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I.​ Introduction 

 

How do we colorize images using AI? What are the technical and ethical challenges? 

 

DeepColor is driven by new advancements in AI colorization. Recently, there has been 

a surge of interest in AI-driven colorization both in popular media and academic 

literature. We take on the problem of colorizing images using advanced deep learning 

techniques. On the technical side, we explore how well Convolutional Neural Networks 

(CNNs) can understand and replicate colors and their complex distributions in images. 

On the ethical side, we examine the implications of using AI to modify images. We are 

motivated by the idea that advancing the capabilities of neural networks in image 

colorization can contribute to the “big-picture” question of how AI can understand and 

replicate human perception. This has important practical applications in the 

remastering of historical images, visual art, and surveillance, and also deepens our 

understanding of the perceptual processing of AI. 

 

We build upon an existing paper “Deep Koalarization: Image Colorization using CNNs 

and Inception-ResNet-V2” by Frederico Baldassarre, Diego González Marín, and Lucas 

Rodés-Guirao. The paper introduces a model that combines a CNN trained from scratch 

with high-level features that were extracted from the pre-trained Inception-ResNet-v2 

model for image colorization. We chose this paper because it presents a novel approach 

to image colorization that we believe can be streamlined and improved upon with 

advanced deep learning techniques and architectures.  

 

Our work innovates on the original paper by employing different architectures, datasets, 

and hyperparameters, including U-Net, DenseNet and MobileNet, to evaluate the 

impact on colorization accuracy. We streamline certain features of the original model 

and test several advanced architectures. The upshot of our project DeepColor is more 

accurate and visually appealing colorized images. 

https://github.com/annatsv/deepcolor


 

 

 

II.​ Methodology 

 

Data 

We sampled images from three prominent datasets for our project. Importantly, these 

are different from the data used in the original paper we are replicating, which used a 

subset of 60,000 images from the ImageNet dataset for their model. Due to limitations 

in our computing resources, processing and colorizing such a large number of images 

was not feasible. Handling large datasets requires a significant amount of memory and 

computational power, which exceeds the capacity of our available hardware. To address 

this, we experimented with different batch sizes of images (e.g. 100, 200, 300, 400) to 

find a balance between computational efficiency and the performance of our model and 

settled on a batch size of 383 and 15,000 total images. 

 

First, we used a subset of 5000 images from the COCO Dataset (Common Objects in 

Context). We chose this dataset because it provides a diverse range of images with 

different scenes and objects which will help our model learn to colorize a wide range of 

subjects and scenarios. The COCO dataset contains over 200,000 labeled images, 

including complex scenes with multiple objects.  

 

Second, we used a subset of 5000 images from the Places365 Dataset. This dataset is 

specifically designed for scene recognition and has over 2.5 million images covering 

more than 205 unique scene categories. By including images from Places365 in our 

training data, we aimed to enhance our model's ability to colorize various environments, 

such as natural landscapes to urban settings. This complements the object-centric focus 

of the COCO dataset and provides comprehensive learning for our models. 

 

Third, we used a subset of 5000 images from the ADE20K Dataset which contains 

more than 20,000 images annotated with objects and object parts. This dataset provides 

our model with the opportunity to learn the colorization of both objects and their parts 

in detail, which is important for achieving realistic colorization results.  

 

Each subset of 5000 images was split into training and validation sets with 4000 images 

allocated for training and 1000 images for validation for each dataset for each model. So 

in total each model had 12000 images in training and 3000 images in validation. We 

processed all of the data in four main preprocessing steps: 

 

1.​ GreyScale Conversion: We converted the color images to grayscale to create 

the input for our colorization model. This step is important as our models aim to 



learn how to add color to grayscale images. It's also important to note that we 

chose to use colored datasets (and not grayscale datasets) to retain the original 

color images as the "ground truth" for training and evaluating our model. This 

allows us to compare the colorized output of our model to the original color 

images and calculate metrics such as Mean Squared Error (MSE) or Peak 

Signal-to-Noise Ratio (PSNR) to assess the colorization accuracy.  

 

2.​ Resizing Images from the Datasets: We resized the images to a uniform size 

(e.g., 256 x 256 pixels) to ensure consistency across the datasets and reduce 

computational load during training. We made this choice based on the 

computational resources available, the desired level of detail in the selected 

colorized images, and uniform batch processing.  

