
Beyond Jakarta EE 11

Objective: Generate excitement about the future of Jakarta EE with ideas, messaging, and
content showcasing where we expect the community to take it beyond the next release.

Method: Brainstorm about directions we should take Jakarta EE after release 11 is out. This will
involve working sessions with the Steering Committee, Spec Committee, Marketing Committee
and member organizations. Generate a working document that will influence the next generation
of specs, messaging, content, and more. Integrate top ideas into the next developer survey to
gather feedback.

Recommendation: Form an interest group (Jakarta EE Next ?) to prioritize and explore the
topics in greater detail, especially those beyond the typical Jakarta EE scope.

Topics of interest:

Quantum Computing Can we improve the ways Java developers leverage
Quantum as part of their applications?

●​ Article - Quantum Computing for Java Developers
| by Johan Vos | Medium

AI/ML Are there APIs and patterns for use available for
integrating AI and ML into Java applications?

●​ Potential to create a subgroup to explore
opportunities

●​ APIs to make it easier to connect to data
management and verification
techniques/technologies

●​ APIs to connect private LLM
●​ Codify best practices and patterns that will

influence the data used by generative AI tools
when building Java applications.

Robotics Are there areas of Robotics that would benefit from
standardization and Java language support beyond what
is currently available through APIs?
We should consider the cloud impact as well.

Edge Computing Move computing closer to the edge - distributed resources
from IoT to cloud.
Explore real time applications (LTI, lower latency)
Add application in healthcare (E.g. Emergency buttons) -
MQTT protocol to JMS or MQTT spec - Determine if we
should come with our own solution/API to allow direct

https://www.eclipse.org/collaborations/interest-groups/
https://medium.com/@johanvos_42743/quantum-computing-for-java-developers-ecbbb39f2417
https://medium.com/@johanvos_42743/quantum-computing-for-java-developers-ecbbb39f2417

communication, or if we use a prepared solution

Green Platform / efficiency is
king

With the Microservices hype being superseded by AI it’s
possible to talk about architecture again. From a green IT
stand point every server shut down is a good server.​
The Java platform itself has excellent support for figuring
out where all your resources go (CPU / RAM etc).
However Jakarta EE does not leverage this up to now.
This goes way beyond what general metrics and
distributed tracing provide. The message would be that
you do not need to scale out or scale up if you run on
Jakarta EE. That is because the resources are managed
in a very efficient way and the platform supports you on
every step of your way to figure out how much of and on
what your resources are spent.
E.g. there could be a flame graph export for every type of
request, for each large batch run and so on. No more
guessing why your application became slow and how to
change it.

Specification usage and ease of use:

Supersede EJB EJB is a huge marketing impediment for the platform as a
whole. If we do not definitively supplant it soon, it will be
difficult to change perceptions no matter what else we do.
These are the things we need to do, roughly in order.

●​ Define how to inject and use EntityManager in a
thread safe way outside of EJB in plain CDI beans,
especially using the @Transactional annotation.

●​ Providing CDI-friendly, modernized equivalents for
@RolesAllowed and @RunAs.

●​ Adding CDI-friendly equivalents for @Schedule
and @Lock.

●​ Adding a @MaxConcurrency annotation.
●​ Introduce a @Service CDI stereotype that seeks to

provide similar capabilities to EJB @Stateless.
●​ Provide CDI-friendly equivalents for MDB.

Modernize Messaging A lot of people still associate messaging in the Jakarta EE
ecosystem to Jakarta Messaging, IBM MQ, ActiveMQ, etc.
If we feel we should have a firmer footprint in the
messaging space, we really should consider a Messaging
Lite. This would be very important from a
marketing/perception perspective. It would essentially be
a modernized subset of Messaging geared towards cloud
native use cases. The actual work may not be that much
to get this done. Along these lines, it would be good to

provide a Java SE/standalone bootstrap API for
Messaging.
ALso explore integration with popular messaging
platforms, such as Teams, Slack, etc.

Modularity How do we make it easier to use specs in different
combinations?

-​ Enable users to select individual specifications and
have any dependencies automatically included.
More profiles doesn’t address this issue.

Spec support 1.​ Explore the reasons why certain specs are not
getting support from the committees to move
forward

2.​ Determine what specs are getting used, which are
not, and why.

3.​ Provide an easy query form for developers to know
which specs are appropriate for particular tasks

4.​ Provide a way to visualize the specs and their
dependencies

5.​ Look at developing scenarios and determine which
specs support those. How can we surface the
information in a more client-centric way and/or a
statement-base that would better support
generative AI

6.​ Documentation and tutorials that are clear, concise
and use a consistent approach that can be easily
parsed by ChatGPT+others.

Industry specific API Patterns 1.​ Look to identify common spec usage across
different industries and how we can package and
promote to others in the industry

2.​ Kubernetes specific spec?

Other ideas:

Better defaults for Persistence Make persistence.xml optional/an empty marker in Jakarta
EE applications. For many applications, this is a perfectly
fine starting point. If there is a data source and Persistence
resources, just enable it easily.

Less XML in Batch Add a Java batch job definition API as an alternative to XML.

Pluggable caching in Persistence Support JCache as a second-level cache provider for
Persistence.

Modern packaging Make bootable/fat/executable jars mandatory for Core
Profile. Most modern implementations do this already
anyway. It’s an easy marketing win.

Incubator Explore an incubator process for new ideas aligned with
Jakarta EE and Java usage.

 Translation to multiple languages to ensure better data
available across language groups.

Partnerships Look at partnering with other Open Source communities
that focus on lifecycle issues beyond the application
coding - build, deploy, monitoring - eg CNCF

Spring Analysis We should review what Spring has - review obvious gaps
and QA.
Compare advantages of Jakarta vs Spring from a
marketing perspective to improve perspectives and
elevate Jakarta EE.

Excluded from EE11 Jakarta MVC, Jakarta Config, Jakarta no-SQL, Jakarta
RPC, etc.

Normativity of API Jars and
module-info and
package-info.java

Currently none of these things are normative. This is a
blessing and a curse. Should we re-evaluate this stance?

Documenting the “JDK N and
N-1” pattern.

Consider what happened in EE 10 and EE 11 regarding
JDK version. In both cases we ended up stating that the
EE platform needed to have a Ratifying Compatible
Implementation on the latest LTS JDK at the time and the
previous LTS at the time. (EE 10: 11/17; EE 11: 17/21).

I think we should accept this pattern with one important
exception: If a component spec is dead set on
introducing a binary dependency on the latest JDK, we do
want to allow this.

	Beyond Jakarta EE 11
	Topics of interest:
	Specification usage and ease of use:
	Other ideas:

