
Subresource prefetching+loading via
Signed HTTP Exchange
This document is public
horo@, jyasskin@ (last update: May/22/2019)

Spec issue: https://github.com/WICG/webpackage/issues/347
- Signed Exchange subresource substitution
- Signed Exchange alternate link

Crbug: https://crbug.com/935267
TAG review: https://github.com/w3ctag/design-reviews/issues/352
Example: https://github.com/horo-t/sub-sxg
Chrome status: https://www.chromestatus.com/features/5126805474246656
Intent to Implement:
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/zdvJLcditVA
Design Doc:
https://docs.google.com/document/d/1wsK0pQYSrB_ETYPvdVr3_KjYpdAPf1le4S5LKSU9sQM
/edit

Summary
Support signed exchange subresource prefetching and loading by extending the HTTP link
header.

Motivation
Signed Exchanges allow a distributor to distribute content signed by a publisher and have
the UA show the publisher's URL, give scripts access to the publisher's local storage, etc.
Notably, the distributor cannot change anything in the signed content, which means that if
they distribute a signed top-level HTML file, subresources keep the publisher's URLs, so
they can't take advantage of any signed versions that might be prefetched the distributor's
origin. To allow the subresources to be prefetched from the same distributor as the
top-level page, the publisher would need to change the subresource URLs in the HTML to
point to the distributor's URL, which means they'd need to sign a separate top-level HTML
file for each distributor. This seems likely to have the unwanted effect of causing publishers
to only sign versions for a few very-centralized distributors.

We want to allow publishers to create a single signed top-level HTML file that allows its
subresources to be prefetched from any distributor.

https://github.com/WICG/webpackage/issues/347
https://github.com/horo-t/subresource-signed-exchange/blob/master/signed-exchange-subresource-subtitution-explainer.md
https://github.com/horo-t/subresource-signed-exchange/blob/master/signed-exchange-alternate-link-explainer.md
https://crbug.com/935267
https://github.com/w3ctag/design-reviews/issues/352
https://github.com/horo-t/sub-sxg
https://www.chromestatus.com/features/5126805474246656
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/zdvJLcditVA
https://docs.google.com/document/d/1wsK0pQYSrB_ETYPvdVr3_KjYpdAPf1le4S5LKSU9sQM/edit
https://docs.google.com/document/d/1wsK0pQYSrB_ETYPvdVr3_KjYpdAPf1le4S5LKSU9sQM/edit


Bundles of signed resources satisfy the same use case, but they don't let the browser use
its knowledge of its cache to decide what to request. The Link-based system here also
seems useful for CDNs to serve cross-origin resources.

Proposal

Allow the distributor of a prefetched signed exchange (SXG) containing a top-level HTML
page to use Link HTTP headers to declare that the SXG's preloaded subresources are
available at particular distributor URLs so that the UA can prefetch them from the
distributor.

● Use the "alternate" link relation to allow the distributor of a top-level resource to
offer a URL for a signed version of one of its subresources. Specifically,

Link: <https://distributor.example/path/signed_subresource.sxg>;
rel="alternate";
type="application/signed-exchange;v=b3";
anchor="https://publisher.example/original_subresource.image"

This header appears in the outer HTTP response of the main resource signed
exchange to declare the location of the subresource signed exchange URL.

● Introduce a new "allowed-alt-sxg" link relation to declare which subresources a
distributor can substitute with their signed version. This header appears in the
signed inner response of the main resource. This link relation includes the SHA-256
hash of the header information from the substitutable signed exchange, both to
prevent the distributor from encoding messages to the publisher in the selection of
substituted resources and to prevent the distributor from selecting a vulnerable mix
of subresources. For example:

Link: <https://publisher.example/image>;
rel="allowed-alt-sxg";
header-integrity="sha256-MEUCID..."

● When a prefetched main resource signed exchange has a signed preload link to one
of the allowed-alt-sxg subresources, and the outer response declared a replacement
for that subresource, the replacement gets prefetched instead of the original.

● When the user clicks a link and navigate to the main resource signed exchange, the
UA use the prefetched matching subresource signed exchanges and doesn't fetch
the original subresource URL. If the sha256 hash of headerBytes of the subresource
signed exchange is not same as the “header-integrity” attribute, the UA will fall back
to load the original subresource URL.

