Chapitre A8 Equations

I. Définitions

Une **équation** est une égalité où au moins un des nombres est désigné par une lettre. Ces nombres écrits en lettres sont les **inconnues** de cette équation. **Résoudre une équation, c'est trouver toutes les valeurs** des inconnues pour lesquelles l'égalité est vérifiée.

Exemples

- L'équation x + 2 = 0 admet une solution x = -2.
- L'équation $x \times 0 = 1$ n'admet pas de solution.
- L'équation $x \times 0 = 0$ admet une infinité de solutions : tous les nombres réels conviennent.
- L'équation $x^2 = 4$ admet deux solutions : 2 et -2.

Une **équation du premier degré à une inconnue** est une équation qui **peut** se mettre sous la forme ax + b = 0 où a et b sont des **constantes** et x est une **inconnue**.

Pour résoudre une telle équation, on isole les termes contenant l'**inconnue** d'un côté et les **constantes** de l'autre en utilisant la règle suivante :

Règle

Soit a, b et c des nombres réels, on peut affirmer :

- a = b si et seulement si a + c = b + c
- a = b si et seulement si a c = b c
- a = b si et seulement si $a \times c = b \times c$ ($c \neq 0$)
- a = b si et seulement si a: c = b: c ($c \ne 0$)

Remarque

 $5 \times 0 = 3 \times 0$ et pourtant $5 \neq 3$

Exemple

On veut résoudre l'équation suivante :

$$5x + 2 = 3x - 85x + 2 - 3x = 3x - 8 - 3x2x + 2 - 2 = -8 - 2\frac{2x}{2} = \frac{-10}{2}x = -5$$

Vérification

$$5x + 2 = 5 \times (-5) + 2 = -25 + 2 = -23$$

$$3x - 8 = 3 \times (-5) - 8 = -15 - 8 = -23$$

L'équation admet une solution x = -5.

II. Equations produit

En troisième, on étudie certaines équations du second degré à une inconnue, les équations produit. Ces équations peuvent se mettre sous la forme :

(ax + b)(cx + d) = 0 où a, b, c et d sont des **constantes** et x est l'**inconnue**.

Pour résoudre ces équations, on utilise la propriété suivante :

Propriété

Le **produit** de deux nombres est nul si (et seulement si) l'un de ses **facteurs** est

Exemple on veut résoudre l'équation

$$(5x + 2)(3x - 7) = 0$$

Solution (rédaction type brevet)

$$(5x + 2)(3x - 7) = 0$$

Un produit est nul si (et seulement si) l'un de ses facteurs est nul.

Donc

$$5x + 2 = 05x + 2$$

ou
$$3x - 7 = 03x - 7$$

L'équation admet deux solutions $\frac{-2}{5}$ et $\frac{7}{3}$.

Remarque

En seconde, la dernière phrase sera écrite avec sa notation mathématique :

$$S = \left\{ -\frac{2}{5}; \frac{7}{3} \right\}$$

Cas particuliers

On veut résoudre l'équation suivante :

$$3x(4x - 8) = 0$$

Un produit est nul si et seulement si l'un de ses facteurs est nul.

Donc

$$3x = 0x = 0$$

$$4x - 8 = 04x - 8$$

L'équation admet deux solutions 0 et 2.

• On veut résoudre l'équation $(3x + 1)^2 = 0$

$$(3x + 1)(3x + 1) = 0$$

Un produit est nul si et seulement si l'un de ses facteurs est nul.

Donc

$$3x + 1 - 1 = 0 - 1\frac{3x}{3} = \frac{-1}{3}x = \frac{-1}{3}$$

L'équation admet une seule solution (double) $-\frac{1}{3}$.

