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I. Introduction

How do we colorize images using AI? What are the technical and ethical challenges?

DeepColor is driven by new advancements in Al colorization. Recently, there has been
a surge of interest in AI-driven colorization both in popular media and academic
literature. We take on the problem of colorizing images using advanced deep learning
techniques. On the technical side, we explore how well Convolutional Neural Networks
(CNNs) can understand and replicate colors and their complex distributions in images.
On the ethical side, we examine the implications of using Al to modify images. We are
motivated by the idea that advancing the capabilities of neural networks in image
colorization can contribute to the “big-picture” question of how AI can understand and
replicate human perception. This has important practical applications in the
remastering of historical images, visual art, and surveillance, and also deepens our
understanding of the perceptual processing of Al.

We build upon an existing paper “Deep Koalarization: Image Colorization using CNNs
and Inception-ResNet-V2” by Frederico Baldassarre, Diego Gonzalez Marin, and Lucas
Rodés-Guirao. The paper introduces a model that combines a CNN trained from scratch
with high-level features that were extracted from the pre-trained Inception-ResNet-v2
model for image colorization. We chose this paper because it presents a novel approach
to image colorization that we believe can be streamlined and improved upon with
advanced deep learning techniques and architectures.

Our work innovates on the original paper by employing different architectures, datasets,
and hyperparameters, including U-Net, DenseNet and MobileNet, to evaluate the
impact on colorization accuracy. We streamline certain features of the original model
and test several advanced architectures. The upshot of our project DeepColor is more
accurate and visually appealing colorized images.


https://github.com/annatsv/deepcolor

II. Methodology

Data

We sampled images from three prominent datasets for our project. Importantly, these
are different from the data used in the original paper we are replicating, which used a
subset of 60,000 images from the ImageNet dataset for their model. Due to limitations
in our computing resources, processing and colorizing such a large number of images
was not feasible. Handling large datasets requires a significant amount of memory and
computational power, which exceeds the capacity of our available hardware. To address
this, we experimented with different batch sizes of images (e.g. 100, 200, 300, 400) to
find a balance between computational efficiency and the performance of our model and
settled on a batch size of 383 and 15,000 total images.

First, we used a subset of 5000 images from the COCO Dataset (Common Objects in
Context). We chose this dataset because it provides a diverse range of images with
different scenes and objects which will help our model learn to colorize a wide range of
subjects and scenarios. The COCO dataset contains over 200,000 labeled images,
including complex scenes with multiple objects.

Second, we used a subset of 5000 images from the Places365 Dataset. This dataset is
specifically designed for scene recognition and has over 2.5 million images covering
more than 205 unique scene categories. By including images from Places365 in our
training data, we aimed to enhance our model's ability to colorize various environments,
such as natural landscapes to urban settings. This complements the object-centric focus
of the COCO dataset and provides comprehensive learning for our models.

Third, we used a subset of 5000 images from the ADE20K Dataset which contains
more than 20,000 images annotated with objects and object parts. This dataset provides
our model with the opportunity to learn the colorization of both objects and their parts
in detail, which is important for achieving realistic colorization results.

Each subset of 5000 images was split into training and validation sets with 4000 images
allocated for training and 1000 images for validation for each dataset for each model. So
in total each model had 12000 images in training and 3000 images in validation. We
processed all of the data in four main preprocessing steps:

1. GreyScale Conversion: We converted the color images to grayscale to create
the input for our colorization model. This step is important as our models aim to



learn how to add color to grayscale images. It's also important to note that we
chose to use colored datasets (and not grayscale datasets) to retain the original
color images as the "ground truth" for training and evaluating our model. This
allows us to compare the colorized output of our model to the original color
images and calculate metrics such as Mean Squared Error (MSE) or Peak
Signal-to-Noise Ratio (PSNR) to assess the colorization accuracy.

2. Resizing Images from the Datasets: We resized the images to a uniform size
(e.g., 256 x 256 pixels) to ensure consistency across the datasets and reduce
computational load during training. We made this choice based on the
computational resources available, the desired level of detail in the selected
colorized images, and uniform batch processing.