Simple example: prefetch a single subresource SXG
1. The user opens https://aggregator.example/index.html.
2. The UA detects a link tag.

https://distributor.example/path/signed_subresource.sxg
https://publisher.example/image
https://wicg.github.io/webpackage/loading.html#parsing


<link rel="prefetch"
href="https://distributor.example/publisher.example/article_1.html.sxg">

3. The UA prefetches the sxg.
4. The server returns the sxg:

● In unsigned HTTP response from distributor.example:
○ content-type: application/signed-exchange
○ link:

<https://distributor.example/publisher.example/script.js.sxg>;rel="al
ternate";type="application/signed-exchange[;v=...]";anchor="https
://publisher.example/script.js";

● In signed response header of SXG:
○ link:

<https://publisher.example/script.js>;rel="allowed-alt-sxg";header-int
egrity="sha256-MEUCIA..."

○ link: <https://publisher.example/script.js>;rel="preload";as="script"
5. When the UA detects the preload link header of script.js in the signed response

header, the UA finds the matching allowed-alt-sxg link header in the signed
response header and the matching alternate link header in the unsigned HTTP
response header. If there is a matching link headers, the UA prefetches the
matching sxg (script.js.sxg). So both article_1.html.sxg and script.js.sxg (and certURL
of SXGs) will be stored to the cache.

6. When the user clicks the link of article_1.html.sxg, the UA loads the sxg from the
cache and detects the preload link header of script.js, the matching allowed-alt-sxg
link header and the matching alternate link header. So the UA loads script.js.sxg
instead of script.js. While loading script.js.sxg, the UA checks that the request URL
in signed field of the SXG is same as the URL of script.js, and that the sha256 hash
of headerBytes of the SXG is same as the header-integrity field of allowed-alt-sxg
link header. If it doesn’t match, the UA stop loading script.js.sxg, and fall back to
load the original script.js instead.

Demo: https://sub-sxg.appspot.com/sxg/amptestnocdn_js_preload.sxg (screenshot)
Error case demo:

https://sub-sxg.appspot.com/sxg/amptestnocdn_js_preload_error.sxg (screenshot)
The header-integrity field of allowed-alt-sxg link header of v0.sxg is different from
the actual sha256 hash.

Multiple subresource SXG
If there are multiple matching subresource SXGs (example: script.js.sxg and
image.jpg.sxg), the UA must check that there is no error in the all SXGs (eg: sig matching,
URL matching, Merkle Integrity error) before processing the content of the SXGs. This is
intended to prevent the distributor from encoding a user ID into the set of subresources it
prefetches.

https://html.spec.whatwg.org/multipage/links.html#rel-alternate
https://html.spec.whatwg.org/multipage/links.html#rel-alternate
https://tools.ietf.org/html/rfc8288#section-3.2
https://sub-sxg.appspot.com/sxg/amptestnocdn_js_preload.sxg
https://docs.google.com/presentation/d/17yqx6Ec9tD3vAU5gg3WNssGtNPxLpLqaVj966BNaXSU/edit#slide=id.g4f3434f5b5_0_0
https://sub-sxg.appspot.com/sxg/amptestnocdn_js_preload_error.sxg
https://docs.google.com/presentation/d/17yqx6Ec9tD3vAU5gg3WNssGtNPxLpLqaVj966BNaXSU/edit#slide=id.g4f3434f5b5_0_62


This means that the UA can use the subresource SXGs only when they are defined in the
header.
To prevent distributors from sending tracking IDs to the publisher’s page, Chrome will load
all the resources from the publisher if any integrity check failed.

Demo: https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_preload.sxg
Error case demo:

https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_preload_error.sxg
(screenshot)
The header-integrity of allowed-alt-sxg link header of v0.js.sxg is same as the actual
sha256 hash. But the header-integrity of allowed-alt-sxg link header of
nikko_640_jpg.sxg is different from the actual sha256 hash. In this case, Chrome will
fetch both original subresources (v0.js and nikko_640.jpg) to avoid tracking ID
injection.

Responsive (multi-source) images
Chrome supports imagesrcset and imagesizes attributes of preload link header to preload
responsive (multi-source) images (crbug/813452). To preload SXGs of the appropriate
image, the SXG response from the distributor would be like this:

● In unsigned HTTP response from distributor.example:
○ content-type: application/signed-exchange
○ link:

<https://distributor.example/publisher.example/wide.jpg.sxg>;rel="alternat
e";type="application/signed-exchange[;v=...]";anchor="https://publisher.exa
mple/wide.jpg";

○ link:
<https://distributor.example/publisher.example/narrow.jpg.sxg>;rel="altern
ate";type="application/signed-exchange[;v=...]";anchor="https://publisher.ex
ample/narrow.jpg";

● In signed response header of SXG:
○ link:

<https://publisher.example/wide.jpg>;rel="allowed-alt-sxg";header-integrity
="sha256-MEUCIB..."

