
GSoC Student Application & Proposal
OpenMRS GSOC Program 2022

Student Name Anjula Samarasinghe

OpenMRS Talk profile link
(e.g. you can find this here)

https://talk.openmrs.org/u/anjisvj

GitHub profile link https://github.com/anjula-sack

Country Sri Lanka

Preferred method of
contact & details
(e.g. phone, email, IRC, etc.)

Email: anjulashanaka@gmail.com

https://talk.openmrs.org/my/activity
mailto:anjulashanaka@gmail.com

Table of contents

1. Required Sections 3
1.1. About Me 3
1.2. GSOC Background 6
1.3. OpenMRS Experience 7

2. Project Proposal 9
2.1. Introduction 9

2.1.1. Project background 9
2.1.2. Existing solutions 11
2.1.3. Problems with the current solutions 12
2.1.4. Functional Requirements 12
2.1.5. Non Functional Requirements 13

2.2. Design 13
2.2.1. Searching by observations 14
2.2.2. Searching by demographics 15
2.2.3. Searching by encounters 16
2.2.4. Searching by program enrollments 17
2.2.5. Searching by Drug Order 18
2.2.6. Searching by SQL Queries 19
2.2.7. Composition 20
2.2.8. Search History 21
2.2.9. Saved Search History 22
2.2.10. Cohort Run Scheduler 22
2.2.11. Cohort Results 23

2.3. Implementation 23
2.3.1. Selection of tools and technologies 23
2.3.2. Implementation of views 24

2.3.2.1. Navigation Tabs 24
2.3.2.2. Concepts/Observations 24
2.3.2.3. Demographics 26
2.3.2.4. Encounters 27
2.3.2.5. Program enrollments 30
2.3.2.6. Drug Order 30
2.3.2.7. SQL 32
2.3.2.8. Composition 32
2.3.2.9. Saved 32
2.3.2.10. Search History 33

2.3.2.11. Cohort Results 34
2.3.2.12. Cohort Run Scheduler 34

2.3.3. Testing 34
2.4. TimeLine 34
2.5. Further Enhancements & Ideas 36

1. Required Sections

1.1. About Me
1. Tell us a little about yourself. Who are you? What are you studying?

I’m Anjula Samarasinghe, a first-year physical science ICT undergraduate from the
University of Sri Jayawardenepura, Sri Lanka. I am contributing to the OpenMRS
community as a developer and working as a Software Engineer at Sustainable Education
Foundation.

2. Why are you the right person for this project?

I've been an openMRS contributor for almost two years now and have gained, though not
perfect, a fair bit of knowledge on the openMRS data structures, specifically on cohort
builder and how the underlying metadata and workflows work especially after doing
research for this specific project

Apart from that I've worked in QA squad and DHIS2 squad in openMRS as a contributor

Further I'm very much familiar with the technologies associated with this project as I've
done two internships at promiseQ [1] and Rootcode Labs [2], both of them which
involved development React Js with TypeScript (link to the projects/experience
segment)

I'm taking part as a software engineer in the core team of one of the most prominent Sri
Lankan open source organizations Sustainable Education Foundation (SEF) [2], so I'm
pretty familiar with the open-source culture as well.

[1] https://www.promiseq.com/
[2] https://rootcodelabs.com/
[3] http://sefglobal.org

3. Describe in detail your software development experience by various technologies.
Include all technologies you have used for development projects.

promiseQ web app - promiseQ
promiseQ utilizes machine learning recognition and human verification to provide accurate and
fast decisions on alarm detections
[VueJs, TypeScript, Firebase]
https://www.promiseq.com/

https://sefglobal.org/
https://sefglobal.org/
https://www.promiseq.com/
https://rootcodelabs.com/
http://sefglobal.org
https://www.promiseq.com/

promiseQ home page - promiseQ
promiseQ utilizes machine learning recognition and human verification to provide accurate and
fast decisions on alarm detections
[NextJs, Material UI]
https://www.promiseq.com/

