Bean-independent Properties

A proposal by Jesse Wilson
With inspiration from Shai Almog, Richard Bair, Stephen Coulbourne, Remi Forax, Mikael Grev, and Shannon Hickey.

Draft 2 - October 1, 2007 - as suggested by Boris Bokowski, adding '##' marks to the declaration so the property

keyword only needs to be used once
Draft 1 - Sept 30, 2007

This proposal introduces a Property interface and Java™ language changes
to make working with properties more concise.

The core design decisions of this proposal:
o Properties are per-type, not per-instance.

e Anonymous classes are used for efficient property access.
o Properties are extensible using the decorator pattern.

1. The Property interface

public interface Property<B,V> ({

/**
* Returns the value of this property on {@code bean}.
* @throws PropertyException if the value cannot be resolved.
*/

V get (B bean);

/**
* Returns this value of this property on {@code bean},
* or {@code defaultValue} if the value cannot be resolved.
*/

V get (B bean, V defaultValue);

/**

* Sets the value of this property on {@code bean}.

* @throws PropertyException if the value cannot be applied.
* @return the previous value

*/

V set (B bean, V wvalue);

/**

* Returns a short name for this property, such as
* "city" or "shippingAddress".
*/

String getName () ;

2. Syntax - getters & setters

JavaBeans:
Customer customer = .
String city = customer.getCity();
customer.setCity ("San Francisco");

Bean-independent Properties, direct access:
Customer customer =
String city = customer#city;
customer#city = "San Francisco";

Bean-independent Properties, access via a Property object:
Customer customer =
Property<Customer, String> customerCityProperty
= Customer##city;
String city = customerCityProperty.get (customer) ;
customerCityProperty.set (customer, "San Francisco");

3. Syntax - declaring a non-observable property

We introduce the 'property' keyword, which is used in every property
declaration to create the property instance. We use 2 hashes '##' to
designate that this is a property, which doesn't have the same behavior as
a field.

JavaBeans:
public class Customer {
private String city = "";

public String getCity () {
return city;

}
public void setCity(String city) {

this.city = city;
}
}

Bean-independent Properties:

public class Customer ({
public Property<Customer, String> ##city = property("");

}

Bean-independent Properties with getters and setters:

This is necessary for compatibility with legacy code and to implement
interfaces.

public class Customer {
public Property<Customer, String> ##city = property("");

public String getCity () {
return #city;

}
public void setCity(String city) {

#city = city;

4. Syntax - declaring an observable property

JavaBeans:
public class Customer {
private final PropertyChangeSupport propertyChangeSupport

= new PropertyChangeSupport (this);
private String city = "";

public String getCity () {
return city;

}

public void setCity(String city) {
String o0ldCity = this.city;
this.city = city;

firePropertyChangeSupport (this, "city", oldCity, city);
}
public void addPropertyChangelListener (PropertyChangelListener
listener) {
propertyChangeSupport.addPropertyChangelListener (listener);
}
public void
removePropertyChangelistener (PropertyChangelListener listener) {

propertyChangeSupport.removePropertyChangelListener (listener) ;
}
}

Bean-independent Properties:
public class Customer ({
private Property<Customer, PropertyChangeSupport>
##propertyChangeSupport
= property(new PropertyChangeSupport (this)):;
private Property<Customer,String> ##city = new
BasicPropertyBuilder (property (""))
.observable (##propertyChangeSupport)
Jbuild() ;

public void addPropertyChangelListener (PropertyChangelListener
listener) {
#propertyChangeSupport.addPropertyChangelListener (listener);
}
public void
removePropertyChangelistener (PropertyChangelListener listener) ({

#propertyChangeSupport.removePropertyChangelListener (listener) ;

}

5. A Complete Example

public class Customer ({

private Property<Customer, PropertyChangeSupport>
##propertyChangeSupport
= property(new PropertyChangeSupport (this));

public final Property<Customer,Long> ##id
= new BasicPropertyBuilder (property())

.build();

public Property<Customer,String> ##city
= new BasicPropertyBuilder (property())
.observable (##propertyChangeSupport)
.build() ;

public Property<Customer, String> ##emailAddress
= new BasicPropertyBuilder (property())
.matchingConstraint (EmailAddresses.CONSTRAINT)
.observable (##propertyChangeSupport)
.build();

public Property<Customer,List<Address>> ##addresses
= new
BasicPropertyBuilder (property (Collections.emptyList()))

