
 namespace: kuma-system
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 default:
 http:
 - abort:
 httpStatus: 500
 percentage: 50

16. As a mesh operator I want to change timeouts on ZoneEgress/ZoneIngress to specific
MeshService so that I can increase the timeout value if the default is too small for the use case.
(D)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-for-mes
spec:
 targetRef:
 kind: ZoneIngress
 rules:

None

None

 - targetRef:
 kind: MeshService
 name: kuma-demo
 default:
 idleTimeout: 30s

17. As a service owner I want to allow access to my service for a subset of traffic based on the
Spiffe ID of the client workload so that the client authentication is happening based on the traffic
attributed rather than client deployment attributes (such as tags).

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 name: httpbin-access
 namespace: kuma-system
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 rules:
 - matches:
 - spiffeId: spiffe://trusted-domain/trusted-client
 default:
 action: Allow

18. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a
MeshMultiZoneService so that I can see outgoing connections and traffic in logs. (D)

As we’ve learned zone proxies are aware of MeshMutliZoneServices and there are separate
filter chains for the MeshService and MeshMultiZoneService.

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-mmzs

spec:
 targetRef:
 kind: ZoneEgress # or ZoneIngress
 rules:
 - targetRef:
 kind: MeshMultiZoneService
 labels:
 kuma.io/display-name: multizone-backend
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

Migration

Adding labels to Dataplane resource
At the moment we are adding some labels to the Dataplane resource like: kuma.io/env,
kuma.io/mesh, kuma.io/origin, kuma.io/zone. We have a good process for adding extra labels.

1.​ Kuberetes - adding labels from pods or adding kuma.io/proxy-type labels should be
easy, and they will be added automatically on resource reconciliation by control plane.

2.​ Universal - for users to start using new Dataplane kind in targetRef users will need to
manually add labels on Dataplane resource based on existing tags on inbounds

Migrating old “from” policies to “rules”
After adding a new API with rules field, old policies containing the “from” section should work
as previously.

For MeshTrafficPermission we could be able to combine old “from” with new “rules”. Since this is
an RBAC filter we can chain them and put new rules on top of old ones.
For other policies: MestTLS, MeshRateLimit, MeshTimeout, MeshAccessLog,
MeshFaultInjection we can utilize shadow policies for migration. Unfortunately we cannot use
the same approach like with MeshTrafficPermission, since some policies are configured on
clusters.

Decision
We have decided that for now we will advise against mixing old “from” policies with “rules”
policies as behavior is undefined. We can think of a consistent migration strategy in the future if
it will be needed.

http://kuma.io/env
http://kuma.io/mesh
http://kuma.io/origin
http://kuma.io/zone
http://kuma.io/proxy-type

None

MeshTrafficPermission and MeshExternalService
At this moment you don’t need MeshTrafficPermission when mTLS is configured on Mesh to
reach MeshExternalService (it is implicitly allowed by default). When we introduce MTP for MES
traffic should be blocked by default. This will be problematic for users already using MES for
communicating with services from outside the Mesh.

To solve this issue we need to be able to specify all MeshTrafficPermission targeting only
ZoneEgress before we disable traffic. Example of this policy:

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 name: allow-all-mes
 namespace: kuma-system
spec:
 targetRef:
 kind: ZoneEgress
 rules:
 - default:
 action: Allow

With this applied whole traffic will work as previously, and users can gradually add more specific
policies for clients.

This approach has one problem, users need to be able to apply this policy before we change
default accessibility for MeshTrafficPermission. We can solve this in two ways:

1.​ Preserve accessibility of MeshExternalService by default after adding MTP, and change
this behaviour in next release

2.​ Add configuration flag that will preserve old behaviour and allow traffic flow without MTP.
3.​ Don’t do anything since MeshExternalService is still experimental and we can break

traffic

Decision
We have decided to go with option 3. Since MeshExternalService is still experimental we can
just change default behaviour and block traffic without MeshTrafficPermission applied on Mesh
with mTLS enabled. We should mention this with an example of Allow All MeshTrafficPermission
in the UPGRADE.md file.