Equations et identités remarquables

On veut résoudre l'équation $(2x + 1)^2 = 25$.

$$(2x + 1)^2 - 25 = 25 - 25$$

$$(2x + 1)^2 - 5^2 = 0$$

On utilise la troisième identité remarquable

$$a^{2} - b^{2} = (a - b)(a + b)$$
 avec $a = 2x + 1$ et $b = 5$.
Donc $(2x + 1 - 5)(2x + 1 + 5) = 0$
 $(2x - 4)(2x + 6) = 0$

Un produit est nul si et seulement si l'un de ses facteurs est nul.

$$2x - 4 = 0x$$
 ou $2x + 6 = 0x = -3$
L'équation admet deux solutions $2 \text{ et} - 3$.

On veut résoudre l'équation

$$(2x - 3)^{2} = (x + 4)^{2}$$

$$(2x - 3)^{2} - (x + 4)^{2} = (x + 4)^{2} - (x + 4)^{2}$$

$$(2x - 3)^{2} a^{2} - (x + 4)^{2} b^{2} = 0$$

$$[(2x - 3) a - (x + 4) b])[(2x - 3) a + (x + 4) b]) = 0$$

$$[2x - 3 - x - 4][2x - 3 + x + 4] = 0$$

$$(x - 7)(3x + 1) = 0$$

Un produit est nul si et seulement si l'un de ses facteurs est nul.

$$x - 7 = 0x = 7$$
 ou $3x + 1 = 0x = -\frac{1}{3}$

L'équation admet deux solutions 7 et $-\frac{1}{3}$.

III. Problèmes

Problème 1

On considère un rectangle ABCD. On sait que la longueur mesure 2 cm de plus que la largeur.

- 1. Sachant que le périmètre du rectangle est de 17,2 cm, quelles sont les dimensions du rectangle ?
- 2. Sachant que l'aire du rectangle est de 8 cm², quelles sont les dimensions du rectangle?

Solution

1. Soit x la largeur du rectangle. x + 2 est la longueur du rectangle. Le périmètre du rectangle ABCD vaut :

$$2x + 2(x + 2) = 17,22x + 2x + 4 = 17,24x + 4 - 4 = 17,2 - 4\frac{4x}{4} = \frac{13,2}{4}x = 3,3$$

Dans ce cas, la largeur du rectangle ABCD vaut 3,3 cm et sa longueur égale 5,3 cm.

$$2 \times 3, 3 + 2 \times 5, 3 = 17, 2$$

2. Soit x la largeur du rectangle. x + 2 est la longueur du rectangle. L'aire du rectangle ABCD vaut :

$$x(x + 2) = 8$$

1ère méthode

On remarque que x=2 est une solution. On sait qu'une telle équation (du second degré) peut avoir deux solutions : on remarque que x=-4 est aussi solution mais ne convient pas car les longueurs ne peuvent être négatives. La largeur du rectangle ABCD vaut 2 cm et sa longueur égale 4 cm.

2ème méthode

On utilise le tableur de la calculatrice pour trouver les 2 valeurs.

3^{ème} méthode (méthode de seconde)

$$x(x + 2) = 8x^2 + 2x - 8 = 8$$

$$a^2 + 2ab + b^2 = (a + b)^2$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

Un produit est nul si l'un de ses facteurs est nul.

$$x + 4 = 0x = -4$$

$$x - 2 = 0x = 2$$

L'équation admet deux solutions -4 et 2. La première solution est incompatible avec le problème. On retrouve les résultats trouvés précédemment.

Problème 2

On veut calculer la longueur CD.

Solution

On pose x = CD

Montrons que les droites (AB) et (CD) sont parallèles.

Je sais que les droites (AB) et (CD) sont perpendiculaires à la droite (AE).

Or, si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

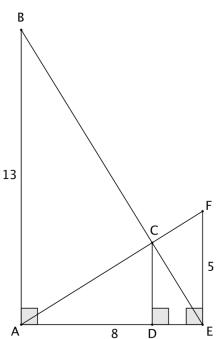
Donc les droites (AB) et (CD) sont parallèles.

De plus, les points E, C, B et E, D, A sont alignés.

