

1.​ R – Overview

R is a programming language and software environment for statistical analysis, graphics
representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand, and is currently developed by the R Development Core
Team.

The core of R is an interpreted computer language which allows branching and looping as
well as modular programming using functions. R allows integration with the procedures
written in the C, C++, .Net, Python or FORTRAN languages for efficiency.

R is freely available under the GNU General Public License, and pre-compiled binary versions
are provided for various operating systems like Linux, Windows and Mac.

R is free software distributed under a GNU-style copy left, and an official part of the GNU
project called GNU S.

 Evolution of R​
R was initially written by Ross Ihaka and Robert Gentleman at the Department of
Statistics of the University of Auckland in Auckland, New Zealand. R made its first
appearance in 1993.

●​ A large group of individuals has contributed to R by sending code and bug reports.

●​
●​ Since mid-1997 there has been a core group (the "R Core Team") who can modify

the R source code archive.

Features of R
As stated earlier, R is a programming language and software environment for statistical
analysis, graphics representation and reporting. The following are the important features of
R:

●​ R is a well-developed, simple and effective programming language which includes
conditionals, loops, user defined recursive functions and input and output facilities.

●​
●​ R has an effective data handling and storage facility,

●​
●​ R provides a suite of operators for calculations on arrays, lists, vectors and matrices.

●​
●​ R provides a large, coherent and integrated collection of tools for data analysis.

●​
●​ R provides graphical facilities for data analysis and display either directly at the

computer or printing at the papers.

R Programming

As a conclusion, R is world’s most widely used statistics programming language. It's the # 1
choice of data scientists and supported by a vibrant and talented community of contributors.
R is taught in universities and deployed in mission critical business applications. This tutorial
will teach you R programming along with suitable examples in simple and easy steps.

2.​ R – Environment Setup

 Try it Option Online​
You really do not need to set up your own environment to start learning R programming
language. Reason is very simple, we already have set up R Programming environment
online, so that you can compile and execute all the available examples online at the same
time when you are doing your theory work. This gives you confidence in what you are
reading and to check the result with different options. Feel free to modify any example and
execute it online.

Try the following example using Try it option at the website available at the top right corner
of the below sample code box:

For most of the examples given in this tutorial, you will find Try it option at the website, so
just make use of it and enjoy your learning.

 Local Environment Setup​
If you are still willing to set up your environment for R, you can follow the steps given below.

Windows Installation
You can download the Windows installer version of R from R-3.2.2 for Windows (32/64 bit)
and save it in a local directory.

As it is a Windows installer (.exe) with a name "R-version-win.exe". You can just double
click and run the installer accepting the default settings. If your Windows is 32-bit version, it
installs the 32-bit version. But if your windows is 64-bit, then it installs both the 32-bit and
64-bit versions.

After installation you can locate the icon to run the Program in a directory structure "R\R-
3.2.2\bin\i386\Rgui.exe" under the Windows Program Files. Clicking this icon brings up the
R-GUI which is the R console to do R Programming.

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/

R Programming

Linux Installation
R is available as a binary for many versions of Linux at the location R Binaries.

The instruction to install Linux varies from flavor to flavor. These steps are mentioned under
each type of Linux version in the mentioned link. However, if you are in a hurry, then you
can use yum command to install R as follows:

Above command will install core functionality of R programming along with standard
packages, still you need additional package, then you can launch R prompt as follows:

Now you can use install command at R prompt to install the required package. For example,
the following command will install plotrix package which is required for 3D charts.

https://cran.r-project.org/bin/linux/

As a convention, we will start learning R programming by writing a "Hello, World!" program.
Depending on the needs, you can program either at R command prompt or you can use an
R script file to write your program. Let's check both one by one.

 R Command Prompt​
Once you have R environment setup, then it’s easy to start your R command prompt by just
typing the following command at your command prompt:

This will launch R interpreter and you will get a prompt > where you can start typing your
program as follows:

Here first statement defines a string variable myString, where we assign a string "Hello,
World!" and then next statement print() is being used to print the value stored in variable
myString.

 R Script File​
Usually, you will do your programming by writing your programs in script files and then you
execute those scripts at your command prompt with the help of R interpreter called Rscript.
So let's start with writing following code in a text file called test.R as under:

Save the above code in a file test.R and execute it at Linux command prompt as given
below. Even if you are using Windows or other system, syntax will remain same.

When we run the above program, it produces the following result.

R Programming

 Comments​
Comments are like helping text in your R program and they are ignored by the interpreter
while executing your actual program. Single comment is written using # in the beginning of
the statement as follows:

R does not support multi-line comments but you can perform a trick which is something as
follows:

Though above comments will be executed by R interpreter, they will not interfere with your
actual program. You should put such comments inside, either single or double quote.

4.​ R – Data Types

Generally, while doing programming in any programming language, you need to use various
variables to store various information. Variables are nothing but reserved memory locations
to store values. This means that, when you create a variable you reserve some space in
memory.

You may like to store information of various data types like character, wide character,
integer, floating point, double floating point, Boolean etc. Based on the data type of a
variable, the operating system allocates memory and decides what can be stored in the
reserved memory.

In contrast to other programming languages like C and java in R, the variables are not
declared as some data type. The variables are assigned with R-Objects and the data type of
the R-object becomes the data type of the variable. There are many types of R-objects. The
frequently used ones are:

●​ Vectors
●​ Lists
●​ Matrices
●​ Arrays
●​ Factors
●​ Data Frames

The simplest of these objects is the vector object and there are six data types of these
atomic vectors, also termed as six classes of vectors. The other R-Objects are built upon the
atomic vectors.

Data Type Example Verify

Logical

TRUE , FALSE

v <- TRUE

print(class(v))

it produces the following result:

[1] "logical"

Numeric

12.3, 5, 999

v <- 23.5

print(class(v))

it produces the following result:

[1] "numeric"

Integer

2L, 34L, 0L

v <- 2L

print(class(v))

it produces the following result:

[1] "integer"

Complex

3 + 2i

v <- 2+5i

print(class(v))

it produces the following result:

[1] "complex"

Character

'a' , '"good", "TRUE", '23.4'

v <- "TRUE"

print(class(v))

it produces the following result:

[1] "character"

Raw

"Hello" is stored as 48 65 6c 6c 6f

v <- charToRaw("Hello")

print(class(v))

it produces the following result:

[1] "raw"

In R programming, the very basic data types are the R-objects called vectors which hold
elements of different classes as shown above. Please note in R the number of classes is not
confined to only the above six types. For example, we can use many atomic vectors and
create an array whose class will become array.

 Vectors​
When you want to create vector with more than one element, you should use c() function
which means to combine the elements into a vector.

When we execute the above code, it produces the following result:

Lists

A list is an R-object which can contain many different types of elements inside it like vectors,
functions and even another list inside it.

When we execute the above code, it produces the following result:

Matrices
A matrix is a two-dimensional rectangular data set. It can be created using a vector input to
the matrix function.

When we execute the above code, it produces the following result:

 Arrays​
While matrices are confined to two dimensions, arrays can be of any number of dimensions.
The array function takes a dim attribute which creates the required number of dimension. In
the below example we create an array with two elements which are 3x3 matrices each.

When we execute the above code, it produces the following result:

, , 1

[,1] [,2] [,3]

[1,] "green" "yellow" "green"

[2,] "yellow" "green" "yellow"

[3,] "green" "yellow" "green"

, , 2

[1,]

[,1]

"yellow"

[,2]

"green"

[,3]

"yellow"

[2,] "green" "yellow" "green"

 Factors​
Factors are the r-objects which are created using a vector. It stores the vector along with
the distinct values of the elements in the vector as labels. The labels are always character
irrespective of whether it is numeric or character or Boolean etc. in the input vector. They
are useful in statistical modeling.