Expert Republic - Rootcode Labs
Expert Republic connects professionals with customers through 1-1 online video consultations.
I’ve been working on implementing a dashboard since 2021.
[TypeScript, JavaScript, NextJS, Tailwind CSS]
https://expertrepublic.com/

Expert Republic Enterprise - Rootcode Labs
Expert Republic Enterprise is the enterprise version of the Expert Republic and I was working on
implementing the website to showcase the product.
[TypeScript, JavaScript, NextJS, Tailwind CSS]
https://enterprise.expertrepublic.com/

ScholarX - Sustainable Education Foundation (SEF)
ScholarX is a mentoring platform we built to connect world-renowned mentors with students.
[TypeScript, ReactJS, Ant Design]
https://github.com/sef-global/scholarx-frontend

Academix - Sustainable Education Foundation (SEF)
Academix is an archive of knowledge resources that helps Sri Lankan students improve their
knowledge in different areas.
[TypeScript, ReactJS, Ant Design]
https://github.com/sef-global/academix-frontend

Aphelia - Rootcode Labs
Aphelia is an AI-based resume parser API that can seamlessly integrate with your recruitment
application. I was working on implementing the website to showcase the Aphelia AI.
[ReactJS]
https://aphelia.ai/

Entgra.io App Manager
Entgra is an open-source company that focuses on IoT, MDM, EMM and Factory Floor Solutions.
I've contributed to Entgra in 2020.
[1] http://entgra.io
[2] My Contributions to Entgra IoT server
{ReactJs, Ant design}

https://www.promiseq.com/
https://expertrepublic.com/
https://enterprise.expertrepublic.com/
https://github.com/sef-global/scholarx-frontend
https://github.com/sef-global/academix-frontend
https://aphelia.ai/
http://entgra.io
https://gitlab.com/entgra/carbon-device-mgt/-/merge_requests?scope=all&utf8=%E2%9C%93&state=all&author_username=anjula-sack

Project GIC - Rootcode Labs
The project “Development of Land Resources Information Management System (LRIMS) for
Afghanistan” is a part of the collaboration for Strengthening Afghanistan Institution’s capacity
for monitoring and analyzing of agriculture production systems and development of Land
Resources Information Management System (LRIMS) and National Agro-Ecological Zoning
(NAEZ) project.

I was working on migrating the old outdated UI to a new one by adding additional features.
[HTML, Bootstrap JavaScript, jQuery, Django]
https://lrimsfaoaf.ait.ac.th/

Youtube Video Gallery - Sustainable Education Foundation (SEF)
Created a simple youtube video gallery to showcase SEF youtube videos.
[Spring Boot, Javascript, Ajax, Jquery]
https://sefglobal.org
https://github.com/sef-global/sef-data-holder

Website of Sustainable Education Foundation (SEF)
Sustainable Education Foundation (SEF) is a volunteer-driven organization. I led the website
development of SEF which is an open-source project
[HTML , CSS, JS, JQuery, MustacheJS, Travis CI]
http://sefglobal.org
https://github.com/sef-global/sef-site

My Blog Posts: https://medium.com/@anjulashanaka
Knowledge Sharing Sessions: Youtube

4. List any previous experience working with open source projects other than OpenMRS.
(This experience is not a requirement.)

Sustainable Education Foundation
Sustainable Education Foundation (SEF) is a volunteer-driven organization. I've been
contributing to SEF since 2019. Currently, I’m working as a Senior Software Engineer at
SEF. SEF runs projects which help to improve the quality of Sri Lanka’s Education.
[1] http://sefglobal.org/
[2] My Contributions to SEF Github organization