.defensiveCopyOnSet (PropertyFunctions.LIST TO IMMUTABLE LIST)
.nonNull ()
.observable (##propertyChangeSupport)
Lbuild() ;

public Customer (long id) {
this#id = id;
}

public void equals (Object other) {
return other instanceof Customer
&& Properties.equals (this, other, ##id);

public void hashCode () {
return Properties.hashCode (this, ##1id);

public void toString () {
return String.format (" (Customer:%d)", #id);

}

public static void main (String[] args) {
Customer jesse = new Customer (4);
jessef#city = "Mountain View";

Customer Jjames = new Customer (5);
james#city = "Portland";

Customer kevin = new Customer (6);
kevin#city = "Waterloo";

Comparator<Customer> cityComparator
= Properties.newComparator (Customer##city) ;

List<Customer> customers = Arrays.asList(jesse, Jjames,

kevin) ;
Collections.sort (customers, cityComparator);

System.out.println ("The first city is " +
customers.get (0) #name) ;

}

6. What the compiler does behind-the-scenes: Declaring a Property

(Colours are used to show the mapping between symbols)

public class Customer {
public Property<Customer,String> ##city = property("")

}

IS equivalent to:

public class Customer {
private String $v_city = "'";
public static final Property<Customer,String> $p city = new
AbstractProperty<Customer, String> () {
public String get (Customer c) {
return c.$v_city;
}
public void set (Customer ¢, String value) {
c.8v_city = value;
}
public void getName () {
return "city";
}
i

7. What the compiler does behind-the-scenes: Accessing a Property's

value

String city = customer#city;
customer#city = "San Francisco";

is equivalent to:

String city = Customer.$p city.get (customer);
Customer.Sp city.set (customer, "San Francisco");

8. What the compiler does behind-the-scenes: Accessing the Property
object

Property<Customer, String> customerCityProperty =
Customerf##city;
String city = customerCityProperty.get (customer) ;

IS equivalent to:

Property<Customer, String> customerCityProperty =
Customer.Sp city;
String city = customerCityProperty.get (customer) ;

9. The BasicPropertyBuilder class

This is a regular Java Builder. It has the following API:

public class BasicPropertyBuilder<B,V> ({
public BasicPropertyBuilder (Property<B,V> delegate);

/** make the returned property observable */
public BasicPropertyBuilder observable (
Property<B, PropertyChangeSupport> propertyChangeSupport) ;

/** make the returned property enforce {@code constraint} */
public BasicPropertyBuilder matchingConstraint (Constraint<v>
constraint);

/** copy mutable set () parameters using the specified copying
converter */

public BasicPropertyBuilder defensiveCopyOnSet (Converter<V,V>
copier);

/** shorthand for {Qcode
#matchingConstraint (Constraints.NON NULL) }. */
public BasicPropertyBuilder nonNull () ;

/** create the property */
public Property<B,V> build();
}

Since this is implemented with simple Java, it is user-replaceable. For
example, you could create custom builders that build Property objects that
support Localizable names, logging, etc.

This code shows how the builder is not special - the compiler just converts
the property() command in place as an argument to the builder's
constructor:

public Property<Customer, String> ##city
= new BasicPropertyBuilder (property())
.observable (##propertyChangeSupport)
Jouild() ;

is equivalent to:

private String $v_city;
public static final Property<String> $Sp city
= new BasicPropertyBuilder (
new AbstractProperty<Customer, String> () {
public String get (Customer c) {
return c.$v_city;
}
public void set (Customer c, String value) {
c.$v_city = value;
}
public void getName () {
return "city";
)
.observable ($Sp propertyChangeSupport)
Jbuild() ;

9. Outstanding Design Decision: Exposing bean and value types

It might be worthwhile to include additional methods on the Property
interface to expose the types of the bean and value object.

public interface Property {

Type getDeclaringType () ;
Type<V> getValueType() ;
}

10. Outstanding Design Decision: modifier keywords

Behaviour for modifier keywords 'static', 'final’, 'transient', etc. still
requires formalization.

11. Outstanding Design Decision: Interfaces

Can interfaces expose Properties?

12. Outstanding Design Decision: Symbols

The hash '#' and double hash '##' symbols are chosen for convenience. We

may want to choose a different symbol depending on user taste, such as
l_>l.

13. Known limitations

Properties don't play nicely with inheritance, regardless of how they are
implemented.

A large number of anonymous inner classes will be generated using this
solution. Each has a cost on the filesystem (which is reduced when .jars

are used) and at runtime. One alternative is reflection, which has a high
runtime cost. A third alternative is a combination of reflection and runtime
code-generation.

This proposal requires a 'property' keyword. That's a fairly heavily used
name in today's Java code, so another keyword may need to be used?

