Министерство образования и науки Кыргызской Республики Иссык-Кульский государственный университет имени К.Тыныстанова Кафедра естественных наук

« Согласовано»	« Утверждаю»
Председатель УМС	Зав. кафедрой
« »2024 г.	«»2024 г.

СИЛЛАБУС

(Основы генной инженерии)

Наименование и шифр	720200 Биотехнология
образовательной	Профиль подготовки Биотехнология
программы (Направление/профиль	
подготовки)	
Курс	3
Семестр	6
Всего кредитов	2
Всего академических часов	60(16/14/30)
(лек/пр/сем/лаб/срс)	
Форма контроля(зачет/экзамен)	экзамен
Форма обучения (очная/заочная)	Очная

	Силлабус	составлен в	соответствии	с ООП	ПО	направлению	подготовки ((протокол
N <u>o</u>	OT	г. УМС).						

Составитель: доцент Сариева Гульмира Едигеевна

1. Сведения о преподавателе:

ФИО (полностью)	Должность	Электронный адрес (e-mail)	Телефон
Сариева Гульмира Едигеевна	Доцент		0705855018

2. **Пререквизиты** дисциплины: Генетика, цитология, основы молекулярной биологии, микробиология, физиология растений.

Постреквизиты дисциплины: основы селекции и биотехнология, медицинская и ветеринарная БТ, БТ переработки сельскохозяйственной продукции, биобезопасность, биоконверсия.

Описание дисциплины: Генная инженерия - это создание клеток нового типа на основе их гибридизации, реконструкции и культивирования. Основной задачей генной инженерии является конструирование новых форм с желаемыми признаками. Генная инженерия используется для решения теоретических проблем в биотехнологии и является одним из её основных методов для создания новых форм растений. Метод основан на реконструкции жизнеспособной клетки из отдельных фрагментов с разным генотипом, либо существенном преобразовании исходного генотипа. Курс «Основы генной инженерии» дает представление об основных технологиях генетического преобразования живых клеток микроорганизмов, растений и животных для производства необходимых человеку веществ.

Предметом изучения генной инженерии являются молекулярные инструменты, позволяющие создавать новые геномы на искусственной питательной среде в стерильных условиях.

Объектом генной инженерии являются различные клетки и молекулы.

Цель курса. Познакомить студентов с основными молекулярными инструментами и методами создания (конструирования) новых клеток, которые используются в разнообразных БТ процессах, имеющих большое значение в практической деятельности человека.

3. Компетенции дисциплины:

- ИК-1. Способен вести деловое общение на государственном, официальном и на одном из иностранных языков в области работы и обучения;
- ИК-2. Способен приобретать и применять новые знания с использованием информационных технологий для решения сложных проблем в области работы и обучения;
- ПК 2. Способен к разработке бизнес-проектов и их проведению;
- $\Pi K-3$. Способен владеть основными методами анализа геномной, структурной и другой биологической информацией;
- ПК 5. Способен анализировать местные природно-климатические условия производства продукции;

4. Результаты обучения дисциплины:

- PO 2. Проводить традиционные научные исследования, участвовать в работе над междисциплинарными проектами, используя базовые микробиологические методы исследовательской деятельности
- РО 3. Анализировать и оценивать социально-экономические и культурные последствия новых явлений в биотехнологии, а также влияние деятельности человека на окружающую среду, способствовать переходу к Зеленой экономике, улучшению здоровья населения и устойчивому развитию региона.