Entgra.io
Entgra is an open-source company that focuses on IoT, MDM, EMM and Factory Floor
Solutions. I've contributed to Entgra in 2020.
[1] http://entgra.io
[2] My Contributions to Entgra IoT server

https://lrimsfaoaf.ait.ac.th/
https://sefglobal.org
https://github.com/sef-global/sef-data-holder
http://sefglobal.org
http://sefglobal.org
https://medium.com/@anjulashanaka
https://www.youtube.com/watch?v=h9-wrfs1pG4&list=PLx4Ro8e0E8S_GmG75brlX1yGbILEiuY7m
http://sefglobal.org/
https://github.com/pulls?q=is%3Apr+author%3Aanjula-sack+archived%3Afalse+is%3Aclosed+is%3Amerged+user%3Asef-global+
http://entgra.io
https://gitlab.com/entgra/carbon-device-mgt/-/merge_requests?scope=all&utf8=%E2%9C%93&state=all&author_username=anjula-sack

5. Provide links to any projects created by you, or other source code examples.

My Github account:
https://github.com/anjula-sack
My Gitlab account:
https://gitlab.com/anjula-sack

1.2. GSOC Background
6. Do you have any other commitments during the program? (Include any and all holidays,

vacations, travel, exams, classes, research projects, other work, job offers, etc.)

No

7. Have you participated in Google Summer of Code before? If yes, please mention the year,
respected Organization, and your final result (Pass/Fail). (Note: This will not affect your
current application, it just helps the reviewers to have this background.)
Yes,
2021
OpenMRS
Didn’t get selected

8. Are you planning to be a Mentor for a Google Summer of Code project this year (2022) in
any other organizations? If yes, which Organization(s)? (Note: You can’t be a student and
mentor in the same year.)
No

9. Are you planning to apply to multiple Organizations this year? If yes, which Organization
is your first preference if you get selected for both Organizations? (Note: This does not
need to be OpenMRS; please mention your preferred selection to help the reviewers.)

No

1.3. OpenMRS Experience

https://github.com/anjula-sack
https://gitlab.com/anjula-sack

10. Describe your interactions with our community so far. Include dates of developer forums
you have attended, and include any IRC nicknames used when visiting our channel
previously.

I joined the community back in July 2020. Mainly I’ve been engaged with the community
via OpenMRS Talk. Also, I’ve contributed to the codebase by sending PRs and by
reviewing. I’ve earned badges from the OpenMRS Talk like ‘/dev/1’, ‘Smart Developer’,
‘Friendly User’, etc. I have attended weekly QA Squad, COVID squad calls and MFE

I was able to present the QA Squad in the OpenMRS Conference 2021on QA Automation
3.x

11. Code Contributions: Please include all relevant issue numbers, pull requests, commit
links, etc in the table below.
Note: You must have made at least two coding contributions to OpenMRS before
submitting your application. If you don't include this information, your proposal will not be
reviewed. We recommend achieving the /dev/1 stage as you become familiar with
OpenMRS. It's not necessary for your pull requests to be merged; we just need to see that
you've made some effort to learn the basics about OpenMRS development.

Issue Number PR Link Status (e.g. In Progress,
Pending Review, Merged)