On peut donc appliquer le théorème de Thalès

$$\frac{EC}{EB} = \frac{ED}{EA} = \frac{CD}{BA}$$

$$\frac{EC}{EB} = \frac{ED}{8} = \frac{x}{13}$$



Je sais que les droites (EF) et (CD) sont perpendiculaires à la droite (AE).

Or, si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Donc les droites (EF) et (CD) sont parallèles.

De plus, les points A, D, E et A, C, F sont alignés.

On peut donc appliquer le théorème de Thalès

$$\frac{AC}{AF} = \frac{AD}{AE} = \frac{CD}{EF}$$

$$\frac{AC}{AF} = \frac{AD}{8} = \frac{x}{5}$$

On remarque que

$$\frac{ED}{8} + \frac{AD}{8} = \frac{ED + AD}{8} = \frac{AE}{8} = \frac{8}{8} = 1$$

On en déduit que

$$\frac{x}{13} + \frac{x}{5} = 1 \frac{x \times 5}{13 \times 5} + \frac{x \times 13}{5 \times 13} = 1 \frac{5x}{65} + \frac{13x}{65} = 1 \frac{18x}{65} = 1x = \frac{65}{18}$$

On déduit que $CD = \frac{65}{18}$

IV. Inéquations

Une **inéquation** est une inégalité où certains nombres sont désignés par des lettres nommées **inconnues**.

Résoudre une telle inéquation, c'est trouver tous les nombres vérifiant l'inégalité.

Exemple : en troisième, on étudie uniquement les inéquations du 1^{er} degré à une inconnue, du type :

$$3x + 5 < 2x + 2$$

On distingue deux types d'inégalités :

- Les inégalités strictes (< ou >);
- Les inégalités larges (\leq ou \geq).
- « x < 2 » désigne un nombre x **strictement inférieur** à 2.
- $\langle x \rangle \geq 2$ » se lit $\langle x \rangle$ est **supérieur ou égal** à 2 ».

Pour résoudre une inéquation, on utilise le même procédé qu'une équation. Dans le cas d'une inéquation du 1^{er} degré à une inconnue, on isole les termes en x d'un côté en utilisant la règle suivante :

Règle

Soit a, b et c des nombres réels.

- Si a < b alors a + c < b + c.
- Si a < b alors a c < b c.
- Si a < b et si c > 0, alors $a \times c < b \times c$.
- Si a < b et si c > 0, alors $\frac{a}{c} < \frac{b}{c}$.
- Si a < b et si c < 0, alors $a \times c > b \times c$.
- Si a < b et si c < 0, alors $\frac{a}{c} > \frac{b}{c}$.

Remarque

$$2 < 3 \text{ mais } 2 \times (-3) > 3 \times (-3).$$

Exemple 1 (rédaction type brevet)

On veut résoudre l'inéquation $3x + 7 \le x - 3$.

Solution

$$3x + 7 - x \le x - 3 - x$$

$$2x + 7 - 7 \le -3 - 7 \frac{2x}{2} \le \frac{-10}{2} x \le -5$$

Les solutions de l'inéquation sont tous les nombres inférieurs ou égaux à -5.

$$S =]-\infty;-5]$$

Représentation graphique



Remarque

− 5 est solution de l'inéquation : le crochet est donc tourné vers l'ensemble des solutions (ici, vers la gauche).

Exemple 2

On veut résoudre l'inéquation :

$$-4x + 3 > 5$$

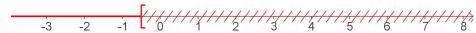
Solution:

$$-4x + 3 - 3 > 5 - 3 - 4x > 2\frac{-4x}{-4} < \frac{2}{-4}x < 0,5$$

Les solutions de l'inéquation sont tous les nombres strictement inférieurs à -0,5.

$$S =]-\infty;-0,5[$$

Représentation graphique



Remarque

− 0, 5 n'est pas solution de l'inéquation donc le crochet est tourné vers l'extérieur par rapport aux solutions (ici vers la droite).