Factors are created using the factor() function.The nlevels functions gives the count of
levels.

When we execute the above code, it produces the following result:

Data Frames

Data frames are tabular data objects. Unlike a matrix in data frame each column can
contain different modes of data. The first column can be numeric while the second column
can be character and third column can be logical. It is a list of vectors of equal length.

Data Frames are created using the data.frame() function.

When we execute the above code, it produces the following result:

gender height weight Age

1​ Male 152.0 81 42

2​ Male 171.5 93 38

3 Female 165.0 78 26

5.​ R – Variables

A variable provides us with named storage that our programs can manipulate. A variable in
R can store an atomic vector, group of atomic vectors or a combination of many R-objects. A
valid variable name consists of letters, numbers and the dot or underline characters. The
variable name starts with a letter or the dot not followed by a number.

Variable Name Validity Reason

var_name2. valid Has letters, numbers, dot and underscore

var_name%

Invalid Has the character '%'. Only dot(.) and underscore

allowed.

2var_name invalid Starts with a number

.var_name​ ,
var.name

valid Can start with a dot(.) but the dot(.)should not be

followed by a number.

.2var_name

invalid The starting dot is followed by a number making it

invalid

_var_name invalid Starts with _ which is not valid

Variable Assignment
The variables can be assigned values using leftward, rightward and equal to operator. The
values of the variables can be printed using print() or cat()function. The cat() function
combines multiple items into a continuous print output.

When we execute the above code, it produces the following result:

[1] 0 1 2 3

var.1 is 0 1 2 3

var.2 is learn R

var.3 is 1 1

Note: The vector c(TRUE,1) has a mix of logical and numeric class. So logical class is
coerced to numeric class making TRUE as 1.

 Data Type of a Variable​
In R, a variable itself is not declared of any data type, rather it gets the data type of the R -
object assigned to it. So R is called a dynamically typed language, which means that we can
change a variable’s data type of the same variable again and again when using it in a
program.

When we execute the above code, it produces the following result:

Finding Variables
To know all the variables currently available in the workspace we use the ls() function. Also
the ls() function can use patterns to match the variable names.

When we execute the above code, it produces the following result:

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

Note: It is a sample output depending on what variables are declared in your environment.

The ls() function can use patterns to match the variable names.

When we execute the above code, it produces the following result:

[1] "my var" "my_new_var" "my_var" "var.1"

[5] "var.2" "var.3" "var.name" "var_name2."

[9] "var_x" "varname"

The variables starting with dot(.) are hidden, they can be listed using "all.names=TRUE"
argument to ls() function.

When we execute the above code, it produces the following result:

[1] ".cars" ".Random.seed" ".var_name" ".varname" ".varname2"

[6] "my var"

[11]"var.3"

"my_new_var"

"var.name"

"my_var"

"var_name2."

"var.1"

"var_x"

"var.2"

Deleting Variables
Variables can be deleted by using the rm() function. Below we delete the variable var.3. On
printing the value of the variable error is thrown.

When we execute the above code, it produces the following result:

All the variables can be deleted by using the rm() and ls() function together.

When we execute the above code, it produces the following result:

6.​ R – Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. R language is rich in built-in operators and provides following types of
operators.

 Types of Operators​
We have the following types of operators in R programming:

●​ Arithmetic Operators

●​ Relational Operators

●​ Logical Operators

●​ Assignment Operators

●​ Miscellaneous Operators

 Arithmetic Operators​
Following table shows the arithmetic operators supported by R language. The operators act
on each element of the vector.

Operator Description Example

+

Adds two
vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v+t)

it produces the following result:

[1] 10.0 8.5 10.0

−

Subtracts
second​ vector
from the first

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v-t)

it produces the following result:

[1] -6.0 2.5 2.0

*

Multiplies​ both
vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v*t)

it produces the following result:

[1] 16.0 16.5 24.0

/

Divide the first
vector with the
second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v/t)

When we execute the above code, it produces the
following result:

[1] 0.250000 1.833333 1.500000

%%

Give​ the
remainder of
the first vector
with the second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%%t)

it produces the following result:

[1] 2.0 2.5 2.0

%/%

The​ result​​ of
division of first
vector​​ with
second
(quotient)

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%/%t)

it produces the following result:

[1] 0 1 1

^

The first vector
raised to the
exponent of
second vector

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v^t)

it produces the following result:

[1] 256.000 166.375 1296.000

Relational Operators
Following table shows the relational operators supported by R language. Each element of
the first vector is compared with the corresponding element of the second vector. The result
of comparison is a Boolean value.

Operator Description Example

>

Checks if each element of the first
vector is greater than the
corresponding element of the second
vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>t)

it produces the following result:

[1] FALSE TRUE FALSE FALSE

<

Checks if each element of the first
vector is less than the corresponding
element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v < t)

it produces the following result:

[1] TRUE FALSE TRUE FALSE

==

Checks if each element of the first
vector is equal to the corresponding
element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v==t)

it produces the following result:

[1] FALSE FALSE FALSE TRUE

<=

Checks if each element of the first
vector is less than or equal to the
corresponding element of the second
vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v<=t)

it produces the following result:

[1] TRUE FALSE TRUE TRUE

>=

Checks if each element of the first
vector is greater than or equal to the
corresponding element of the second
vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>=t)

it produces the following result:

[1] FALSE TRUE FALSE TRUE

!=

Checks if each element of the first
vector is unequal to the corresponding
element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v!=t)

it produces the following result:

[1] TRUE TRUE TRUE FALSE

Logical Operators
Following table shows the logical operators supported by R language. It is applicable only to
vectors of type logical, numeric or complex. All numbers greater than 1 are considered as
logical value TRUE.

Each element of the first vector is compared with the corresponding element of the second
vector. The result of comparison is a Boolean value.

Operator Description Example

&

It is called Element-wise Logical AND
operator. It combines each element of
the first vector with the corresponding
element of the second vector and
gives a output TRUE if both the
elements are TRUE.

v <- c(3,1,TRUE,2+3i)

t <- c(4,1,FALSE,2+3i)

print(v&t)

it produces the following result:

[1] TRUE TRUE FALSE TRUE

|

It is called Element-wise Logical OR
operator. It combines each element of
the first vector with the corresponding
element of the second vector and
gives a output TRUE if one the
elements is TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(4,0,FALSE,2+3i)

print(v|t)

it produces the following result:

[1] TRUE FALSE TRUE TRUE

!

It is called Logical NOT operator.
Takes each element of the vector and
gives the opposite logical value.

v <- c(3,0,TRUE,2+2i)

print(!v)

it produces the following result:

[1] FALSE TRUE FALSE FALSE

The logical operator && and || considers only the first element of the vectors and give a
vector of single element as output.

&&

Called Logical AND operator. Takes
first element of both the vectors and
gives the TRUE only if both are TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(1,3,TRUE,2+3i)

print(v&&t)

it produces the following result:

[1] TRUE

||

Called Logical OR operator. Takes first
element of both the vectors and gives
the TRUE only if both are TRUE.

v <- c(0,0,TRUE,2+2i)

t <- c(0,3,TRUE,2+3i)

print(v||t)

it produces the following result:

[1] FALSE

Operator Description Example

Assignment Operators

These operators are used to assign values to vectors.

Operator Description Example

<-

or

=

or

<<-

Called Left Assignment

v1 <- c(3,1,TRUE,2+3i)

v2 <<- c(3,1,TRUE,2+3i)

v3 = c(3,1,TRUE,2+3i)

print(v1)

print(v2)

print(v3)

it produces the following result:

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

​

->

or

->>

Called Right Assignment

c(3,1,TRUE,2+3i) -> v1

c(3,1,TRUE,2+3i) ->> v2

print(v1)

print(v2)

it produces the following result:

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

Miscellaneous Operators
These operators are used to for specific purpose and not general mathematical or logical
computation.