CB-217 https://github.com/openmrs/open
mrs-owa-cohortbuilder/pull/193

Ready for Review

RATEST-304 https://github.com/openmrs/open
mrs-contrib-qaframework/pull/32
6

Merged

MF-869 https://github.com/openmrs/open
mrs-contrib-qaframework/pull/16
9

Merged

MF-871 https://github.com/openmrs/open
mrs-contrib-qaframework/pull/16
6

Merged

RATEST-246 https://github.com/openmrs/open
mrs-contrib-qaframework/pull/14
3

Merged

DCM-5 https://github.com/openmrs/open
mrs-module-dhisconnector/pull/5

Merged

DCM-10 https://github.com/openmrs/open Merged

https://youtu.be/UPp6NnHvWrY
https://youtu.be/UPp6NnHvWrY
https://wiki.openmrs.org/display/RES/OpenMRS+Developer+Stages
https://github.com/openmrs/openmrs-owa-cohortbuilder/pull/193
https://github.com/openmrs/openmrs-owa-cohortbuilder/pull/193
https://github.com/openmrs/openmrs-contrib-qaframework/pull/326
https://github.com/openmrs/openmrs-contrib-qaframework/pull/326
https://github.com/openmrs/openmrs-contrib-qaframework/pull/326
https://github.com/openmrs/openmrs-contrib-qaframework/pull/169
https://github.com/openmrs/openmrs-contrib-qaframework/pull/169
https://github.com/openmrs/openmrs-contrib-qaframework/pull/169
https://github.com/openmrs/openmrs-contrib-qaframework/pull/166
https://github.com/openmrs/openmrs-contrib-qaframework/pull/166
https://github.com/openmrs/openmrs-contrib-qaframework/pull/166
https://github.com/openmrs/openmrs-contrib-qaframework/pull/143
https://github.com/openmrs/openmrs-contrib-qaframework/pull/143
https://github.com/openmrs/openmrs-contrib-qaframework/pull/143
https://github.com/openmrs/openmrs-module-dhisconnector/pull/5
https://github.com/openmrs/openmrs-module-dhisconnector/pull/5
https://github.com/openmrs/openmrs-module-dhisconnector/pull/10

mrs-module-dhisconnector/pull/1
0

DCM-15 https://github.com/openmrs/open
mrs-module-dhisconnector/pull/1
5

Merged

DCM-24 https://github.com/openmrs/open
mrs-module-dhisconnector/pull/2
4

Merged

DCM-29 https://github.com/openmrs/open
mrs-module-dhisconnector/pull/2
9

Merged

TOTAL 10

12. PR Reviews: In the table below, please include all relevant issues where you have
reviewed pull requests.
Note: You must have made at least three pull request reviews BEFORE submitting your
application. If you don't include this information, your proposal will not be reviewed.

Project PR Link Issues/suggestions/improvements you
mentioned in the review

OpenMRS DHIS
Connector
Module

https://github.com/ope
nmrs/openmrs-module-
dhisconnector/pull/26

Suggested to use jQuery to handle div
visibility
Encouraged to move event listeners to
separated functions
Requested to change variable names
Asked to remove hardcoded values

OpenMRS ESM
Patient Chart

https://github.com/ope
nmrs/openmrs-esm-pat
ient-chart/pull/217

Suggested to use a proper variable
naming convention for booleans

OpenMRS ESM
Primary
Navigation

https://github.com/ope
nmrs/openmrs-esm-pri
mary-navigation/pull/63

Suggested to use proper CSS class
naming conventions

OpenMRS ESM
Patient
Management

https://github.com/ope
nmrs/openmrs-esm-pat
ient-management/pull/
97

Removing extra white spaces and adding
the EOL

https://github.com/openmrs/openmrs-module-dhisconnector/pull/10
https://github.com/openmrs/openmrs-module-dhisconnector/pull/10
https://github.com/openmrs/openmrs-module-dhisconnector/pull/15
https://github.com/openmrs/openmrs-module-dhisconnector/pull/15
https://github.com/openmrs/openmrs-module-dhisconnector/pull/15
https://github.com/openmrs/openmrs-module-dhisconnector/pull/24
https://github.com/openmrs/openmrs-module-dhisconnector/pull/24
https://github.com/openmrs/openmrs-module-dhisconnector/pull/24
https://github.com/openmrs/openmrs-module-dhisconnector/pull/29
https://github.com/openmrs/openmrs-module-dhisconnector/pull/29
https://github.com/openmrs/openmrs-module-dhisconnector/pull/29
https://github.com/openmrs/openmrs-module-dhisconnector/pull/26
https://github.com/openmrs/openmrs-module-dhisconnector/pull/26
https://github.com/openmrs/openmrs-module-dhisconnector/pull/26
https://github.com/openmrs/openmrs-esm-patient-chart/pull/217
https://github.com/openmrs/openmrs-esm-patient-chart/pull/217
https://github.com/openmrs/openmrs-esm-patient-chart/pull/217
https://github.com/openmrs/openmrs-esm-primary-navigation/pull/63
https://github.com/openmrs/openmrs-esm-primary-navigation/pull/63
https://github.com/openmrs/openmrs-esm-primary-navigation/pull/63
https://github.com/openmrs/openmrs-esm-patient-management/pull/97
https://github.com/openmrs/openmrs-esm-patient-management/pull/97
https://github.com/openmrs/openmrs-esm-patient-management/pull/97
https://github.com/openmrs/openmrs-esm-patient-management/pull/97