None

None

[Rejected, ignore for review] Alternative designs

[]Create “on” section
●​ not relying on inbound tags
●​ replacing from-policies with single item, etc

●​ 1 inbound port can be selected by multiple services, that’s why “kuma.io/service” tag
makes no sense

●​ we have to stop relying on “inbound[].tags” and use “labels” instead (todo: maybe open
issue for “status”)

kind: Dataplane
metadata:
 labels: $pod_labels
spec:
 inbound:
 - port: 8080
 name: api
 - port: 9090
 name: admin

●​ “targetRef.tags” is obsolete in this case, we can use the following to select workloads

and their ports (similar to MeshService)

targetRef:
 kind: Dataplane
 labels: {}
 sectionName: ""

●​ we can introduce “kind: ZoneIngress” and “kind: ZoneEgress” to target zone proxies
●​ rename “from” to “rules”

○​ looks similar to MeshHTTPRoute when applied for MeshExternalServices on
ZoneEgress (especially if we want to support “matches”)

○​ look less awkward if we want to allow empty “targetRef.kind: Mesh”

http://kuma.io/service

None

None

spec:
 rules:
 - default:
 action: Allow

spec:
 from:
 - default:
 action: Allow

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 namespace: kuma-system
 name: mtp-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 rules:
 - # match the traffic from DPP
 default:
 action: Allow

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 namespace: kuma-system
 name: mtp-for-mes
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api
 rules:
 - matches:

None

 - path: "/hello"
 spiffeID: "spiffe://client"
 default:
 action: Allow

todo: what autoreachable will look like with this rules ^

Examples (meshttproute style rules, discussed on
05/12/24)
1. As a service owner I want to expose 1 application port with permissive mTLS so that
external clients (such as health checkers) can use it without being added to the mesh. (A)

apiVersion: kuma.io/v1alpha1
kind: MeshTLS
metadata:
 name: backend-strict
 namespace: kuma-system
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: tls
 rules:
 - targetRef:
 kind: Mesh
 default:
 mode: Strict

apiVersion: kuma.io/v1alpha1
kind: MeshTLS
metadata:
 name: backend-permissive
 namespace: kuma-system
spec:
 targetRef:
 kind: Dataplane
 labels:

None

 app: backend
 sectionName: plaintext
 rules:
 - targetRef:
 kind: Mesh
 default:
 mode: Permissive

2. As a service owner I want to attach an inbound policy to a specific set of conditions (path,
headers...) on an inbound route so that I can apply different policies depending on endpoints.

This should be handled in the “inbound routes” MADR.

3. As a service owner I want to have 2 groups of clients – low priority and high priority and
specify different rate limits for these groups of clients so that server resources are managed
efficiently. (E)

Requires inbound route functionality, should be handled in the “inbound routes” MADR.

4. As a mesh operator I want to grant/revoke access to MeshExternalService for a group of
workloads so that I can implement POLP (principle of least privilege). (B)

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 namespace: kuma-system
 name: mtp-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 rules:
​ - path: /foo
 default:
 action: Allow
 - targetRef:
 kind: MeshExternalService

None

None

 name: my-external-service
 rules:
​ - path: /bar
 default:
 action: Deny

5. As a mesh operator I want to use MeshTrafficPermission with MeshExternalServices with
autoreachable services feature enabled so that I can improve the sidecars performance. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 name: httpbin-access
 namespace: kuma-system
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 rules:
 - targetRef:
 kind: MeshSubset
 tags:
 httpbin: allow
 default:
 action: Allow

6. As a mesh operator I want to apply rate limiting to the service exposed to the mesh only as a
MeshExternalService so that I can protect the service from being overloaded. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:
 namespace: kuma-system
 name: mrl-for-mes

None

spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 rules:
 - default:
 local:
 http:
 requestRate:
 num: 5
 interval: 10s

7. As a mesh operator I want to configure the TLS version and ciphers on ZoneEgress as it
terminates the connection for traffic to MeshExternalServices so that I can fulfill the security
requirements. (B)

Updating TLS version and ciphers is possible only when both “targetRef.kind” and
“from[].targetRef.kind” are “Mesh”. Adding functionality to apply MeshTLS on zone egress
should be in the same MADR as applying MeshTLS on delegated gateway.

8. As a mesh operator I want to enable access logging on ZoneEgress to specific
MeshExternalService so that I can see outgoing requests and their statuses in logs. (B, E)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 default:
 backends:

None

 - type: File
 file:
 path: "/dev/stdout"

9. As a mesh operator I want to enable access logging on ZoneEgress to specific MeshService
so that I can see outgoing connections and traffic in logs. (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshService
 labels:
 kuma.io/display-name: backend
 k8s.kuma.io/namespace: backend-ns
 default: {}
 rules:
 - default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 to:
 - targetRef:
 kind: MeshService
 labels:
 kuma.io/display-name: backend
 k8s.kuma.io/namespace: backend-ns

None

None

 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

10. As a mesh operator I want to enable access logging on ZoneIngress to specific
MeshService so that I can see outgoing connections and traffic in logs (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 targetRef:
 kind: ZoneIngress # or ZoneEgress
 to:
 - targetRef:
 kind: MeshService
 labels:
 kuma.io/display-name: backend
 k8s.kuma.io/namespace: backend-ns
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

11. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a group
of MeshServices so that I can see outgoing connections and traffic in logs. (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:

None

 targetRef:
 kind: ZoneIngress # or ZoneEgress
 to:
 - targetRef:
 kind: MeshService
 rules:
 - matches: ?
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

12. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a
group of MeshExternalServices so that I can see outgoing connections and traffic in logs. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 targetRef:
 kind: ZoneIngress # or ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 labels:
 log-on-egress: true
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

13. As a mesh operator I want to have a way to apply a proxy level config on zone proxies
(MeshMetric, MeshTrace, MeshProxyPatch)

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshMetric
metadata:
 name: metrics-default
 namespace: kuma-system
 labels:
 kuma.io/mesh: default
spec:
 targetRef:
 kind: ZoneEgress
 default:
 backends:
 - type: Prometheus
 prometheus:
 port: 5670
 path: "/metrics"

14. As a mesh operator I want to change timeouts on ZoneEgress to specific
MeshExternalService so that I can increase the timeout value if the default is too small for the
use case. (B, E)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-egress
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 rules:
 - default:
 connectTimeout: 10s

15. As a mesh operator I want to simulate faulty behaviour of a MeshExternalService so that I
can perform chaos testing on the system. (B)

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshFaultInjection
metadata:
 name: faults-on-httpbin
 namespace: kuma-system
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 rules:
 - default:
 http:
 - abort:
 httpStatus: 500
 percentage: 50

16. As a mesh operator I want to change timeouts on ZoneEgress/ZoneIngress to specific
MeshService so that I can increase the timeout value if the default is too small for the use case.
(D)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-egress
spec:
 targetRef:
 kind: ZoneEgress # or ZoneIngress
 to:
 - targetRef:
 kind: MeshService
 labels:
 kuma.io/display-name: backend
 k8s.kuma.io/namespace: backend-ns
 rules:
 - default:
 connectTimeout: 10s

None

17. As a service owner I want to allow access to my service for a subset of traffic based on the
Spiffe ID of the client workload so that the client authentication is happening based on the traffic
attributed rather than client deployment attributes (such as tags).

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 namespace: kuma-system
 name: spiffe-based
spec:
 targetRef:
 kind: Dataplane
 labels:
 app: backend
 sectionName: http-api
 rules:
 - matches:
 - spiffeID: spiffe://orders/frontend
 default:
 action: Allow

STOP READING

[WIP] Design

In this design we are working on a user facing policy API. We have three ideas that we consider
that should allow users to configure Kuma according to needs from listed user stories.

Ideas

Introduce new “on” keyword that can accept either port or targetRef for MES

This is most likely the simplest idea. We will introduce a new keyword on that can accept a list
of ports or targetRef. Simple example:

None

None

select inbound
spec:
 on:
 - port: 8080

select MeshExternalService on zone proxy
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service

When we select port we will apply configuration to Dataplane inbound. When MES is selected
by targetRef we will apply configuration on ZoneEgress. To apply configuration on data plane
you will need to use as previously to section in policy.

Introduce new “on” keyword and use only targetRef for selecting inbounds

In this idea as previously we introduce new keyword on but we allow only usage of targetRef.
If we want to preserve the rule that policies should select real resources we would need to
create new resource for Dataplane inbounds. For example Inbound or MeshInbound. For
example:

spec:
 on:
 - targetRef:
 kind: Inbound
 labels:
 port-name: http-port

select MeshExternalService
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service

None

With this in place we can go even further and get rid of to section in policies and use on for
selecting all resources like MeshService and Mesh*Route. For example:

this will apply configutation on outbounds to MS
spec:
 on:
 - targetRef:
 kind: MeshService
 name: demo-app

this will apply configutation on outbound routes selected by targetRef
spec:
 on:
 - targetRef:
 kind: MeshHTTPRoute
 name: demo-reoute

This approach can also accommodate inbound routes in the future if we decide to introduce
them.

Using on keyword for selecting real resources feels more natural than using separate keywords
like from and to. At least for selecting routes, users are applying configuration on
route not to route.

Now with MeshService being destination users should clearly know that they are configuring
outbounds, when you select Inbound you know that inbound will be configured. Unfortunately it
is not that clear for MES as it can be configured on both dpp and zone egress. However if you
make sure that configuration is applied on specific workload you can select it with topLevel
targetRef by selecting dpp or zone proxy.