Operator Description Example

:

Colon
operator. It
creates the
series of
numbers in
sequence
for a vector.

v <- 2:8

print(v)

it produces the following result:

[1] 2 3 4 5 6 7 8

%in%

This operator
is used to
identify if an
element
belongs to a
vector.

v1 <- 8

v2 <- 12

t <- 1:10

print(v1 %in% t)

print(v2 %in% t)

it produces the following result:

[1] TRUE

[1] FALSE

​

%*%

This operator
is used to
multiply a
matrix with
its
transpose.

M = matrix(c(2,6,5,1,10,4), nrow=2,ncol=3,byrow =
TRUE)

t = M %*% t(M)

print(t)

it produces the following result:

[,1] [,2]

[1,]​ 65​ 82

[2,]​ 82 117

7.​ R – Decision making

Decision making structures require the programmer to specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if
the condition is determined to be true, and optionally, other statements to be executed if
the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the
programming languages:

R provides the following types of decision making statements. Click the following links to
check their detail.

Statement Description

if statement An if statement consists of a Boolean expression followed by one
or more statements.

if...else statement An if statement can be followed by an optional else statement,
which executes when the Boolean expression is false.

http://www.tutorialspoint.com/r/r_if_statement.htm
http://www.tutorialspoint.com/r/r_if_else_statement.htm

switch statement A switch statement allows a variable to be tested for equality
against a list of values.

 R - If Statement​
An if statement consists of a Boolean expression followed by one or more statements.

Syntax
The basic syntax for creating an if statement in R is:

If the Boolean expression evaluates to be true, then the block of code inside the if
statement will be executed. If Boolean expression evaluates to be false, then the first set of
code after the end of the if statement (after the closing curly brace) will be executed.

Flow Diagram

Example

http://www.tutorialspoint.com/r/r_switch_statement.htm

When the above code is compiled and executed, it produces the following result:

R – If...Else Statement

An if statement can be followed by an optional else statement which executes when the
boolean expression is false.

Syntax
The basic syntax for creating an if...else statement in R is:

If the Boolean expression evaluates to be true, then the if block of code will be executed,
otherwise else block of code will be executed.

Flow Diagram

Example

When the above code is compiled and executed, it produces the following result:

Here "Truth" and "truth" are two different strings.

 The if...else if...else Statement​
An if statement can be followed by an optional else if...else statement, which is very useful
to test various conditions using single if...else if statement.

When using if, else if, else statements there are few points to keep in mind.

●​ An if can have zero or one else and it must come after any else if's.

●​ An if can have zero to many else if's and they must come before the else.

●​ Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax
The basic syntax for creating an if...else if...else statement in R is:

Example

When the above code is compiled and executed, it produces the following result:

R – Switch Statement

A switch statement allows a variable to be tested for equality against a list of values. Each
value is called a case, and the variable being switched on is checked for each case.

Syntax
The basic syntax for creating a switch statement in R is :

The following rules apply to a switch statement:

●​ If the value of expression is not a character string it is coerced to integer.

●​
●​ You can have any number of case statements within a switch. Each case is followed

by the value to be compared to and a colon.

●​
●​ If the value of the integer is between 1 and nargs()-1 (The max number of

arguments)then the corresponding element of case condition is evaluated and the
result returned.

●​
●​ If expression evaluates to a character string then that string is matched (exactly) to

the names of the elements.

●​
●​ If there is more than one match, the first matching element is returned.

●​
●​ No Default argument is available.

●​
●​ In the case of no match, if there is a unnamed element of ... its value is returned. (If

there is more than one such argument an error is returned.)

Flow Diagram

Example

When the above code is compiled and executed, it produces the following result:

There may be a situation when you need to execute a block of code several number of
times. In general, statements are executed sequentially. The first statement in a function is
executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and the following is the general form of a loop statement in most of the programming
languages:

R programming language provides the following kinds of loop to handle looping
requirements. Click the following links to check their detail.