TOTAL 04

2. Project Proposal

2.1. Introduction
This proposal provides an overview of the GSoC project Redo Legacy UI Cohort Builder. It begins
by describing the motivation behind selecting the project. Then the existing solutions are
described followed by the problems of the existing solutions. Thereafter it describes the
functional and non-functional requirements of the project. After describing the design of the
proposed solution implementation will be presented. Finally, the proposal will be completed with
the project timeline.

2.1.1. Project background

OpenMRS is a Java-based, web-based electronic medical record system. At the heart of
OpenMRS is a concept dictionary. This dictionary, much like a typical dictionary, defines all of
the unique concepts (both questions and answers) used throughout the system. Using
combinations of questions and answers, we can define observations (observable data) as well
as forms that gather multiple observations within a single encounter. With all this data
OpenMRS needed to create groups of patients with different parameters. That’s when the
Cohort Builder too came to the rescue. To understand how this works first we need to
understand the following,

1. Cohorts
2. Cohort Builder

1. Cohorts
A "Cohort" defines a group of patients. The need to define groups of patients comes up
frequently in clinical care. Grouping of patients can be used during treatment (e.g., an HIV
support group), for research (e.g., look at 'all males age 18-30 with diagnosis X' for shared risk
factors), in population health (e.g., defining households in an outreach program), and many
other scenarios. To date, OpenMRS has had a simple model for defining cohorts (the cohort –
i.e., group of patients – has a name and description, patients are added to a cohort by adding an
entry to the cohort_member table (there's a corresponding Java model for Cohort in
openmrs-core). In the Reporting Module, cohorts were extended to include "evaluated cohorts,"
which are cohorts defined by a set of criteria – i.e., a list of patients determined by comparing
patients to a set of criteria instead of a manually-managed, static list of patients.

2. Cohort Builder
The Cohort Builder is a tool in OpenMRS 1.0 in the Reporting Compatibility module (included
with most OpenMRS installations) that lets the user perform ad-hoc queries for patients with
defined characteristics, and combines multiple queries into more complex ones.

● It makes it easy to search for, and run saved report definitions or queries, for a given
group of patients.

● It provides a fluid transition between the search, result tabulation and the result view.
● It presents data in a well structured and readable format
● The cohort-builder presents the data in a very good format.

There are seven ways of creating cohorts using different parameters.
1. Searching by Observations
2. Searching by demographics
3. Searching by encounters
4. Searching by program enrollments
5. Searching by Drug Order
6. Searching by SQL Queries
7. Combining searches

1. Searching by Observations
This gives the user the option to search via concepts or observations existing in the system.

● Concepts - individual data points collected from a population of patients. They include
both questions and answers ex: Q. Does the patient value have a whole blood sample?
A. whole blood sample

● Observations - anything actively measured or observed during an encounter ex: patient's
weight, age or blood pressure

2. Searching by demographics
Searching by demographics gives the user the option to search using the demographics such as
gender, age and also the ability to search based on a person's attributes

3. Searching by encounters
An encounter is a single, specific interaction between the patient and a provider.

Search by encounters searches for patients with a specific type of activity or encounter. For
example, check-in, check out, transfer, admission etc.

4. Searching by program enrollments
Search by program enrollments allows the user to search for patients enrolled in a particular
program or patients who have a particular status.

