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Web applications need a mechanism to track memory usage of the document, and each 
associated worker, to optimize performance and detect memory leaks and regressions 
within their code. 
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Use cases 

 
“We (Inbox) track jsheap memory in prod. The problem is that only captures memory for the 
main tab.  In Inbox we have a worker that manages the bulk of our data model.  For example 
most of our network access happens in the worker, and lots of proto manipulation happens 
there.  So there is a huge opportunity for us to go off the tracks and chew through memory in 
the worker.” - Garrick Toubassi, Google 
 
“Docs needs memory monitoring for the following cases: 

●​ Shared worker where the bulk background syncer lives. 
●​ Calculation engine lives in a traditional web worker.” - Steven Saviano, Google 

 
“When we started shipping 128 MB devices, I pointed out that not only does a dev have to be 
mindful of their peak JS Heap Size, but things like bitmaps, audio, video, and probably even 
complexity of the DOM affect total memory usage.” - Nick Desaulniers, Mozilla 
 
“We've had a lot of people implement TV's that run youtube with subpar performance that was 
making us look bad so we needed some base line for memory usage.” - YouTube 
 
“When developing native web applications in a web-based OS like Firefox OS, having access to 
more native memory measurements such as PSS, RSS, and USS are important to developers 
as well.” Eli Perelman, Mozilla 
 
Note: add yours here. 
 

mailto:igrigorik@chromium.org
https://bugzilla.mozilla.org/show_bug.cgi?id=1124223#c14


Where we are today 

●​ Chrome 
○​ Exposes a rate-limited and quantized view via performance.memory. 

■​ https://bugs.webkit.org/show_bug.cgi?id=80444  
■​ http://trac.webkit.org/changeset/123856  

○​ Intent to ship in Worker blocked due to lack of standard/spec. 
■​ https://code.google.com/p/chromium/issues/detail?id=326370 

●​ Mozilla 
○​ Intent to implement is blocked due to lack of standard/spec. 

■​ https://bugzilla.mozilla.org/show_bug.cgi?id=1124223  
●​ IE 

○​ Positive 
●​ Safari 

○​ No signals 
 

API requirements 

 
1.​ Standard API available for main-frame and worker processes. 
2.​ Low-overhead monitoring via Performance Observer: no polling; UA is responsible for 

emitting records when new data is available; interop with other monitoring APIs, such as 
Frame Timing, User Timing, etc. 

a.​ Optional? Method to query current memory usage at a point in time. 
i.​ e.g. performance.memory 

3.​ Memory usage metrics: 
a.​ JS heap size. estimate of size of live objects on the JS heap. 
b.​ DOM size, bitmaps, audio video? These are important and have known to cause 

many problems in the past - e.g. implementing a performant infinite scroll 
requires active management and recycling of memory used by images, canvas, 
etc. Further this is critical for lower-end devices which have limited memory - e.g. 
Android One hardware, etc. 

c.​ https://code.google.com/p/chromium/issues/detail?id=484664  
4.​ Consider security and privacy implications - e.g. side channel attacks, information about 

cross origin resources, etc. 
 

Questions 

1.​ What data can we expose? 
a.​ JS heap is straightforward and useful. 

https://bugs.webkit.org/show_bug.cgi?id=80444
http://trac.webkit.org/changeset/123856
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/g5YRCGpC9vs
https://code.google.com/p/chromium/issues/detail?id=326370
https://bugzilla.mozilla.org/show_bug.cgi?id=1124223
http://w3c.github.io/performance-timeline/#the-performance-observer-interface
https://code.google.com/p/chromium/issues/detail?id=484664


b.​ Developers also want memory usage of other components: DOM size, image, 
video, etc. What can we expose in a cross-UA manner? At a minimum, can we 
define a “total”, for which JS heap is a subset? 

c.​ How do Shared Array Buffers get reported? 
i.​ https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/d-0ibJw

CS24/E7oB7sIaLccJ 
d.​ How are iframes accounted for? 

