
(Public) App Home intro
owner:phillis@chromium.org

Product Summary

Problem statement/Situational Overview
Currently, the only home for web apps in Chrome is chrome://apps. It serves as a launcher and
a management surface, but it is outdated, available only on Desktop, and affected by the
pending Chrome Apps deprecation.

In this situation Chrome as a web app platform relies on underlying OSs to provide solutions for
developer and user needs - from new app discovery, to app launching and app management.

This is a three fold issue:

1.​ Strategy - it creates a gap that might be filled by a competitor. Consequently, that puts
the competitor in a position to define what the web experience is - and that experience
may or may not be based on the best practices of the open web (e.g. embrace and
extend).

2.​ Experience - there is no coherent web app experience and a consistent object model
we can count on to address current and future user journey moments. Different OSs
implement different levels of web apps integration which can leave key moments in user
journeys either unaddressed or partially addressed. For example, on Windows and
macOS, if the user deletes a shortcut on desktop there is no way to uninstall the app (or
recreate the shortcut) from the OS.

3.​ Opportunity - we are not playing to our strengths and leaning into what Chrome and the
web can uniquely do. We can do more, innovate faster without OS limitations, and create
a virtuous cycle that will close the web ecosystem loop.

For Web Platform to succeed, we need to build a coherent web app experience that works great
across OSs (including integrations with OSs where possible), and utilizes the best of Chrome
and the best of the web (by doing things we can do that native can’t). This will help make users
love the web and Chrome by making it easier to discover, launch and manage their apps. And
this will make it easier for developers to succeed by helping with key challenges such as user
acquisition and re-engagement. These differentiated capabilities for discovery and
re-engagement can then be an additional incentive for them to invest in the web.

App launching and app management are the highest priority foundational features that cover the
most critical user journeys, and where chrome://apps plays a critical role. For example, with
chrome://apps deprecated, there would be no place in Chrome where the user can find all the
web apps installed from Chrome. MVP that starts simple and meets those most common user

journeys can act as a foundation for more complex app discovery and re-engagement journeys
in the future.

Target user
●​ Web apps users
●​ Web platform developers / Partners

Goals
●​ Build a home for web apps in Chrome, a consistent object metaphor we can always

count on to address current and future user journey moments.
○​ CUJ #1: I want a place to find all the web apps I have installed on the device.
○​ CUJ #2: I want a place to find all the web apps that are synced for my profile.

●​ Make users love the web and Chrome by making it easier to launch and manage their
web apps.

○​ CUJ #3: I want to remove/uninstall a web app.
○​ CUJ #4: I want to quickly launch a web app I use frequently.
○​ CUJ #5: I want to manage settings for web apps I have installed.
○​ CUJ #6: I want to create a Desktop OS shortcut for a web app.
○​ CUJ #7: I want to navigate to a frequently visited location in a web app.

●​ Make it easier for developers/partners to succeed and meet their business objectives by
helping with re-engagement/retention. These unique re-engagement capabilities can
then be a differentiator and an additional incentive for them to invest in the web.

Non-goals
●​ Solving new app discovery (for users) and user acquisition (for developers) by making it

easier to find and install new apps is out of scope for this MVP and will be explored
separately in Phase 2.

Solution
The proposal is to use a two pronged approach:

1.​ App Home - a canonical surface that provides access to all the web apps the user has
installed (CUJ #1, CUJ #2) and implements easy ways to manage them (CUJ #3, CUJ
#5, CUJ #6). As home for apps, this surface will become the foundational surface where
additional features (like new app discovery) could be implemented in future iterations.

2.​ App Home Module - a module that will make it easy to quickly launch frequently used

apps (CUJ #4), and serve as a new entry point to the full App Home (containing all the

web apps). This module will be surfaced along natural user journey points in the browser
app.

For App Home, pending Chrome Apps deprecation is an opportunity to:

1.​ Rebuild chrome://apps as App Home for Windows/macOS/Linux. Chrome OS
implementation can be explored later as Chrome OS implements a higher degree of web
apps integration and chrome://apps doesn’t exist there.