5. Searching by Drug Order
Searching by Drug Order allows the user to search for patients who taking specific drugs or
patients who stopped or changed a drug

6. Searching by SQL Queries
WIth the search by SQL Queries feature the user can use custom SQL queries to build the
cohorts.

7. Combining searches
After the user has done several searches, the Composition tab allows the user to combine them
using Boolean algebra. The user can use AND, OR, NOT, or parentheses to build complex
combinations of the other searches in the user’s history. Refer to users’ previous searches using
the number next to them in the Search History section.

2.1.2. Existing solutions

The cohort builder has been a tool in OpenMRS for years. Currently, there are two existing
implementations of the cohort builder.

1. Cohort-builder Legacy UI
The legacy user interface for OpenMRS Platform 2. x is chiefly comprised of
administrative functions and the patient dashboard. This cohort builder has the
above-mentioned functionalities. Legacy UI uses JSP on the UI and DWR to
communicate with the backend.

Figure 2.1.2.1 A screenshot of the legacy UI

https://en.wikipedia.org/wiki/Direct_Web_Remoting

2. Cohort-builder Open Web App
The cohort-builder open web app is an OpenMRS tool used to generate reports as per
the example on an ad hoc basis. This means that it builds a cohort of patients, based on
the similarity of their characteristics.
This doesn’t offer the same functionalities that legacy UI offers like Searching by
program enrollments Searching by Drug Order and Searching by SQL Queries.

Cohort-builder OWA is built using ReactJS with JSX, Browsersync, Webpack,
twitter-bootstrap, HTML and Javascript.

Figure 2.1.2.2 A screenshot of the OWA Cohort Builder UI

2.1.3. Problems with the current solutions

The main problem with the current solutions is they are outdated. Both solutions are
implemented for previous OpenMRS versions(1.0 and 2.0). Since OpenMRS is moving from
legacy server-rendered pages to React using Carbon Design within a micro frontend framework
we need to help OpenMRS implementers to make this transition.

Mobile responsiveness is also a problem in these solutions. Another problem is Cohort builder
OWA doesn’t offer all the functions even though it uses relatively new technologies.

2.1.4. Functional Requirements

Functional requirements are product features or functions that developers must implement to
enable users to accomplish their tasks.

The Moscow method is a prioritization technique used in management, business analysis,
project management, and software development to reach a common understanding with
stakeholders on the importance they place on the delivery of each requirement

Priority Level Description

Must have Mandatory and critical requirements

Should have Important, but not critical requirements.
Better to have.

Could have Nice to have. No impact on not having this
requirement.

Will not have Not required at the moment.

The new microfrontend of the module should definitely provide all the functionalities that the
OpenMRS 1.0 legacy module had. There can be some additional features as well. The following
table shows the requirements of the new microfrontend and their priorities according to the
Moscow prioritization.

Requirement Priority Level

FR-01 Should be able to search by Concepts/Observations Must Have

FR-02 Should be able to search by demographics Must Have

FR-03 Should be able to search by encounters Must Have

FR-04 Should be able to search by program enrollments Must Have

FR-05 Should be able to search by drug order Must Have

FR-06 Should be able to search by SQL Queries Must Have

FR-07 Should be able to combine searches Must Have

FR-08 Should be able to schedule run saved cohorts Must Have

FR-09 Should be able to see the search history with necessary actions Must Have

FR-10 Should be able to search for saved search and cohort definitions Must Have

2.1.5. Non Functional Requirements
User experience
User experience is important because it tries to fulfil the user's needs. It aims to provide positive
experiences that keep a user loyal to the product.

Responsiveness
The importance of responsive web design is that it offers an optimized browsing experience.

Localization
Localization is ensuring that each page makes sense in a linguistic and cultural context for each
country.