Loop Type Description

repeat loop Executes a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

while loop Repeats a statement or group of statements while a given condition is
true. It tests the condition before executing the loop body.

http://www.tutorialspoint.com/r/r_repeat_loop.htm
http://www.tutorialspoint.com/r/r_while_loop.htm

for loop Like a while statement, except that it tests the condition at the end of
the loop body.

R - Repeat Loop
The Repeat loop executes the same code again and again until a stop condition is met.

Syntax
The basic syntax for creating a repeat loop in R is:

Flow Diagram

Example

http://www.tutorialspoint.com/r/r_for_loop.htm

When the above code is compiled and executed, it produces the following result:

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

R - While Loop
The While loop executes the same code again and again until a stop condition is met.

Syntax
The basic syntax for creating a while loop in R is :

Flow Diagram

Here key point of the while loop is that the loop might not ever run. When the condition is
tested and the result is false, the loop body will be skipped and the first statement after the
while loop will be executed.

Example

When the above code is compiled and executed, it produces the following result :

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

[1] "Hello" "while loop"

 R – For Loop​
A for loop is a repetition control structure that allows you to efficiently write a loop that
needs to execute a specific number of times.

Syntax
The basic syntax for creating a for loop statement in R is:

Flow Diagram

R’s for loops are particularly flexible in that they are not limited to integers, or even numbers
in the input. We can pass character vectors, logical vectors, lists or expressions.

Example

When the above code is compiled and executed, it produces the following result:

​

Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves
a scope, all automatic objects that were created in that scope are destroyed.

R supports the following control statements. Click the following links to check their detail.

Control Statement Description

break statement Terminates the loop statement and transfers execution to the
statement immediately following the loop.

Next statement The next statement simulates the behavior of R switch.

 R – Break Statement​
The break statement in R programming language has the following two usages:

●​ When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the loop.

●​
●​ It can be used to terminate a case in the switch statement (covered in the next chapter).

Syntax
The basic syntax for creating a break statement in R is:

Flow Diagram

http://www.tutorialspoint.com/r/r_break_statement.htm
http://www.tutorialspoint.com/r/r_next_statement.htm

Example

When the above code is compiled and executed, it produces the following result:

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

[1] "Hello" "loop"

R – Next Statement
The next statement in R programming language is useful when we want to skip
the current iteration of a loop without terminating it. On encountering next, the
R parser skips further evaluation and starts next iteration of the loop.

Syntax
The basic syntax for creating a next statement in R is:

​

Flow Diagram

Example

When the above code is compiled and executed, it produces the following result:

A function is a set of statements organized together to perform a specific task. R has a large
number of in-built functions and the user can create their own functions.

In R, a function is an object so the R interpreter is able to pass control to the function, along
with arguments that may be necessary for the function to accomplish the actions.

The function in turn performs its task and returns control to the interpreter as well as any
result which may be stored in other objects.

 Function Definition​
An R function is created by using the keyword function. The basic syntax of an R function
definition is as follows:

Function Components

The different parts of a function are:

●​ Function Name: This is the actual name of the function. It is stored in R
environment as an object with this name.

●​
●​ Arguments: An argument is a placeholder. When a function is invoked, you pass a

value to the argument. Arguments are optional; that is, a function may contain no
arguments. Also arguments can have default values.

●​
●​ Function Body: The function body contains a collection of statements that defines

what the function does.

●​
●​ Return Value: The return value of a function is the last expression in the function

body to be evaluated.

R has many in-built functions which can be directly called in the program without defining
them first. We can also create and use our own functions referred as user defined
functions.

 Built-in Function​
Simple examples of in-built functions are seq(), mean(), max(), sum(x)and paste(...) etc.
They are directly called by user written programs. You can refer most widely used R
functions.