5. Содержание и структура курса (Календарно-тематический план)

План лекций

	План лекции	
№	Название темы и вопросы	Кол.час
1	Введение в генетическую инженерию. Ферменты	4
	генетической инженерии	
	1. Возможности генной инженерии	
	2. Генная инженерия как наука, методы	
	3. Основные группы ферментов	
	4. Рестриктазы	
	5. Полимеразы	
	6. Обратная транскриптаза	
	7. Лигазы	
	8. Терминальная трансфераза	
2	Понятие вектора и его емкости	2
	1. Плазмидные векторы	
	2. Векторы на основе фага	
	3. Космиды	
	4. Сверхъемкие векторы	
3	Определение последовательности (секвенирование) и	2
	клонирование ДНК	
	1. Химический метод	
	2. Ферментативный метод	
	3. Гибридизация	
	4. Клонирование ДНК in vivo	
	5. Полимеразная цепная реакция (ПЦР)	
4	Введение нового гена в клетку	2
	1. Гены-маркеры	
	2. Регуляция экспрессии генов у прокариот и эукариот	
	3. Способы прямого введения гена в клетку	
5	Генетические манипуляции с бактериальными и	2
	животными клетками	
	1. Манипуляции с бактериальными клетками	
	2. Генотерапия	
	3. Получение трансгенных животных	
6	Генная инженерия растений	4
	1. Трансформация растительного генома	
	2. Введение генов в растительные клетки	
	3. Достижения генной инженерии растений	
	4. Экономическая выгода и биобезопасность трансгенных	
	растений	17
	Всего	16

План лабораторных занятий

№	Название темы и вопросы	Кол.час
1	Ферменты генетической инженерии	4
	1. Эндонуклеазы рестрикции	
	2. Метилтрансферазы	
	3. Лигазы	
	4. Полимеразы	
2	Механизм и постановка ПЦР	4

	1. Выделение ДНК	
	2. Амплификация ДНК	
	3. Гель-электрофорез и идентификация	
3	Молекулярные векторы и маркеры ДНК	2
	1. Методы, основанные на ПЦР	
	2. Применение молекулярных маркеров в судебной экспертизе,	
	филогенетических исследованиях, построение генетических	
	карт	
	3. Диагностика болезней	
4	Молекулярное клонирование	2
	1. Векторы для клонирования	
	2. Бактериальные штаммы для клонирования и экспрессия генов	
5	Методы идентификации трансгена	2
	1. ПЦР в режиме реального времени	
	2. Изучение экспрессии генов на уровне белка	
	Всего за 4 семестр	14

График самостоятельной работы студентов:

№	Задание срс	Количес-	Вид	Срок сдачи задания	Макс. балл
		TBO	задания	(Сроки выполнения	
		часов		(день недели и	
				время	
				в соответствии с	
				расписанием)	
1.	История развития	4	Эссе	7 нед.	1
	генетической инженерии		Кластер		
2.	Классификация и номенклатура рестриктаз	4	Аннотация	8 нед.	1
3.	Механизм действия рестриктаз	2	Схема	9 нед.	3
4	Построение рестрикционных карт	2	Схема	10 нед.	3
5	Применение ПЦР в медицине	2	Тезис	11 нед.	3
6	Получение трансгенных растений	4	Эссе	12 нед.	3
7	Биобезопасность и ГМО		Опрос населения, презентация результатов	13 нед.	3
8	Биоэтика в вопросах питания	4	доклад	14 нед.	2
9	Выгоды и риски применений БТ в сельском хозяйстве	4	презентация	15 нед.	1
	Всего	30		Всего:	20 баллов

Задания и вопросы рубежного и итогового контроля. Модуль 1

- История развития генетической инженерии 1.
- Классификация рестриктаз 2.
- Номенклатура рестриктаз 3.
- Механизм действия рестриктаз 4.
- 5.
- Построение рестрикционных карт Рестриктазно-лигазный метод получения рекомбинантной ДНК 6.
- Получение трансгенных растений 7.