○ link:
<https://publisher.example/narrow.jpg>;rel="allowed-alt-sxg";header-integr
ity="sha256-MEUCIC..."

○ link: <https://publisher.example/wide.jpg>; rel=preload; as=image;
imagesrcset="https://publisher.example/wide.jpg 640w,
https://publisher.example/narrow.jpg 320w"; imagesizes="(max-width:
640px) 100vw, 640px"

Demo: https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_preload.sxg
Note: the proof of concept CL does not have the right matching algorithm yet.

https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_preload.sxg
https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_preload_error.sxg
https://docs.google.com/presentation/d/17yqx6Ec9tD3vAU5gg3WNssGtNPxLpLqaVj966BNaXSU/edit#slide=id.g4f3434f5b5_0_101
https://crbug.com/813452
https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_preload.sxg


Content negotiation using Variants and Variant-Key
The alternate link header and allowed-alt-sxg link headers can have variants and
variant-key attributes to support content negotiation (eg: WebP support).

● In unsigned HTTP response from distributor.example:
○ content-type: application/signed-exchange
○ link:

<https://distributor.example/publisher.example/image_jpeg.sxg>;rel="alter
nate";type="application/signed-exchange[;v=...]";variants-05="accept;image/
jpeg;image/webp";variant-key-05="image/jpeg";anchor="https://publisher.e
xample/image";

○ link:
<https://distributor.example/publisher.example/image_webp.sxg>;rel="alte
rnate";type="application/signed-exchange[;v=...]";variants-05="accept;image
/jpeg;image/webp";variant-key-05="image/webp";anchor="https://publishe
r.example/image";

● In signed response header of SXG:
○ link:

<https://publisher.example/image>;rel="allowed-alt-sxg";variants-05="acce
pt;image/jpeg;image/webp";variant-key-05="image/jpeg";header-integrity="
sha256-MEUCID..."

○ link:
<https://publisher.example/image>;rel="allowed-alt-sxg";variants-05="acce
pt;image/jpeg;image/webp";variant-key-05="image/webp";header-integrity=
"sha256-MEUCIE..."

○ link: <https://publisher.example/image>; rel=preload; as=image;
If a UA supports WebP, the UA must load image_webp.sxg which content is WebP format.
Otherwise the UA must load image_jpeg.sxg which content is JPEG format.

Demo:
https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_vary_preload.sxg
(screenshot)
“nikko_640.jpg” is served in WebP format which is more size efficient than JPEG
format.

Why we can’t use the SRI’s integrity instead of signature?
This is because SRI’s integrity can be used only for verifying the integrity of the content
body. So if the UA use the SRI’s integrity value in allowed-alt-sxg link header, we can use
the subresource SXGs to track the users by changing content-type and detecting the image
loading failure.

https://httpwg.org/http-extensions/draft-ietf-httpbis-variants.html
https://developers.google.com/speed/webp/faq#server-side_content_negotiation_via_accept_headers
https://sub-sxg.appspot.com/sxg/amptestnocdn_js_img_vary_preload.sxg
https://docs.google.com/presentation/d/17yqx6Ec9tD3vAU5gg3WNssGtNPxLpLqaVj966BNaXSU/edit#slide=id.g4f3434f5b5_0_77
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity


SXG’s header-integrity can verify the integrity of both the response header and the content
body, because SXG’s header must have digest header.

Can’t we merge allowed-alt-sxg to preload header?
It becomes complicated when supporting the imagesrcset attribute.

Subsetting the list of subresources
If there is a missing rel="alternate" link outer header, UA should ignore the all subresource
signed exchanges to avoid user tracking. So if a distributor want the user to prefetch the
subset of sxg subresources, the publisher must generate multiple main signed exchange.
(For example: article.html.no-subsxg.sxg, article.html.js-only-subsxg.sxg,
article.html.js-and-img-subsxg.sxg)

Origin of the main and subresources SXGs
To limit the complexity, we are restricting the main SXG and the subresources SXGs to be
served from the same origin. If we allow it, we need to consider the cross origin
information leak issues.

● Spec discussion:
https://github.com/WICG/webpackage/issues/347#issuecomment-455494121

https://github.com/WICG/webpackage/issues/347#issuecomment-455494121