Introduce “sectionRef” keyword to select ephemeral resource
This approach is similar to previous one, but because we would like to keep the rule that
targetRef can only select real resource and we don’t want to introduce new resource for
Inbound we could create new selector sectionRef which will select specific part of the
resource. For example:

None

None

targetRef:
 kind: MeshSubset
 tags:
 app: demo-app
spec:
 on:
 - sectionRef:
 kind: InboundPort
 value: 8080

Ideas

1.​ “on[].port: <value>” + “on[].targetRef”
2.​ “on[].targetRef” and introduce new “kind: Dataplane”
3.​ introduce “sectionRef” to reference “ephemeral” resources (resources that don’t exist in

the cluster)

1. As a service owner I want to expose 1 application port without mTLS so that external clients
(such as health checkers) can use it without being added to the mesh. (A)

kind: MeshTLS
spec:
 targetRef:
 kind: MeshSubset
 tags:
 app: backend
 on:
 - port: 443
 from:
 - targetRef:
 kind: Mesh
 default:
 mode: Strict
 - port: 80
 from:
 - targetRef:
 kind: Mesh
 default:

None

 mode: Permissive

2. As a service owner I want to attach an inbound policy to a specific set of conditions (path,
headers...) on an inbound route so that I can apply different policies depending on endpoints.

This should be handled in the “inbound routes” MADR.

3. As a service owner I want to have 2 groups of clients – low priority and high priority and
specify different rate limits for these groups of clients so that server resources are managed
efficiently. (E)

Requires inbound route functionality, should be handled in the “inbound routes” MADR.

4. As a mesh operator I want to grant/revoke access to MeshExternalService for a group of
workloads so that I can implement POLP (principle of least privilege). (B)

todo: check if today we can use MeshExternalService without “allow-all” MTP?

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 namespace: kuma-system
 name: mtp-for-mes
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 app: priviliged-client
 default:
 action: Allow

5. As a mesh operator I want to use MeshTrafficPermission with MeshExternalServices with
autoreachable services feature enabled so that I can improve the sidecars performance. (B)

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 httpbin: allow
 default:
 action: Allow

6. As a mesh operator I want to apply rate limiting to the service exposed to the mesh only as a
MeshExternalService so that I can protect the service from being overloaded. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:
 namespace: kuma-system
 name: mrl-for-mes
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 default: ...

7. As a mesh operator I want to configure the TLS version and ciphers on ZoneEgress as it
terminates the connection for traffic to MeshExternalServices so that I can fulfill the security
requirements. (B)

Updating TLS version and ciphers is possible only when both “targetRef.kind” and
“from[].targetRef.kind” are “Mesh”. Adding functionality to apply MeshTLS on zone egress
should be in the same MADR as applying MeshTLS on delegated gateway.

8. As a mesh operator I want to enable access logging on ZoneEgress to specific
MeshExternalService so that I can see outgoing requests and their statuses in logs. (B, E)

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-mes
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

9. As a mesh operator I want to enable access logging on ZoneEgress to specific MeshService
so that I can see outgoing connections and traffic in logs. (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 targetRef: {} # some way to target zone proxy
 to:
 - targetRef:
 kind: MeshService
 labels:
 kuma.io/display-name: backend
 k8s.kuma.io/namespace: backend-ns
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

10. As a mesh operator I want to enable access logging on ZoneIngress to specific
MeshService so that I can see outgoing connections and traffic in logs (D)

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-ingress
spec:
 targetRef:
 kind: Mesh
 proxyTypes: Ingress
 to:
 - targetRef:
 kind: MeshService
 name: demo-app
 namespace: kuma-demo
 default: ...

11. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a group
of MeshServices so that I can see outgoing connections and traffic in logs. (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:
 targetRef:
 kind: Mesh
 proxyTypes:
 - ZoneEgress
 - ZoneIngress
 on:
 - targetRef:
 kind: MeshService
 default:
 backends:
 - type: File
 file:
 path: "/dev/stdout"

None

None

12. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a
group of MeshExternalServices so that I can see outgoing connections and traffic in logs. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-mltiple-mes
spec:
 targetRef:
 kind: Mesh
 proxyTypes: [ZoneIngress, ZoneEgress]
 on:
 - targetRef:
 kind: MeshExternalService
 labels:
 logging: enabled
 default: ...

simplified
apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-mltiple-mes
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 labels:
 logging: enabled
 default: ...

13. As a mesh operator I want to use MeshMetric policy on ZoneEgress/ZoneIngress the same
way I do on Sidecars so that I can configure metric profiles (what metrics to expose). (C)

apiVersion: kuma.io/v1alpha1
kind: MeshMetric
metadata:
 name: metrics-default

None

 namespace: kuma-system
 labels:
 kuma.io/mesh: default
spec:
 targetRef:
 kind: Mesh
 proxyTypes:
 - ZoneIngress
 - ZoneEgress
 default:
 backends:
 - type: Prometheus
 prometheus:
 port: 5670
 path: "/metrics"

14. As a mesh operator I want to use MeshTrace policy on ZoneEgress the same way I do on
Sidecars so that I can configure trace publishing on ZoneEgress for MeshExternalServices that
operate over the HTTP. (C)

apiVersion: kuma.io/v1alpha1
kind: MeshTrace
metadata:
 namespace: kuma-system
 name: trace-egress
spec:
 targetRef:
 kind: Mesh
 proxyTypes: ZoneEgress
 on:
 - targetRef: MeshExternalService
 name: my-external-service
 default: ...