3. Normalization: We normalized the pixel values to a range that is suitable for
the input to our network [0, 1] to help with our training process and to improve
convergence. This helps us make sure that all input features (pixel values in our
case) are treated equally by the models.

4. Data Augmentation: We tested the models with data augmentation techniques
such as rotation and flipping. The purpose of this was to help our model
generalize to unseen data by simulating variations that might occur in real-world
scenarios (e.g. objects getting rotated, flipped over, etc.). But we found that these
techniques distorted the images in ways that adversely affected the training
results. So we eliminated this data augmentation step to better align the training
process with the original paper and our goal of maintaining the integrity of the
image and colorization accuracy.
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Figure 1. This figure illustrates the preprocessing steps in our study and shows the transformation of
various raw images into their preprocessed (greyscale, resized and normalized) versions.



Models

The original paper proposed a model that combines a deep Convolutional Neural
Network (CNN) trained from scratch with high-level features extracted from the
pre-trained Inception-ResNet-v2 model. Their architecture includes an encoder-decoder
structure with a fusion layer that integrates the features from the Inception-ResNet-v2
model. This fusion layer basically makes sure that the semantic information provided
by the Inception-ResNet-v2 model is distributed across the spatial regions of the image,
which helps the decoder in generating a more accurate and detailed colorization.
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Figure 2. Model architecture from the “Deep Koalarization” paper. In place of the original fusion layer we
employ advanced architectures U-Net, DenseNet, or MobileNet to evaluate performance, potentially
eliminating the need for additional fusion layers and streamlining the CNN-based colorization task.

In DeepColor we experimented with the following architectures, and include our
rationale for selecting each one below:

1. U-Net: U-Net is effective in image segmentation tasks. U-Net uses skip
connections that can help us retain important spatial information and
reconstruct the detailed color in the images. We hypothesized that U-Net's ability
to capture both local and global features might be beneficial for image
colorization.

2. DenseNet: DenseNet has dense connections between layers, which can enhance
feature propagation and reduce the number of parameters in our model. We
believed that DenseNet's architecture could provide a good balance between the
complexity of our model and its colorization quality.



3. MobileNet: MobileNet has compact and layer-specific connections which can
potentially reduce computational cost while maintaining accuracy. This is
important for our work given our limited computational resources. We
experimented with MobileNet to explore the trade-off between model size and
colorization performance.

Similarly to the original paper, we used the Adam optimizer with a learning rate of
.0001. We used a fixed image size and a batch size of 383 images per epoch. For our
models (U-Net, DenseNet, and MobileNet), we trained them with the objective loss
function being the Mean Squared Error (MSE) between the estimated colors of the
pixels and their real-world values, derived from the ground-truth, unpreprocessed, full
color images. All models return output image shapes of (256,256,3).

The U-Net model was trained without a pre-trained base model. It consists of four
encoder blocks which convolve over the input, apply batch normalization, and activate
the output using the LeakyRelu function with an alpha of .01. Next, there are three
decoder blocks which perform a transpose convolution, integrate a skip connection,
then apply normalization, dropout, and activation layers. A dropout rate of 0.5 and the
ReLU function were used. A final transpose convolution is performed with a sigmoid
activation function to produce the final output.

The DenseNet model was trained using the pre-trained DenseNet121 as a base model.
The weights were pre-trained on the Image Net dataset. The inputs are fed into the base
model which acts as the encoder of the model. The encoded results are passed through 5
decoder blocks. Each block consists of an upsampling layer and a 2D convolution. Then,
an activation function is applied along with a batch normalization layer. The first four
blocks use a ReL.U activation function. The last block uses a sigmoid activation function
and forgoes the batch normalization layer.

The MobileNet model is similar to the DenseNet model, except that MobileNet uses
MobileNet as a base model for the encoder, also pre-trained on the image net dataset.
Our MobileNet model then goes through 5 cycles of upsampling, convolving, and
activating with the ReLLU function. There is then a final sixth convolution with a sigmoid
activation function.

Metrics

Success is primarily measured by the accuracy of colorization by our model. We assess
the success of our colorizers hrough quantitative and qualitative analysis. In addition to
accuracy, we will also consider the visual appeal and the naturalness of the colorized



images as a metric for success since our ultimate goal is to produce images that are not
only accurate but also aesthetically pleasing to perceivers.

We believe that these new metrics improve upon the original paper. The authors of the
“Deep Koalarization” paper we are building upon aimed to show that a model that
combined a CNN with high-level feature extraction from the Inception-ResNet-v2 model
could accurately colorize images. However they primarily quantified their results
through qualitative assessments. For their quantitative assessments, they mentioned
using Mean Squared Error (MSE) as the objective function during training but did not
provide explicit MSE values as a measure of colorization accuracy in the results section.

Instead, they conducted a user study to assess the “public acceptance” of the colorized
images, where participants were asked to judge whether the colorized images looked
real or not. In the paper, "public acceptance" refers to the percentage of participants in a
user study who mistakenly identified colorized images as real color images. A higher
rate of public acceptance indicates that the colorized images are more convincing and
indistinguishable from true color images to human observers. This qualitative approach
allowed them to gauge both the perceived realism of their model's output and its visual
appeal, which is what we are also trying to achieve.

In DeepColor, we use both qualitative and quantitative assessments, including a user
study as well as quantitative assessments like Mean Squared Error (MSE) or Peak
Signal-to-Noise Ratio (PSNR) between the colorized and original images.

Results

Our base goal was to achieve colorized outputs for each model and approximate the
performance of the original paper in terms of colorization quality. We were aiming for a
similar rate of "public acceptance" in a user study, which was reported to be 45.87% in
the original paper, and use additional metrics such as Mean Squared Error (MSE) or
Peak Signal-to-Noise Ratio (PSNR) between the colorized and original images, even
though the original paper did not provide explicit quantitative metrics.

Our target goal was to improve upon our quantitative and qualitative assessments by
experimenting with different architectures and hyperparameters. This could involve
achieving higher "public acceptance" rates in a user study (e.g., exceeding 45.87%) or
good scores on quantitative metrics like MSE or PSNR.

Our stretch goal was to achieve state-of-the-art colorization accuracy that potentially
surpasses the model in the original paper as well as other existing models in the field of
colorization. This would involve significantly higher "public acceptance" rates and



superior quantitative metric scores, indicating that our model can produce highly
realistic and accurate colorizations. Here are the qualitative results of our three models:

Preprocessed Model Output Ground Truth

Figure 3: Comparison of Colorization. First two rows are U-Net, the next two are DenseNet, and the final
row is MobileNet. Notably, all models achieved colorization though with varying degrees of accuracy.

We conducted a public acceptance study and used MSE and PSNR as additional metrics.
We also qualitatively evaluated the images. Each of the models performed differently in
reference to the goals set at the beginning of the project. Here are the visualized results
of our user study:



Is this Image Real or Fake?

U-Net

DenseNet

Model

MobileNet
100%

1
0 20 40 60 80 100
Percentage

Figure 4. This figure illustrates the public acceptance of our generated colorized images. The sample size
was 30 undergraduate and graduate students at Brown.

U-Net met the base goal and the target goal. It achieved a user acceptance of 53% which
marks a substantial improvement over the 45.87% acceptance rate in the original paper.
The Mean Squared Error (MSE) for the U-Net model was 0.006. The Peak
Signal-to-Noise Ratio (PSNR) for the U-Net model was 23.799. The MSE and PSNR
cannot help us compare our models to the original study, but they are useful for
comparing the models between each other. Qualitatively, U-Net produced sharp, clear
images with generally correct colors. The predicted colorizations were often less
saturated than the original photos but still accurate. See Figure 5 for the training and
validation dynamics for U-Net.
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Figure 5. Example Training and Validation for U-Net. U-Net accuracy and loss over 30 epochs shows
rapid early improvement and stabilization.

DenseNet also met the base goal and target goal, achieving a 46% acceptance rate. This
is a marginal improvement in acceptance compared to the original paper. The Mean
Squared Error (MSE) for the DenseNet model was 0.013 which is about double the MSE
of U-Net. The Peak Signal-to-Noise Ratio (PSNR) for the DenseNet model was 19.469
which is slightly lower than U-Net. Qualitatively, DenseNet produced slightly fuzzier
images than U-Net. It displayed a strong ability to correctly predict colors, but less
ability to preserve sharp features and details in the predicted colorizations. See Figure 6
for the training and validation dynamics for DenseNet.



Accuracy over epochs Loss over epochs

—— Training Accuracy
Validation Accuracy

—— Training Loss
Validation Loss

0.25 4
0.60

0.20 4

0.55 1 /_/

0.50 4 /
0.15 4

0.45 +

0.10 4
0.40

0.35 0.05 4

it
——

0.30 4

0.00 4

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 6. Example Training and Validation for DenseNet. DenseNet accuracy and loss over 30 epochs
shows a steady increase in training accuracy while validation accuracy fluctuates significantly. It also
shows that both training and validation loss decrease over time with a spike in validation loss during the
final epochs.

MobileNet did not meet the base goal. While it did achieve colorized outputs, and so met
some expectations, its colorizations were not accepted by the general public. The Mean
Squared Error (MSE) for the MobileNet model was 0.053 which is almost five times
larger than DenseNet and almost ten times larger than U-Net. The Peak Signal-to-Noise
Ratio (PSNR) for the MobileNet model was 13.102 which is much lower than both U-Net
and DenseNet. Qualitatively, MobileNet produced colorization predictions that did not
match the ground truth images. MobileNet’s colorizations can be characterized as
extremely noisy blends of color without the definitive features of the original pictures
represented. While the correct colors were often located in the correct general areas of
the image, ultimately, they lacked any real coherence. As we reflect on our project, this
was perhaps not surprising and due to the lightweight architecture of MobileNet which
struggles to capture the finer details necessary for accurate colorization. See Figure 6
for the training and validation dynamics for MobileNet.
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Figure 7. Example Training and Validation for MobileNet . MobileNet accuracy and loss over 30 epochs
shows that the training accuracy of the model increases over 30 epochs and the training loss consistently
decreases. However, the validation accuracy shows less change and the validation loss is volatile with
spikes at epochs 10 and 25. These signs indicate that the model might not perform well on new, unseen
data.

We conducted an ablation study on the number of epochs to determine the optimal
tradeoff between computing resources and model accuracy. Our results from above were
produced by models trained for 30 epochs. We can see based on the data from training
the models on 10 epochs instead of 30 epochs, the models have similar levels of
performance. This indicates that future models designed to colorize images likely do not
need to train for an excessive number of epochs. See Figure 8 for a qualitative
comparison between model outputs for U-Net for 10 and 30 epochs. And See Figure 9
for a quantitative assessment of different metric evaluations with respect to different
numbers of epochs for all models.
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Figure 8. Visualizations of model outputs for U-Net above. First 5 rows are colorized images produced at
10 epochs. Final 5 rows are colorized images produced at 30 epochs.



Table 1: Colorization Performance Across Different CNN Architectures

Model MSE (10 Epochs) PSNR (10 Epochs) MSE (30 Epochs) PSNR (30 Epochs)

U-Net* 0.006 23.229 0.006 23.799
DenseNet  0.014 19.073 0.013 19.468
MobileNet 0.049 13.366 0.053 13.102

Figure 9: Quantitative Performance Metrics. A higher Mean Squared Error (MSE) indicates poorer image
quality as it measures the average squared intensity differences between the ground truth and colorized
image. A lower Peak Signal-to-Noise Ratio (PSNR) indicates poorer image quality as it decreases
logarithmically with an increase in MSE score and signifies that there is greater distortion in the colorized
image. *U-Net demonstrates the best performance with minimal MSE and maximal PSNR. MobileNet
shows consistent low performance. Extended training moderately benefits U-Net and DenseNet.

ITII. Challenges

There were four large challenges in the project that were all resolved. One challenging
aspect of our project was dealing with the architectural complexities of the three models
we implemented. In particular, the upsampling processes required to match the output
image size with the input dimensions was challenging. To work through this, we
experimented with different configurations of upsampling layers. This process required
extensive testing and validation to ensure that the network architecture was configured
correctly to upscale without losing detail and to match the shape of the images.

A second challenge was managing the huge sizes of our chosen datasets and making
subsets for training proved to be challenging due to our limited computational
resources. We worked through this by using really efficient data management libraries
and platforms. Specifically, we leveraged TensorFlow datasets and Hugging Face's
datasets library for the Places and ADE20k datasets, which provide streamlined access
to subsets of the datasets, which really reduced our load time and memory overhead.
For the Coco database, we used the FiftyOne library, which is particularly useful for
visualizing and filtering the large dataset efficiently. These tools allowed us to handle
large volumes of data more effectively, enabling us to focus on model training and
optimization without being hindered by our hardware limitations.

A third challenge was the extensive amount of time and computing resources required
to train the models. In order to train the model on time, two group members bought
Google Colab Pro to gain access to additional cloud computing resources including
GPUs, and even with these resources the models each took hours to train (sometimes
running overnight for up to 7-8 hours each) before extensive optimization. Our CNN
architectures are extremely computationally expensive especially without access to



GPUs which can parallelize computations and speed up the process immensely. Due to
computation restrictions, the scale of our ablation studies had to be cut back. The
original plan involved more rigorous testing and architecture specific hyperparameter
tuning, including but not limited to testing the efficacy of skip connections within U-Net
and the benefits of a pre-trained base model within DenseNet and MobileNet.
Nevertheless we still implemented informative ablation studies with respect to our layer
configurations and the number of epochs in training, as evident in Figure 8.

A fourth challenge was the loss of our fourth group member. When we originally
proposed this project, we were expecting to have an additional member to help share the
workload. Since we have not chosen to pare down the scope of our project, it has
resulted in additional responsibilities for each group member.

IV. Reflection

Our project DeepColor turned out to be a success. Two of the three architectures were
able to hit the target goal of improving on the original paper’s acceptance rate and all
three architectures were able to produce colorized output. Moreover, as evident in
Figure 3 in the qualitative results of our best model, while some of the images certainly
could look closer to the ground truth, an impressive amount of detail and color is
accurately predicted.

In the middle of the project that was not the case. The first time we trained the models
the results were not promising. U-Net produced black squares, DenseNet produced
random fuzzy blobs, and MobileNet merely returned the black and white image. We
were able to develop our models and fix our preprocessing and technical pipelines to get
all of the models predicting colorizations that, at bare minimum, resemble the ground
truth and in many cases closely mimic the ground truth. See Figure 10 for preliminary
results before extensive refinement of our technical pipeline and before we resolved all
these issues to achieve accurate and visually pleasing colorized results.
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Figure 10. Initial results early on in our experiments before extensive debugging and refinement of the
technical pipeline. As compared to the final and much more accurate results from our models seen in
Figure 3 we have come a long way!

We did not expect U-Net to be the most accurate architecture. DenseNet and MobileNet
both use a pre-trained base model within their architecture. Therefore, we expected the
highest performing model to be either DenseNet or MobileNet. U-Net in comparison
had fewer layers and was completely coded by us. This tells us that the skip connections
are extremely important for colorization tasks and we learned that a pre-trained feature
extraction model is not necessary to achieve a high degree of accuracy.

We had to change course when we encountered the limitations of our computational
resources. We had originally planned a more robust set of ablation studies that we were
forced to limit. If we were to redo this project, we would spend more time making sure
we have the requisite resources to complete training in a practical manner. We might
also consider how we could leverage Brown Computer Science’s existing computational
resources to our advantage. Another iteration of this project attempting once again to
colorize black and white images would be interesting to implement. A model that uses
the best parts of U-Net and DenseNet might be even more effective than the models we
were able to build in this project. More experimentation with hyperparameters could
help the model to optimize performance. Using different datasets could challenge our
model and find blindspots we did not account for.



DeepColor helped us go beyond the theory of deep learning into the practical
challenges and applications of the technology we have been learning about in lecture.
We learned how to source and preprocess data. We created models from scratch and
evaluated the tradeoffs in different architectural decisions. We developed the skills
necessary to compile results into a digestible format for anyone to understand. Overall,
we learned how to take a simple problem, research state of the art techniques, and apply
them in a deep learning framework to find a solution. This cycle of research, application
and experimentation is foundational to our work as computer scientists.