 
2.​ Is “memory used” the right thing to surface? 

a.​ It’s hard to reason about used memory across different architectures (both OS 
and UA), and precise accounting is both expensive and opens security + privacy 
questions.  

i.​ https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/_MOh3l
Z8zxo/DiIhJIlnH3gJ  

1.​ “Plus, perhaps prior to killing the page we should dispatch an 
event to the page to let it know when memory is getting tight. 
Maybe a web developer could respond to that by clearing their 
own caches, etc.”  

ii.​ OOM event (Mozilla) 
iii.​ Low Memory Event (whatwg) 

1.​ converges on simple event with no details; as a hint. 
b.​ Perhaps a better signal is a simpler “you’re under memory pressure”, e.g... 

i.​ A callback / notification that fires when the UA is under pressure 
ii.​ A callback / notification based on application defined threshold 

1.​ Eliminates polling, allows you to invoke logic to cleanup, etc. 
iii.​ Chrome implementation notes 

1.​ https://docs.google.com/document/d/1Zz6ksh6l0Q7iW4toIL3gKSA
lkjQkPJPAqUve8OJf4hU/edit#  

 
3.​ Privacy and security 

a.​ Current Chrome implementation buckets memory use, and also rate limits it to 
“once every 20 minutes”, which restricts its use to long-running pages and is too 
restrictive to be useful for dynamic use cases like infinite scroll, working with 
canvas, Service Workers, etc. 

b.​ Can we define some bucketing logic and trigger new memory events when a 
threshold is exceeded, omitting the time-based rate limits? 

c.​ Any other privacy / security issues to look out for? 
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~very rough sketch 

 

interface MemoryEntry : PerformanceEntry { 

    readonly    attribute unsigned long heapSize;      // used heap size 

    readonly    attribute unsigned long nodeCount;     // DOM-node count  

    readonly    attribute unsigned long listenerCount; // ... 

    readonly    attribute unsigned long documentCount; // ... 

    readonly    attribute boolean underPressure;       // ...  

    serializer = {inherit, attribute}; 

}; 

 

var observer = new PerformanceObserver(function(list) { 

    var observedMemoryEntries = list.getEntries(); 

    observedMemoryEntries.forEach(function(e) { 

      // e: {heap: ..., …, total: ...} 

   }); 

}); 

 

observer.observe({eventTypes: ['memory']}); 

 
●​ heapSize: number of bytes consumed by the current navigation or worker context’s 

○​ the user agent MUST quantize the value (function TBD) 
○​ the user agent SHOULD deliver new event whenever new quantized value differs 

from the one that was reported previously 
○​ the quantized value MAY include 

■​ the number of bytes used by allocated JavaScript objects 
■​ the number of bytes used by the DOM (e.g. IE reports retained size) 
■​ the number of bytes used by images, video, and other objects 
■​ OR, alternatively…  

 
●​ Can (should?) we report doc / node / listener counts? 

○​ How would we roll this up or quantize? =/ 
○​ Counting DOM elements can be done via JS... 

 
●​ underPressure: boolean signal indicating that the user agent is under memory 

pressure. 
○​ The application should, if possible, release memory and/or adapt its logic - e.g. 

disable expensive animations, release held buffers, etc. 

https://msdn.microsoft.com/en-us/library/dn255003%28v=vs.85%29.aspx


○​ Implementation: there is no cross-platform signal / implementation for this today. 
On Android the app gets a notification when “under pressure” (i.e. you might get 
killed), but there is no reverse signal. 

■​ You can’t query this synchronously, this is a notification 
■​ As a first approximation: broadcast to all renderers 

Motivation 

●​ Detailed memory reporting is expensive and very hard due to architectural and 
implementation reasons. As such, the intent here is to provide a high-level metric that 
applications can use as an approximation, not as an exact measure: 

○​ The reported amounts may differ based on architecture 
○​ The reported amounts may differ based on user agent 

 
●​ Quantized values are reported due to security reasons (obfuscate impact of a single 

resource, etc), and to make clear that the advertised value is an estimate. 
 

●​ “Under Pressure” flag can be used by application to adapt its logic - e.g. memory use 
can be high, but if we’re not under pressure that’s OK.. higher memory use can yield 
better performance.  

 
 
 
Very, very rough first draft: 
https://rawgit.com/igrigorik/cd4e152d8f01268e5363/raw/d4504a9f7fb66bc59dd22c84ba891d2ab
f5f2482/index.html  
 

https://rawgit.com/igrigorik/cd4e152d8f01268e5363/raw/d4504a9f7fb66bc59dd22c84ba891d2abf5f2482/index.html
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