15. As a mesh operator I want to use the MeshProxyPatch policy on ZoneEgress/ZoneIngress
so that I can patch the Envoy configuration when Kuma CP is not capable of doing so. (C)

todo: do we need to change MeshProxyPatch policy to support zone proxies?

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshProxyPatch
metadata:
 name: custom-template-1
 namespace: kuma-system
spec:
 targetRef:
 kind: Mesh
 proxyTypes:
 - ZoneEgress
 default:
 appendModifications: [...]

16. As a mesh operator I want to change timeouts on ZoneEgress to specific
MeshExternalService (or to the HTTP route of MES) so that I can increase the timeout value if
the default is too small for the use case. (B, E)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-egress
spec:
 targetRef:
 kind: Mesh
 proxyTypes: ZoneEgress
 on:
 - targetRef: MeshExternalService
 name: my-external-service
 default: ...

on route
apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-egress
spec:
 targetRef:
 kind: Mesh
 proxyTypes: ZoneEgress

None

None

 on:
 - targetRef: MeshHttpRoute
 name: my-external-route
 default: ...

17. As a mesh operator I want to simulate faulty behaviour of a MeshExternalService so that I
can perform chaos testing on the system. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshFaultInjection
metadata:
 name: faults-on-httpbin
 namespace: kuma-system
spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 default:
 http:
 - abort:
 httpStatus: 500
 percentage: 50

18. As a mesh operator I want to change timeouts on ZoneEgress/ZoneIngress to specific
MeshService so that I can increase the timeout value if the default is too small for the use case.
(D)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-egress
spec:
 targetRef:
 kind: Mesh
 proxyTypes: ZoneEgress

None

None

 to:
 - targetRef: MeshService
 name: demo-app
 namespace: kuma-demo
 default: ...

19. As a service owner I want to allow access to my service for a subset of traffic based on the
Spiffe ID of the client workload so that the client authentication is happening based on the traffic
attributed rather than client deployment attributes (such as tags).

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 namespace: kuma-system
 name: spiffe-based
spec:
 on:
 - port: 8080
 from:
 - targetRef:
 kind: SpiffeID
 name: spiffe://orders/frontend
 default:
 action: Allow

 New model
1. As a service owner I want to expose 1 application port without mTLS so that external clients
(such as health checkers) can use it without being added to the mesh. (A)

kind: MeshTLS
spec:
 targetRef:
 kind: MeshSubset
 tags:
 app: backend
 on:

None

None

 - port: 443
 from:
 - targetRef:
 kind: Mesh
 default:
 mode: Strict
 - port: 80
 from:
 - targetRef:
 kind: Mesh
 default:
 mode: Permissive

2. As a service owner I want to attach an inbound policy to a specific set of conditions (path,
headers...) on an inbound route so that I can apply different policies depending on endpoints.

kind: MeshAccessLog
spec:
 rules:
 - matches:
 method: GET
 default: ...

3. As a service owner I want to have 2 groups of clients – low priority and high priority and
specify different rate limits for these groups of clients so that server resources are managed
efficiently. (E)

Requires inbound route functionality, should be handled in the “inbound routes” MADR.

4. As a mesh operator I want to grant/revoke access to MeshExternalService for a group of
workloads so that I can implement POLP (principle of least privilege). (B)

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:

None

None

 namespace: kuma-system
 name: mtp-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 rules:
 - matches:
 - spiffeID: ...
 default:
 action: Allow

5. As a mesh operator I want to use MeshTrafficPermission with MeshExternalServices with
autoreachable services feature enabled so that I can improve the sidecars performance. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
spec:

6. As a mesh operator I want to apply rate limiting to the service exposed to the mesh only as a
MeshExternalService so that I can protect the service from being overloaded. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:
 namespace: kuma-system
 name: mrl-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:

None

 kind: MeshExternalService
 name: my-external-service
 rules:
 - default: ...

7. As a mesh operator I want to configure the TLS version and ciphers on ZoneEgress as it
terminates the connection for traffic to MeshExternalServices so that I can fulfill the security
requirements. (B)

Updating TLS version and ciphers is possible only when both “targetRef.kind” and
“from[].targetRef.kind” are “Mesh”. Adding functionality to apply MeshTLS on zone egress
should be in the same MADR as applying MeshTLS on delegated gateway.