2.​ Extend the surface to Clank (as a separate implementation). The proposal also
effectively opens a path to unlocking web apps on iOS - this could be a big opportunity
and will be explored in the future.

Vision - canonical App Home surface with app launching and app management (MVP) + new

app discovery (to be scoped separately in Phase 2)

For App Home Module, we propose an experiment based on NTP Modules (Cards). This is a
natural fit given that NTP Modules aim to make the NTP a more compelling launchpad to
common user journeys.

App Home Module on NTP

UX detail

App Home MVP scoping

App Home surface

When no apps are available, an empty app page should be displayed.

UX/UI difference with existing chrome://apps:

-​ App icon will get a new white circle background.
-​ Not locally installed apps won’t be grayed out, but will have a download icon in the

bottom-right corner instead.
-​ Pagination will be done vertically instead.
-​ We’ll stop supporting the drag-and-drop install feature.
-​ More responsive and sophisticated layout styling/
-​ More management actions.

App ordering:
Ordering is done the same as the existing UX and it’s very similar to mobile native apps home
screen experience.

-​ New apps are put to the end of the apps in the first page that have space.
-​ Users can drag to reorder the app.
-​ When users uninstall an app, apps from the next page won’t be collapsed to this page,

they will stay where they are.

Apps that show up in app home will include PWAs and extension-based chrome apps that
ShouldDisplayInNewTabPage.

https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/extensions/extension_ui_util.cc;drc=d8cdec7d0d3a396b3b7f269c4edce7b4cc3dd781;bpv=1;bpt=1;l=50?q=extensions::ui_util::ShouldDisplayInNewTabPage&ss=chromium%2Fchromium%2Fsrc&gsn=ShouldDisplayInNewTabPage&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fextensions%2Fextension_ui_util.h%235_bfGOYjmQihzNr95XdechbTV3uMPNID8o0w83wuSNA&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fextensions%2Fextension_ui_util.cc%23nTORwoulqSIDKo0v-Gq5UIgX65InjZdt5vrue-s9mlk

These extension based apps are legacy chrome apps that will be deprecated, but we will keep
supporting them until they are deprecated. They include the following categories of apps if they
are not blocked by policy:

-​ Legacy packaged app
-​ Hosted app
-​ Platform app

Management actions

https://chromium.googlesource.com/apps/libapps/+/HEAD/nassh/doc/app-to-ext-migration.md

Management actions menu shows up when the user right clicks the app icon.

1.​ Permissions: Grant or revoke access to 4 pre-set site permissions: notifications, mic,
camera, location.

2.​ Shortcut Items: Any shortcuts defined by the app.
3.​ Launch configuration.
4.​ Uninstall: uninstall the web app on this device or all devices.
5.​ Link to site settings page.

Technologies
The chrome://apps page will be built using WebUI framework that supports handling actions and
data changes in the html page.

Message handling
There are two ways for the html-based frontend to communicate with c++ code.

Mojo WebUI handlers
This is a new way developed by the WebUI team. Not much documentation exists for this but
there are lots of WebUI pages using it, e.g. chrome://downloads page.

Pros:

-​ Using Mojo is more secure and auditable.

https://www.w3.org/TR/appmanifest/#shortcutitem-and-its-members
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/webui_explainer.md
https://docs.google.com/document/d/187WyzgXfjsopz1tWz-u67aP9JP--G4zu9WhT_9uvLS4/edit#
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/webui/downloads/;bpv=1;bpt=0

-​ Type annotations generated from your Mojo interface definition.
-​ Message validation.
-​ More structured data i.e. unions, enums, structs, interfaces, etc. in C++ and JS.
-​ Interface is more easily auditable by security.

-​ It’s the direction the WebUI is moving forward with, so it will be better maintained.