When we execute the above code, it produces the following result:

[1] 32 33 34 35 36 37 38 39 40 41 42 43 44

[1] 53.5

[1] 1526

User-defined Function
We can create user-defined functions in R. They are specific to what a user wants and once
created they can be used like the built-in functions. Below is an example of how a function
is created and used.

Calling a Function

https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf

When we execute the above code, it produces the following result:

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

[1] 36

Calling a Function without an Argument

When we execute the above code, it produces the following result:

[1] 1

[1] 4

[1] 9

Calling a Function with Argument Values (by position and by name)
The arguments to a function call can be supplied in the same sequence as defined in the
function or they can be supplied in a different sequence but assigned to the names of the
arguments.

When we execute the above code, it produces the following result:

Calling a Function with Default Argument
We can define the value of the arguments in the function definition and call the function
without supplying any argument to get the default result. But we can also call such
functions by supplying new values of the argument and get non default result.

When we execute the above code, it produces the following result:

Lazy Evaluation of Function

Arguments to functions are evaluated lazily, which means so they are evaluated only when
needed by the function body.

When we execute the above code, it produces the following result:

Any value written within a pair of single quote or double quotes in R is treated as a string.
Internally R stores every string within double quotes, even when you create them with
single quote.

 Rules Applied in String Construction​
●​ The quotes at the beginning and end of a string should be both double quotes or

both single quote. They can not be mixed.

●​ Double quotes can be inserted into a string starting and ending with single quote.

●​
●​ Single quote can be inserted into a string starting and ending with double quotes.

●​
●​ Double quotes can not be inserted into a string starting and ending with double quotes.

●​
●​ Single quote can not be inserted into a string starting and ending with single quote.

Examples of Valid Strings
Following examples clarify the rules about creating a string in R.

When the above code is run we get the following output:

Examples of Invalid Strings

When we run the script it fails giving below results.

String Manipulation

Concatenating Strings - paste() function
Many strings in R are combined using the paste() function. It can take any number of
arguments to be combined together.

Syntax
The basic syntax for paste function is :

Following is the description of the parameters used:

●​ ... represents any number of arguments to be combined.

●​
●​ sep represents any separator between the arguments. It is optional.

●​
●​ collapse is used to eliminate the space in between two strings. But not the space

within two words of one string.

∙

Example

When we execute the above code, it produces the following result:

Formatting numbers & strings - format() function
Numbers and strings can be formatted to a specific style using format()function.

Syntax
The basic syntax for format function is :

Following is the description of the parameters used:

●​ x is the vector input.

●​
●​ digits is the total number of digits displayed.

●​
●​ nsmall is the minimum number of digits to the right of the decimal point.

●​
●​ scientific is set to TRUE to display scientific notation.

●​
●​ width indicates the minimum width to be displayed by padding blanks in the

beginning.

●​
●​ justify is the display of the string to left, right or center.

∙

Example

When we execute the above code, it produces the following result:

Counting number of characters in a string - ncahr() function
This function counts the number of characters including spaces in a string.

Syntax
The basic syntax for nchar() function is :

Following is the description of the parameters used:

●​ x is the vector input.

Example

When we execute the above code, it produces the following result:

Changing the case - toupper() & tolower() functions
These functions change the case of characters of a string.

Syntax
The basic syntax for toupper() & tolower() function is :

Following is the description of the parameters used:

●​ x is the vector input.

Example

When we execute the above code, it produces the following result:

Extracting parts of a string - substring() function
This function extracts parts of a String.

Syntax
The basic syntax for substring() function is :

Following is the description of the parameters used:

●​ x is the character vector input.

●​ first is the position of the first character to be extracted.

●​ last is the position of the last character to be extracted.

Example

When we execute the above code, it produces the following result:

Vectors are the most basic R data objects and there are six types of atomic vectors. They
are logical, integer, double, complex, character and raw.

 Vector Creation​

Single Element Vector
Even when you write just one value in R, it becomes a vector of length 1 and belongs to one
of the above vector types.