8. As a mesh operator I want to enable access logging on ZoneEgress to specific
MeshExternalService so that I can see outgoing requests and their statuses in logs. (B, E)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-mes
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service
 rules:
 - default: ...

9. As a mesh operator I want to enable access logging on ZoneEgress to specific MeshService
so that I can see outgoing connections and traffic in logs. (D)

None

None

None

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:

10. As a mesh operator I want to enable access logging on ZoneIngress to specific
MeshService so that I can see outgoing connections and traffic in logs (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-ingress
spec:
 targetRef:
 kind: ZoneIngress
 to:
 - targetRef:
 kind: MeshService
 name: demo-app
 namespace: kuma-demo
 rules:
 - default: ...

11. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a group
of MeshServices so that I can see outgoing connections and traffic in logs. (D)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-for-ms
spec:

None

None

None

12. As a mesh operator I want to enable access logging on ZoneIngress/ZoneEgress to a
group of MeshExternalServices so that I can see outgoing connections and traffic in logs. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshAccessLog
metadata:
 namespace: kuma-system
 name: log-mltiple-mes
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 labels:
 access-logging: enabled
 rules:
 - default: ...

13. As a mesh operator I want to use MeshMetric policy on ZoneEgress/ZoneIngress the same
way I do on Sidecars so that I can configure metric profiles (what metrics to expose). (C)

apiVersion: kuma.io/v1alpha1
kind: MeshMetric
metadata:
 name: metrics-default
 namespace: kuma-system
 labels:
 kuma.io/mesh: default
spec:

14. As a mesh operator I want to use MeshTrace policy on ZoneEgress the same way I do on
Sidecars so that I can configure trace publishing on ZoneEgress for MeshExternalServices that
operate over the HTTP. (C)

apiVersion: kuma.io/v1alpha1

None

None

kind: MeshTrace
metadata:
 namespace: kuma-system
 name: trace-egress
spec:
 targetRef:
 kind: ZoneEgress
 default: ...

15. As a mesh operator I want to use the MeshProxyPatch policy on ZoneEgress/ZoneIngress
so that I can patch the Envoy configuration when Kuma CP is not capable of doing so. ©

apiVersion: kuma.io/v1alpha1
kind: MeshProxyPatch
metadata:
 name: custom-template-1
 namespace: kuma-system
spec:

16. As a mesh operator I want to change timeouts on ZoneEgress to specific
MeshExternalService so that I can increase the timeout value if the default is too small for the
use case. (B, E)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-egress
spec:
 targetRef:
 kind: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: my-external-service

None

None

 rules:
 - default: ...

17. As a mesh operator I want to simulate faulty behaviour of a MeshExternalService so that I
can perform chaos testing on the system. (B)

apiVersion: kuma.io/v1alpha1
kind: MeshFaultInjection
metadata:
 name: faults-on-httpbin
 namespace: kuma-system
spec:

18. As a mesh operator I want to change timeouts on ZoneEgress/ZoneIngress to specific
MeshService so that I can increase the timeout value if the default is too small for the use case.
(D)

apiVersion: kuma.io/v1alpha1
kind: MeshTimeout
metadata:
 namespace: kuma-system
 name: timeout-egress
spec:
 targetRef:
 kind: ZoneIngess
 to:
 - targetRef:
 kind: MeshService
 name: demo-app
 namespace: kuma-demo
 rules:
 - default: ...

19. As a service owner I want to allow access to my service for a subset of traffic based on the
Spiffe ID of the client workload so that the client authentication is happening based on the traffic
attributed rather than client deployment attributes (such as tags).

None

apiVersion: kuma.io/v1alpha1
kind: MeshTrafficPermission
metadata:
 namespace: kuma-system
 name: spiffe-based
spec:

Appendices
As a service owner I want to create a stub endpoint with a static response so that I can enable
early adopters to start using the API and test the integration between client and server (with the
real networking and permissions). (E)

As a service owner I want to rate limit an API endpoint so that I can prevent server overload. (E)

As a service owner I want to give access to “/health” to everyone and to all other endpoints only
to a group of workloads so that infra monitoring services could check the health of my service.
(E)

As a service owner I want to exclude the “/health” endpoint from access logging so that the
noisy endpoint doesn’t pollute logs. (E)

As a service owner I want to remove malicious HTTP headers on the server-side when there is
a known vulnerability in my service so that I can prevent an attack (i.e. log4j vulnerability) in
situations when there are non-mesh clients or there is a risk of clients overriding my “producer”
routes. (E)

As a service owner I want to change the timeout for the specific route on the server-side so that
I could prevent connection leaks due to abusive non-mesh clients or if there is a risk of client
overriding my “producer” timeouts (E)

As a service owner I want to simulate faulty behaviour of a specific HTTP route of the service
I’m running so that I can perform chaos testing of the clients. (E)

