
Lecture note 4: Eager execution and interface
CS 20: TensorFlow for Deep Learning Research
cs20.stanford.edu
Prepared by Chip Huyen and Akshay Agrawal
Contact: chiphuyen@cs.stanford.edu, akshayka@{cs.stanford.edu, google.com}

Up until this point, we’ve implemented two simple models in TensorFlow: linear regression to predict
life expectancy from birth rate , and logistic regression to do an Optical Character Recognition task on
the MNIST dataset. We’ve learned that a TensorFlow program often has two phases: assembling the
computation graph and executing that graph. But what if you could execute TensorFlow operations
imperatively, directly from Python? This can make debugging our TensorFlow models a lot less
intimidating.

In this lecture, we introduce eager execution, rewriting our linear regression model with eager.

Eager execution
Eager execution is (1) a NumPy-like library for numerical computation with support for GPU
acceleration and automatic differentiation, and (2) a flexible platform for machine learning research
and experimentation. It's available as tf.contrib.eager, starting with version 1.50 of TensorFlow.

● Motivation:
○ TensorFlow today: Construct a graph and execute it.

■ This is declarative programming. Its benefits include performance and easy
translation to other platforms; drawbacks include that declarative
programming is non-Pythonic and difficult to debug.

○ What if you could execute operations directly?
■ Eager execution offers just that: it is an imperative front-end to TensorFlow.

● Key advantages: Eager execution …
○ is compatible with Python debugging tools

■ pdb.set_trace() to your heart's content!
○ provides immediate error reporting
○ permits use of Python data structures

■ e.g., for structured input
○ enables you to use and differentiate through Python control flow

● Enabling eager execution requires two lines of code

import tensorflow as tf

import tensorflow.contrib.eager as tfe

tfe.enable_eager_execution() # Call this at program start-up

and lets you write code that you can easily execute in a REPL, like this

x = [[2.]] # No need for placeholders!

m = tf.matmul(x, x)

print(m) # No sessions!

tf.Tensor([[4.]], shape=(1, 1), dtype=float32)

For more details, check out lecture slides 04.

https://docs.google.com/presentation/d/1e1gE2JJXipWm1UJgor_y8pHcM8L8oMaCVtvQvZUBlQY/edit?usp=sharing