 

3.​ Normalization: We normalized the pixel values to a range that is suitable for 

the input to our network [0, 1] to help with our training process and to improve 

convergence. This helps us make sure that all input features (pixel values in our 

case) are treated equally by the models. 

 

4.​ Data Augmentation: We tested the models with data augmentation techniques 

such as rotation and flipping. The purpose of this was to help our model 

generalize to unseen data by simulating variations that might occur in real-world 

scenarios (e.g. objects getting rotated, flipped over, etc.). But we found that these 

techniques distorted the images in ways that adversely affected the training 

results. So we eliminated this data augmentation step to better align the training 

process with the original paper and our goal of maintaining the integrity of the 

image and colorization accuracy. 
 

 

Figure 1. This figure illustrates the preprocessing steps in our study and shows the transformation of 

various raw images into their preprocessed (greyscale, resized and normalized) versions. 

 



 

 

Models 

The original paper proposed a model that combines a deep Convolutional Neural 

Network (CNN) trained from scratch with high-level features extracted from the 

pre-trained Inception-ResNet-v2 model. Their architecture includes an encoder-decoder 

structure with a fusion layer that integrates the features from the Inception-ResNet-v2 

model.  This fusion layer basically makes sure that the semantic information provided 

by the Inception-ResNet-v2 model is distributed across the spatial regions of the image, 

which helps the decoder in generating a more accurate and detailed colorization.  

 

 

 

Figure 2. Model architecture from the “Deep Koalarization” paper. In place of the original fusion layer we 

employ advanced architectures U-Net, DenseNet, or MobileNet to evaluate performance, potentially 

eliminating the need for additional fusion layers and streamlining the CNN-based colorization task. 

 

In DeepColor we experimented with the following architectures, and include our 

rationale for selecting each one below: 

 

1.​ U-Net: U-Net is effective in image segmentation tasks. U-Net uses skip 

connections that can help us retain important spatial information and 

reconstruct the detailed color in the images. We hypothesized that U-Net's ability 

to capture both local and global features might be beneficial for image 

colorization. 

 

2.​ DenseNet: DenseNet has dense connections between layers, which can enhance 

feature propagation and reduce the number of parameters in our model. We 

believed that DenseNet's architecture could provide a good balance between the 

complexity of our model and its colorization quality. 



 

3.​ MobileNet: MobileNet has compact and layer-specific connections which can 

potentially reduce computational cost while maintaining accuracy. This is 

important for our work given our limited computational resources. We 

experimented with MobileNet to explore the trade-off between model size and 

colorization performance. 

 

Similarly to the original paper, we used the Adam optimizer with a learning rate of 

.0001. We used a fixed image size and a batch size of 383 images per epoch. For our 

models (U-Net, DenseNet, and MobileNet), we trained them with the objective loss 

function being the Mean Squared Error (MSE) between the estimated colors of the 

pixels and their real-world values, derived from the ground-truth, unpreprocessed, full 

color images. All models return output image shapes of (256,256,3). 

 

The U-Net model was trained without a pre-trained base model. It consists of four 

encoder blocks which convolve over the input, apply batch normalization, and activate 

the output using the LeakyRelu function with an alpha of .01. Next, there are three 

decoder blocks which perform a transpose convolution, integrate a skip connection, 

then apply normalization, dropout, and activation layers. A dropout rate of 0.5 and the 

ReLU function were used. A final transpose convolution is performed with a sigmoid 

activation function to produce the final output. 

 

The DenseNet model was trained using the pre-trained DenseNet121 as a base model. 

The weights were pre-trained on the Image Net dataset. The inputs are fed into the base 

model which acts as the encoder of the model. The encoded results are passed through 5 

decoder blocks. Each block consists of an upsampling layer and a 2D convolution. Then, 

an activation function is applied along with a batch normalization layer. The first four 

blocks use a ReLU activation function. The last block uses a sigmoid activation function 

and forgoes the batch normalization layer. 

 

The MobileNet model is similar to the DenseNet model, except that MobileNet uses 

MobileNet as a base model for the encoder, also pre-trained on the image net dataset. 

Our MobileNet model then goes through 5 cycles of upsampling, convolving, and 

activating with the ReLU function. There is then a final sixth convolution with a sigmoid 

activation function. 

 

Metrics 

Success is primarily measured by the accuracy of colorization by our model. We assess 

the success of our colorizers hrough quantitative and qualitative analysis. In addition to 

accuracy, we will also consider the visual appeal and the naturalness of the colorized 



images as a metric for success since our ultimate goal is to produce images that are not 

only accurate but also aesthetically pleasing to perceivers. 

 

We believe that these new metrics improve upon the original paper. The authors of the 

“Deep Koalarization” paper we are building upon aimed to show that a model that 

combined a CNN with high-level feature extraction from the Inception-ResNet-v2 model 

could accurately colorize images. However they primarily quantified their results 

through qualitative assessments. For their quantitative assessments, they mentioned 

using Mean Squared Error (MSE) as the objective function during training but did not 

provide explicit MSE values as a measure of colorization accuracy in the results section. 

 

Instead, they conducted a user study to assess the “public acceptance” of the colorized 

images, where participants were asked to judge whether the colorized images looked 

real or not. In the paper, "public acceptance" refers to the percentage of participants in a 

user study who mistakenly identified colorized images as real color images. A higher 

rate of public acceptance indicates that the colorized images are more convincing and 

indistinguishable from true color images to human observers. This qualitative approach 

allowed them to gauge both the perceived realism of their model's output and its visual 

appeal, which is what we are also trying to achieve.  

 

In DeepColor, we use both qualitative and quantitative assessments, including a user 

study as well as quantitative assessments like Mean Squared Error (MSE) or Peak 

Signal-to-Noise Ratio (PSNR) between the colorized and original images. 

 

Results 

Our base goal was to achieve colorized outputs for each model and approximate the 

performance of the original paper in terms of colorization quality. We were aiming for a 

similar rate of "public acceptance" in a user study, which was reported to be 45.87% in 

the original paper, and use additional metrics such as Mean Squared Error (MSE) or 

Peak Signal-to-Noise Ratio (PSNR) between the colorized and original images, even 

though the original paper did not provide explicit quantitative metrics.  

 

Our target goal was to improve upon our quantitative and qualitative assessments by 

experimenting with different architectures and hyperparameters. This could involve 

achieving higher "public acceptance" rates in a user study (e.g., exceeding 45.87%) or 

good scores on quantitative metrics like MSE or PSNR.  

 

Our stretch goal was to achieve state-of-the-art colorization accuracy that potentially 

surpasses the model in the original paper as well as other existing models in the field of 

colorization. This would involve significantly higher "public acceptance" rates and 



superior quantitative metric scores, indicating that our model can produce highly 

realistic and accurate colorizations. Here are the qualitative results of our three models: 

 

Figure 3: Comparison of Colorization. First two rows are U-Net, the next two are DenseNet, and the final 

row is MobileNet. Notably, all models achieved colorization though with varying degrees of accuracy.  

 

We conducted a public acceptance study and used MSE and PSNR as additional metrics. 

We also qualitatively evaluated the images. Each of the models performed differently in 

reference to the goals set at the beginning of the project. Here are the visualized results 

of our user study: 

 

 



 

Figure 4. This figure illustrates the public acceptance of our generated colorized images. The sample size 

was 30 undergraduate and graduate students at Brown. 

 

U-Net met the base goal and the target goal. It achieved a user acceptance of 53% which 

marks a substantial improvement over the 45.87% acceptance rate in the original paper. 

The Mean Squared Error (MSE) for the U-Net model was 0.006. The Peak 

Signal-to-Noise Ratio (PSNR) for the U-Net model was 23.799. The MSE and PSNR 

cannot help us compare our models to the original study, but they are useful for 

comparing the models between each other. Qualitatively, U-Net produced sharp, clear 

images with generally correct colors. The predicted colorizations were often less 

saturated than the original photos but still accurate. See Figure 5 for the training and 

validation dynamics for U-Net. 

 



 

Figure 5. Example Training and Validation for U-Net. U-Net accuracy and loss over 30 epochs shows 

rapid early improvement and stabilization. 

 

DenseNet also met the base goal and target goal, achieving a 46% acceptance rate. This 

is a marginal improvement in acceptance compared to the original paper. The Mean 

Squared Error (MSE) for the DenseNet model was 0.013 which is about double the MSE 

of U-Net. The Peak Signal-to-Noise Ratio (PSNR) for the DenseNet model was 19.469 

which is slightly lower than U-Net. Qualitatively, DenseNet produced slightly fuzzier 

images than U-Net. It displayed a strong ability to correctly predict colors, but less 

ability to preserve sharp features and details in the predicted colorizations.  See Figure 6 

for the training and validation dynamics for DenseNet. 

 



 

Figure 6. Example Training and Validation for DenseNet. DenseNet accuracy and loss over 30 epochs 

shows a steady increase in training accuracy while validation accuracy fluctuates significantly. It also 

shows that both training and validation loss decrease over time with a spike in validation loss during the 

final epochs. 

 

MobileNet did not meet the base goal. While it did achieve colorized outputs, and so met 

some expectations, its colorizations were not accepted by the general public. The Mean 

Squared Error (MSE) for the MobileNet model was 0.053 which is almost five times 

larger than DenseNet and almost ten times larger than U-Net. The Peak Signal-to-Noise 

Ratio (PSNR) for the MobileNet model was 13.102 which is much lower than both U-Net 

and DenseNet. Qualitatively, MobileNet produced colorization predictions that did not 

match the ground truth images. MobileNet’s colorizations can be characterized as 

extremely noisy blends of color without the definitive features of the original pictures 

represented. While the correct colors were often located in the correct general areas of 

the image, ultimately, they lacked any real coherence. As we reflect on our project, this 

was perhaps not surprising and due to the lightweight architecture of MobileNet which 

struggles to capture the finer details necessary for accurate colorization.  See Figure 6 

for the training and validation dynamics for MobileNet. 

 



 

Figure 7. Example Training and Validation for MobileNet . MobileNet accuracy and loss over 30 epochs 

shows that the training accuracy of the model increases over 30 epochs and the training loss consistently 

decreases. However, the validation accuracy shows less change and the validation loss is volatile with 

spikes at epochs 10 and 25. These signs indicate that the model might not perform well on new, unseen 

data. 

 

We conducted an ablation study on the number of epochs to determine the optimal 

tradeoff between computing resources and model accuracy. Our results from above were 

produced by models trained for 30 epochs. We can see based on the data from training 

the models on 10 epochs instead of 30 epochs, the models have similar levels of 

performance. This indicates that future models designed to colorize images likely do not 

need to train for an excessive number of epochs. See Figure 8 for a qualitative 

comparison between model outputs for U-Net for 10 and 30 epochs. And See Figure 9 

for a quantitative assessment of different metric evaluations with respect to different 

numbers of epochs for all models. 

 

 

 

 

 

 



 

 

 

Figure 8. Visualizations of model outputs for U-Net above. First 5 rows are colorized images produced at 

10 epochs. Final 5  rows are colorized images produced at 30 epochs. 

 



 

Figure 9: Quantitative Performance Metrics. A higher Mean Squared Error (MSE) indicates poorer image 

quality as it measures the average squared intensity differences between the ground truth and colorized 

image. A lower Peak Signal-to-Noise Ratio (PSNR) indicates poorer image quality as it decreases 

logarithmically with an increase in MSE score and signifies that there is greater distortion in the colorized 

image. *U-Net demonstrates the best performance with minimal MSE and maximal PSNR. MobileNet 

shows consistent low performance. Extended training moderately benefits U-Net and DenseNet.  

 

 

III.​ Challenges 

 

There were four large challenges in the project that were all resolved. One challenging 

aspect of our project was dealing with the architectural complexities of the three models 

we implemented. In particular, the upsampling processes required to match the output 

image size with the input dimensions was challenging. To work through this, we 

experimented with different configurations of upsampling layers. This process required 

extensive testing and validation to ensure that the network architecture was configured 

correctly to upscale without losing detail and to match the shape of the images. 

 

A second challenge was managing the huge sizes of our chosen datasets and making 

subsets for training proved to be challenging due to our limited computational 

resources. We worked through this by using really efficient data management libraries 

and platforms. Specifically, we leveraged TensorFlow datasets and Hugging Face's 

datasets library for the Places and ADE20k datasets, which provide streamlined access 

to subsets of the datasets, which really reduced our load time and memory overhead. 