As a service owner I want to have 2 groups of clients – low priority and high priority and specify
different rate limits for these groups of clients so that server resources are managed efficiently.
(E)

None

None

Backup

Inbound route IR1 with PathRewrite /lp/orders -> /orders
Inbound route IR2 with PathRewrite /hp/orders -> /orders

MeshRateLimit MRL1 on IR1 with quota 1 rps
MeshRateLimit MRL2 on IR2 with quota 100 rps

Producer MeshHTTPRoute MHR1 for LP clients with PathRewrite /orders ->
/lp/orders
Producer MeshHTTPRoute MHR2 for HP clients with PathRewrite /orders ->
/hp/orders

Producer MeshRetry MR1 for MHR1 with backoff to not retry too often as the
quota is low.
Producer MeshRetry MR2 for MHR2 with smaller backoff as the quota is higher.

MeshTrafficPermission MTP1 on IR1 to allow requests only from LP clients
MeshTrafficPermission MTP2 on IR2 to allow requests only from HP clients

kind: MeshTrafficPermission
spec:
 targetRef:
 kind: MeshSubset
 tags:
 app: backend
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 app: frontend
 default:
 action: Allow

spec:
 on:
 - targetRef:

 kind: Dataplane
 labels:
 app: backend
 sectionName: http
 targetRef:
 sectionName: http
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 app: frontend
 default:
 action: Allow

spec:
 targetRef:
 kind: MeshSubset
 labels:
 app: backend
 on:
 - targetRef:
 sectionName: http
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 app: frontend
 default:
 action: Allow

spec:
 targetRef:
 kind: MeshSubset
 labels:
 app: backend
 on:
 - targetRef:
 kind: Port
 name: http
 from:
 - port/sectionName:
 from:
 - targetRef:
 kind: MeshSubset

None

 tags:
 app: frontend
 default:
 action: Allow

spec:
 on:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 app: frontend
 default:
 action: Allow

spec:
 on:
 - sectionName: ""
 targetRef: {}
 from:
 - targetRef:
 kind: MeshSubset
 tags:
 app: frontend
 default:
 action: Allow

Idea 1: mutually exclusive “sectionName” and “targetRef” inside “spec.on[]”
Idea 2: always use “targetRef” inside “spec.on[]” (introduce new kind Dataplane)

apiVersion: kuma.io/v1alpha1
kind: MeshHTTPRoute
metadata:
 namespace: backend-ns
 name: compute-to-hp-compute
 labels:
 kuma.io/policy-role: producer

spec:
 targetRef:
 kind: MeshSubset
 tags:
 backend-access: priority
 to:
 - targetRef:
 kind: MeshService
 name: backend
 rules:
 - matches:
 - path:
 type: PathPrefix
 value: "/compute"
 default:
 filter:
 type: URLRewrite
 urlRewrite:
 path: "/hp/compute"

apiVersion: kuma.io/v1alpha1
kind: MeshInboundHTTPRoute
metadata:
 namespace: backend-ns
 name: hp-compute-to-compute
 labels:
 kuma.io/policy-role: consumer
spec:
 on:
 - port: 8080
 rules:
 - matches:
 - path:
 type: PathPrefix
 value: "/hp/compute"
 default:
 filter:
 type: URLRewrite
 urlRewrite:
 path: "/compute"

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:

None

 namespace: backend-ns
 name: high-priority
spec:
 on:
 - targetRef:
 kind: MeshInboundHTTPRoute
 name: compute
 from:
 targetRef:
 kind: Mesh
 default:
 local:
 http:
 requestRate:
 num: 100
 interval: 1s

apiVersion: kuma.io/v1alpha1
kind: MeshRateLimit
metadata:
 namespace: backend-ns
 name: default
spec:
 on:
 - port: 8080
 from:
 targetRef:
 kind: Mesh
 default:
 local:
 http:
 requestRate:
 num: 10
 interval: 1s

kind: Inbound
metadata:

None

 name: $app + $port
 labels: $pod_labels (+ $service_labels)?
spec:
 port: 8080
status:
 meshServices:
 - name: backend
 namespace: backend-ns

kind: Dataplane # MeshProxyConfig
spec:
 transparentProxying: {}
 adminPort: 9901

kind: MeshTrafficPermission
spec:
 on:
 - targetRef:
 kind: Inbound
 labels:

1 inbound port -> multiple services
generating “kuma.io/service” tag per inbound hides this fact

We have to stop generating tags for inbounds and instead we should generate dataplane labels.
Also, we have to add Dataplane status.

kind: Dataplane
metadata:

http://kuma.io/service

None

 labels: $pod_labels
spec:
 inbound:
 - port: 8080
 name: api
 - port: 9090
 name: admin
status:
 meshServices:
 - name: backend
 namespace: backend-ns
 zone: zone-1

kind: MeshTrafficPermission
spec:
 targetRef:
 kind: Dataplane
 labels:
 app.kubernetes.io/name: backend
 sectionName: api
 rules:
 - targetRef:
 kind: Dataplane
 labels:
 app.kubernetes.io/name: frontend
 default:
 action: Allow

kind: MeshTrafficPermission
spec:
 targetRef:
 kind: MeshSubset
 labels:
 kuma.io/proxy-type: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 from:
 - targetRef:

 kind: Mesh
 default:
 action: Allow

kind: MeshTrafficPermission
spec:
 targetRef:
 kind: MeshSubset
 labels:
 kuma.io/proxy-type: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 rules:
 - default:
 action: Allow

kind: MeshAccessLog
spec:
 targetRef:
 kind: ZoneIngress
 to:
 - targetRef:
 kind: MeshService
 name: backend
 namespace: backend-ns
 default:
 action: Allow
 rules:
 - targetRef:
 kind: Mesh
 default:
 action: Allow

kind: MeshTrafficPermission
spec:
 selector:
 labels:
 kuma.io/proxy-type: ZoneIngress
 sectionName: non-existing-section-name
 from:
 - targetRef:
 kind: Workload | ServiceAccount | SpiffeID | JWT

None

 labels:
 app.kubernetes.io/name: frontend
 default:
 action: Allow

kind: MeshTimeout
spec:
 targetRef:
 kind: MeshSubset
 labels:
 kuma.io/proxy-type: ZoneEgress
 to:
 - targetRef:
 kind: MeshExternalService
 name: httpbin
 default:
 connectTimeout: 5s

kind: MeshTimeout
spec:
 targetRef:
 kind: MeshSubset
 to:
 - targetRef:
 kind: MeshInboundHTTPRoute | MeshHTTPRoute
 name: httpbin
 rules:
 - targetRef:
 kind: Mesh
 default:
 action: Allow

kind: Workload
spec:
 ports:
 - port: 8080
 name: http-port
 appProtocol: http
 targetPort: 8081
 - port: 9090

None

 name: tcp-port
 appProtocol: http
 targetPort: 9091
status:
 meshServices:
 -

1.​ Remove “spec.networking.inbound[].tags” and use “metadata.labels” instead
2.​ Create “status” for Dataplane

spec:
 rules: []
 to:
 - targetRef:
 kind: MeshService | MeshExternalService | MeshMultiZoneService
 default: {}
 rules:
 - matches: []
 targetRef: {}
 default: {}

	Inbound Policies
	Notes 13/12/2024
	Notes 16/12/2024
	Context and Problem Statement
	(A) Impossible to configure inbound ports differently on the same proxy
	(B) Impossible to apply inbound policies for MeshExternalService
	(C) Impossible to apply MeshMetrics, MeshTrace and MeshProxyPatch for zone proxies
	(D) Impossible to configure zone proxies for MeshService in cross zone scenarios
	(E) Impossible to apply inbound policies on a specific HTTP route
	(F) Selecting a group of clients subjected for the configuration is possible only with “kind:MeshSubset”
	User stories
	Out of scope

	Design
	Proposed actions
	Stop relying on inbound tags (solves A)
	Do we keep “kind:Mesh” and “kind:MeshSubset”?
	New top-level targetRef order
	Do we allow using “proxyTypes” with “kind:Dataplane” or should we add the “kuma.io/proxy-type” label?

	Replace all from-policies with the single item equivalent (solves E, F)
	Do we need “not” in “matches”?
	Merging behaviour
	Policies examples
	MeshTrafficPermission
	MeshTLS
	MeshRateLimit
	MeshTimeout
	MeshAccessLog
	MeshFaultInjection
	#### Example of merging

	Add top-level targetRef kind ZoneEgress/ZoneIngress (solves B,C,D)
	Applying config to MeshExternalService/MeshService on ZoneEgress/ZoneIngress
	Ad 1. Example with MeshTimeout configuration
	Ad 2. Example with MeshTimeout configuration
	Merging
	Decision

	Examples
	Migration
	Adding labels to Dataplane resource
	Migrating old “from” policies to “rules”
	Decision

	MeshTrafficPermission and MeshExternalService
	Decision

	[Rejected, ignore for review] Alternative designs
	[]Create “on” section

	Examples (meshttproute style rules, discussed on 05/12/24)
	STOP READING
	[WIP] Design
	Ideas
	Introduce new “on” keyword that can accept either port or targetRef for MES
	Introduce new “on” keyword and use only targetRef for selecting inbounds
	Introduce “sectionRef” keyword to select ephemeral resource
	 New model

	Appendices
	Backup
	