When we execute the above code, it produces the following result:

Multiple Elements Vector
Using colon operator with numeric data

When we execute the above code, it produces the following result:

[1] 5 6 7 8 9 10 11 12 13

[1] 6.6 7.6 8.6 9.6 10.6 11.6 12.6

[1] 3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8

Using sequence (Seq.) operator

When we execute the above code, it produces the following result:

Using the c() function
The non-character values are coerced to character type if one of the elements is a character.

When we execute the above code, it produces the following result:

Accessing Vector Elements

Elements of a Vector are accessed using indexing. The [] brackets are used for indexing.
Indexing starts with position 1. Giving a negative value in the index drops that element from
result. TRUE, FALSE or 0 and 1 can also be used for indexing.

When we execute the above code, it produces the following result:

[1] "Mon" "Tue" "Fri"

[1] "Sun" "Fri"

[1] "Sun" "Tue" "Wed" "Fri" "Sat"

[1] "Sun"

Vector Manipulation

Vector Arithmetic
Two vectors of same length can be added, subtracted, multiplied or divided giving the result
as a vector output.

When we execute the above code, it produces the following result:

[1] 7 19 4 13 1 13

[1] -1 -3 4 -3 -1 9

[1] 12 88 0 40 0 22

Vector Element Recycling
If we apply arithmetic operations to two vectors of unequal length, then the elements of the
shorter vector are recycled to complete the operations.

When we execute the above code, it produces the following result:

Vector Element Sorting
Elements in a vector can be sorted using the sort() function.

When we execute the above code, it produces the following result:

	1.​R – Overview
	 Evolution of R​
	Features of R

	2.​R – Environment Setup
	 Try it Option Online​
	 Local Environment Setup​
	Windows Installation
	Linux Installation

	 R Command Prompt​
	 R Script File​
	 Comments​

	4.​R – Data Types
	 Vectors​
	Lists
	Matrices
	 Arrays​
	 Factors​
	Data Frames

	5.​R – Variables
	Variable Assignment
	 Data Type of a Variable​
	Finding Variables
	Deleting Variables

	6.​R – Operators
	 Types of Operators​
	 Arithmetic Operators​
	Relational Operators
	Logical Operators
	
	
	
	
	Assignment Operators
	Miscellaneous Operators

	7.​R – Decision making
	 R - If Statement​
	Syntax
	Flow Diagram

	R – If...Else Statement
	Syntax
	Flow Diagram

	 The if...else if...else Statement​
	Syntax
	Example

	R – Switch Statement
	Syntax
	Flow Diagram

	R - Repeat Loop
	Syntax
	Flow Diagram

	R - While Loop
	Syntax
	Flow Diagram
	Example

	 R – For Loop​
	Syntax
	Flow Diagram
	Example

	Loop Control Statements
	 R – Break Statement​
	Syntax
	Flow Diagram

	R – Next Statement
	Syntax
	Flow Diagram

	 Function Definition​
	Function Components
	 Built-in Function​
	User-defined Function
	Calling a Function
	Calling a Function without an Argument
	Calling a Function with Argument Values (by position and by name)
	Calling a Function with Default Argument

	Lazy Evaluation of Function
	 Rules Applied in String Construction​
	Examples of Valid Strings
	Examples of Invalid Strings

	String Manipulation
	Concatenating Strings - paste() function
	Syntax
	Example

	Formatting numbers & strings - format() function
	Syntax
	Example

	Counting number of characters in a string - ncahr() function
	Syntax
	Example

	Changing the case - toupper() & tolower() functions
	Syntax
	Example

	Extracting parts of a string - substring() function
	Syntax
	Example

	 Vector Creation​
	Single Element Vector
	Multiple Elements Vector
	Using sequence (Seq.) operator
	Using the c() function

	Accessing Vector Elements
	Vector Manipulation
	Vector Arithmetic
	Vector Element Recycling
	Vector Element Sorting

