Motion worksheet

For this worksheet use $g = 9.81 \text{ ms}^{-2}$.

A ball rolls down a 445 m slope from rest. If it accelerates at a rate of 3.16 ms^{-2} , determine the time it takes to reach the bottom of the slope and the ball's final velocity.

2 How far does a car travel in 45 seconds if it has an acceleration of 0.32 ms⁻²? Assume that it starts from rest.

3 A toy car starts from rest and accelerates at a uniform rate of $4.0~\mathrm{ms}^{-2}$ for $3.0~\mathrm{seconds}$. It then maintains a uniform speed for $12.0~\mathrm{seconds}$. Finally it takes $6.0~\mathrm{seconds}$ to decelerate uniformly to rest. Find the total distance travelled and the average speed of the entire trip.

6	Two balls are 8.0 metres apart and moving directly towards each other. If the first ball is moving at a speed of 2.5 ms ⁻¹ with respect to the ground, where will they collide?
7	A helicopter is ascending at a constant speed of 12 ms ⁻¹ and drops a package from a height of 64 m. How long will it take the package to reach the ground? Assume there is no air resistance.

8 Use this graph to determine the following:

a the acceleration during the first 8 seconds.

b the displacement of the whole trip.

c the average velocity of the whole trip.

 	 			 				••••			 •••••	••••	 		•••••	 	 ••••		 			
 	 	•••••	• • • • • •	 	•••••	••••	• • • • • •	• • • • • •	• • • • • •	• • • • •	 •••••	••••	 	•••••	• • • • • •	 • • • • • •	 • • • • • •	• • • • • •	 •••••	••••	•••••	

9 A football is kicked from the ground with an initial speed of 16 ms^{-1} at an angle of 24° to the horizon. At what two times will the ball have a height of 1.0 m? Assume the kick happens at t = 0 s.