For the Coco database, we used the FiftyOne library, which is particularly useful for 

visualizing and filtering the large dataset efficiently. These tools allowed us to handle 

large volumes of data more effectively, enabling us to focus on model training and 

optimization without being hindered by our hardware limitations. 

 

A third challenge was the extensive amount of time and computing resources required 

to train the models. In order to train the model on time, two group members bought 

Google Colab Pro to gain access to additional cloud computing resources including 

GPUs, and even with these resources the models each took hours to train (sometimes 

running overnight for up to 7-8 hours each) before extensive optimization. Our CNN 

architectures are extremely computationally expensive especially without access to 



GPUs which can parallelize computations and speed up the process immensely. Due to 

computation restrictions, the scale of our ablation studies had to be cut back. The 

original plan involved more rigorous testing and architecture specific hyperparameter 

tuning, including but not limited to testing the efficacy of skip connections within U-Net 

and the benefits of a pre-trained base model within DenseNet and MobileNet. 

Nevertheless we still implemented informative ablation studies with respect to our layer 

configurations and the number of epochs in training, as evident in Figure 8. 

 

A fourth challenge was the loss of our fourth group member. When we originally 

proposed this project, we were expecting to have an additional member to help share the 

workload. Since we have not chosen to pare down the scope of our project, it has 

resulted in additional responsibilities for each group member.  

 

 

IV.​ Reflection 

 

Our project DeepColor turned out to be a success. Two of the three architectures were 

able to hit the target goal of improving on the original paper’s acceptance rate and all 

three architectures were able to produce colorized output. Moreover, as evident in 

Figure 3 in the qualitative results of our best model, while some of the images certainly 

could look closer to the ground truth, an impressive amount of detail and color is 

accurately predicted.  

 

In the middle of the project that was not the case. The first time we trained the models 

the results were not promising. U-Net produced black squares, DenseNet produced 

random fuzzy blobs, and MobileNet merely returned the black and white image. We 

were able to develop our models and fix our preprocessing and technical pipelines to get 

all of the models predicting colorizations that, at bare minimum, resemble the ground 

truth and in many cases closely mimic the ground truth. See Figure 10 for preliminary 

results before extensive refinement of our technical pipeline and before we resolved all 

these issues to achieve accurate and visually pleasing colorized results. 

 

 



 

Figure 10. Initial results early on in our experiments before extensive debugging and refinement of the 

technical pipeline. As compared to the final and much more accurate results from our models seen in 

Figure 3 we have come a long way! 

 

We did not expect U-Net to be the most accurate architecture. DenseNet and MobileNet 

both use a pre-trained base model within their architecture. Therefore, we expected the 

highest performing model to be either DenseNet or MobileNet. U-Net in comparison 

had fewer layers and was completely coded by us. This tells us that the skip connections 

are extremely important for colorization tasks and we learned that a pre-trained feature 

extraction model is not necessary to achieve a high degree of accuracy.  

 

We had to change course when we encountered the limitations of our computational 

resources. We had originally planned a more robust set of ablation studies that we were 

forced to limit. If we were to redo this project, we would spend more time making sure 

we have the requisite resources to complete training in a practical manner. We might 

also consider how we could leverage Brown Computer Science’s existing computational 

resources to our advantage. Another iteration of this project attempting once again to 

colorize black and white images would be interesting to implement. A model that uses 

the best parts of U-Net and DenseNet might be even more effective than the models we 

were able to build in this project. More experimentation with hyperparameters could 

help the model to optimize performance. Using different datasets could challenge our 

model and find blindspots we did not account for.  



 

DeepColor helped us go beyond the theory of deep learning into the practical 

challenges and applications of the technology we have been learning about in lecture. 

We learned how to source and preprocess data. We created models from scratch and 

evaluated the tradeoffs in different architectural decisions. We developed the skills 

necessary to compile results into a digestible format for anyone to understand. Overall, 

we learned how to take a simple problem, research state of the art techniques, and apply 

them in a deep learning framework to find a solution. This cycle of research, application 

and experimentation is foundational to our work as computer scientists.  

 

 

 

 

 

 