Cons:

-​ Need to port existing code to this.
-​ Less documentation
-​ Less examples to learn from / more overhead to ramp up on this approach

Alternative - WebUIMessageHandlers + chrome.send/cr.sendWithPromise
This is the old way to register message handlers and is used by the current chrome://apps page.
Frontend will call chrome.send(message_name, data) in Javascript which is hooked with the
specific handler registered to WebUI. Data is passed as nested dictionary to JS callback.
This is still supported and maintained by the webUI framework and documented as the
recommended way in WebUI explainer.
Pros:

-​ Used by the current chrome://apps page so that we can re-use existing code.
-​ Well documented.

Cons:

-​ Not as secure as using the Mojo WebUI handlers.

Since this approach is still supported, there is no strong reason to re-write the backend. So we
can go with still using the WebUIMessageHandlers.

Changes needed

-​ Update CreateWebAppInfo to include shortcut menu info and icons and site settings
permission status.

-​ Update CreateExtensionInfo to include site settings permission status.

-​ RegisterMessageCallback for UninstallAppLocally

-​ RegisterMessageCallback for SetNotificationsPermission

-​ RegisterMessageCallback for SetCameraPermission

-​ RegisterMessageCallback for SetMicrophonePermission

-​ RegisterMessageCallback for SetLocationPermission

-​

https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/resources/ntp4/apps_page.js;l=266?q=createAppShortcut&ss=chromium%2Fchromium%2Fsrc&start=11
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/webui/ntp/app_launcher_handler.cc;l=443?q=createAppShortcut&ss=chromium%2Fchromium%2Fsrc&start=11
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/webui/ntp/app_launcher_handler.cc;l=189?q=app_launcher_handler.cc&ss=chromium
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/webui/ntp/app_launcher_handler.cc;l=1027;drc=9fcc9d7b2915b6192ee6810eec54c50deb6313c6;bpv=1;bpt=1
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/webui_explainer.md
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/webui/ntp/app_launcher_handler.h;bpv=1;bpt=1;l=69?q=CreateWebAppInfo&gsn=CreateWebAppInfo&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fwebui%2Fntp%2Fapp_launcher_handler.h%23jzal28opKUZCcw0yoJgxan1ZdFAtp6IhL6VcYhuj2Co
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/webui/ntp/app_launcher_handler.h;bpv=1;bpt=1;l=72?q=CreateWebAppInfo&gsn=CreateExtensionInfo&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fui%2Fwebui%2Fntp%2Fapp_launcher_handler.h%23R8Tda-DjnBS8HXecvM0YXTbchCV27YW8GWKZWlNkJ3U

Frontend
Existing chrome://apps page uses a custom pre-WebComponents framework to define UI
components (see cr.ui.define, decorate etc). The WebUI team is moving away from it and highly
recommends us to use JS modules + Polymer + Typescript. See style guide.

Docs:
https://source.chromium.org/chromium/chromium/src/+/main:docs/webui_in_chrome.md
grit instructions

Components

-​ Apps laid out vertically, with pagination. Apps can be dragged and reordered.
-​ Pagination dots
-​ Actions menu
-​ Empty page

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/styleguide/web/web.md
https://source.chromium.org/chromium/chromium/src/+/main:docs/webui_in_chrome.md
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/web/web.md#Grit-processing

	(Public) App Home intro
	Product Summary
	Problem statement/Situational Overview
	Target user
	Goals
	Non-goals
	Solution

	UX detail
	App Home MVP scoping
	App Home surface
	
	Management actions

	Technologies
	Message handling
	Mojo WebUI handlers
	Alternative - WebUIMessageHandlers + chrome.send/cr.sendWithPromise
	
	Since this approach is still supported, there is no strong reason to re-write the backend. So we can go with still using the WebUIMessageHandlers.
	-​Update CreateWebAppInfo to include shortcut menu info and icons and site settings permission status.
	-​Update CreateExtensionInfo to include site settings permission status.
	-​RegisterMessageCallback for UninstallAppLocally
	-​RegisterMessageCallback for SetNotificationsPermission
	-​RegisterMessageCallback for SetCameraPermission
	-​RegisterMessageCallback for SetMicrophonePermission
	-​RegisterMessageCallback for SetLocationPermission
	

	Frontend