- 8. Биобезопасность и ГМО
- 9. Биоэтика в вопросах питания
- 10. Разнообразие и эволюция систем CRISPR/Cas
- 11. Возможности генной инженерии
- 12. Генная инженерия как наука, методы
- 13. Основные группы ферментов
- 14. Полимеразы
- 15. Обратная транскриптаза
- 16. Лигазы
- 17. Полинуклеотидкиназы
- 18. Терминальная трансфераза
- 19. Плазмидные векторы
- 20. Векторы на основе фага
- 21. Космиды
- 22. Сверхъемкие векторы
- 23. Химический метод
- 24. Ферментативный метод
- 25. Гибридизация
- 26. Клонирование ДНК in vivo
- 27. Полимеразная цепная реакция (ПЦР)
- 28. Продукты из генетически модифицированных организмов (ГМО)
- 29. Гены-маркеры
- 30. Регуляция экспрессии генов у прокариот и эукариот
- 31. Типы векторов
- 32. Способы прямого введения гена в клетку
- 33. Манипуляции с бактериальными клетками
- 34. Генотерапия
- 35. Получение трансгенных животных

6. Список источников и электронных ресурсов

Основная литература.

- 1. Г.А. Журавлева, С.Е. Москаленко, Е.Е. Андронов и др. Генная инженерия в биотехнологии (семинары). СПб.: Эко-Вектор, 2017.
- 2. А.Н. Огурцов. Основы генной инженерии и биоинженерии. Харьков, НТУ, «ХПИ» 2018 г. Генная инженерия: практическое руководство к выполнению лабораторных работ /
- 3. Г.Г. Гончаренко, А.А. Сурков, А.Н. Лысенко; М-во образования Республики Беларусь, Гомельский гос. ун-т им. Ф. Скорины. Гомель: ГГУ им. Ф.Скорины, 2012. 48 с.
- 4. Л.И. Патрушев. Искусственные генетические системы. М.: Наука, 2004. 530 с. Дополнительная литература
- 1. З.И. Абрамова. Введение в генетическую инженерию: Учебное пособие для самостоятельной внеаудиторной работы студентов по курсу «Генная инженерия». Казань: Казанский университет, 2008.- 169 с.
- 2. Киселева И.С. Генетически модифицированные организмы и проблемы биобезопасности. Хрестоматия. Екатеринбург: УрГУ, 2007 — 305 с.

Электронные ресурсы

1. Петухова, Е. В. Молекулярная биология с элементами генетики и микробиологии: учебное пособие: [12+] / Е. В. Петухова, З. А. Канарская, А. Ю. Крыницкая Казанский национальный исследовательский технологический институт. – Казань : Казанский национальный исследовательский технологический университет (КНИТУ), 2019. - 96 с. : табл.. подписке. ИЛ., схем. Режим доступа: ПО URL: https://biblioclub.ru/index.php?page=book&id=683815

2. Фонд оценочных средств текущего контроля/промежуточной аттестации по модулю клеточной и субклеточной организации биологических объектов : учебное пособие / Южный федеральный университет, Академия биологии и биотехнологии им. Д.И. Ивановского. – Ростов-на-Дону : Южный федеральный университет, 2015. – 626 с.

7. Оценивание

APC 1	CPC 1	ПК 1	Экзамен	Итого
			(компьютерно	
			e	
			тестирование)	
10	10	10	40	100

Сумма баллов 1 модуля – 60 баллов; Всего – 100 баллов

Примечание: **АРС** – аудиторная работа студента; **СРС** – самостоятельная работа студента; **ПК** – промежуточный контроль.

8. Политика курса

Основные требования к студенту:

- -Обязательное посещение занятий;
- -Активность во время практических (семинарских) занятий;
- $-\Pi$ одготовка к занятиям, к выполнению домашнего задания и СРС и т.д.

Недопустимо:

- -Опоздание и уход с занятий;
- --Обман и плагиат;
- -Несвоевременная сдача заданий и др.

Лист согласования

Силлабус по дисциплине <u>Основы генной инженерии п</u>о профилю направления <u>Биотехнология</u> составлен и оставлен без изменения для использования в 2023-24 учебном году.

	 OT
Заведующий кафедрой:	
подпись, фио)	