2.1.6. Chapter Summary
In this chapter the project background was described. Then the existing solutions were
described followed by the problems of the existing solutions. In the end, the functional and
non-functional requirements of the project were described. In the next chapter design of the
proposed solution will be discussed.

2.2. Design
In this chapter the design of the proposed solution will be presented. Based on the above
feature the proposed solution will have 10 main views to serve the main functionalities. Each
view will be presented with the relevant wireframes.

1. Searching by Observations
2. Searching by Demographics
3. Searching by Encounters
4. Searching by Program Enrollments
5. Searching by Drug Order
6. Searching by SQL Queries
7. Composition
8. Search History
9. Saved Definitions Search
10. Cohort Results

Since a cohort query returns a list of patients matching the specified criteria outputs of the
above components will be a list of patients

2.2.1. Searching by observations
Searching by observations gives the user the option to search via concepts or observations
existing in the system. This component has an input to search and a to search including verbose
or without verbose.

2.2.1.1 Wireframe of the default view

2.2.1.2 Wireframe of search with an observation view

2.2.2. Searching by demographics
Searching by demographics is where the user can create cohorts using the demographics and
patient attributes.

There are 5 demographic search options namely:
1. Gender - Search by gender option
2. Age - Filter patient search results by age range i.e. 0-14
3. Birthdate - Filter patient search results by birthdate range ie 20 Feb 1988 - 03 May 2006
4. Alive - Search only for patients who are alive.
5. Dead - Search for deceased patients.

There are 10 person attributes search options:
1. Birthplace filter by place of birth
2. Citizenship - Filter patient results by specifying their country of origin
3. Civil Status
4. Health Center - Filter by details of health centre attended by patients
5. Health District allows you to filter by similar health districts
6. Mother’s Name - Filter by similar mother’s name
7. Race - Filter results by the patient's racial background
8. Telephone number - Filter by similar phone numbers
9. Unknown patient
10. Test patient

This allows the user to search for patients with specific information that further describes them.

2.2.2.1. Wireframe of the search by demographics view

2.2.3. Searching by encounters
Search by encounters has two main ways to run the search with different parameters.

1. Search by Encounter
2. Search by Location

Search by Encounter:
Search by Encounter uses to search patients with a specific type of activity or encounter. For
example, check-in, check-out, transfer, admission etc.

There are 5 search options namely: -

1. Of Type allows you to filter by the type of the encounter
2. The location allows you to filter by the location of the encounter
3. At least this many allows you to filter by the minimum encounter count
4. Up to this many allows you to filter by the maximum encounter type
5. From - To allows you to filter by the date range in which the encounter(s) occurred.

Search by Location:

Search by location allows the user to search for patients by the encounter location. Ex: Amani
hospital, inpatient ward, isolation ward etc.
Here the filters will be applied according to the following:-

1. Patients belonging to a group of encounters from a specific location.
2. According to the timeline of the encounter

Figure 2.2.3.1. Wireframe of the search by Encounters

2.2.4. Searching by program enrollments
Searching by program enrollments has the following fields required by the user to perform the
search.

1. Program:
2. Date Ranges for the following

a. In The Program
b. Enrolled in the program
c. Completed the program

Figure 2.2.4.1. Wireframe of the search by program enrollments

2.2.5. Searching by Drug Order
This component has two search types:

1. Patients taking specific drugs
a. Drugs
b. When: Current drug regimen or All drug regiment

2. Patients who stopped or changed a drug
a. Reason for stop/change
b. Drugs
c. When

Figure 2.2.5.1. Wireframe of the search by drug order view

2.2.6. Searching by SQL Queries
Searching by SQL Queries has an input to run the custom SQL queries

Figure 2.2.6.1. Wireframe of the search by SQL Queries view

2.2.7. Composition
To use the composition view, the user needs to have query results from the other queries in your
search history.
These are the queries that will then be combined to yield new results.

Figure 2.2.7.1. Wireframe of the composition view

2.2.8. Search History

This is where a history of executed searches are saved and displayed to the user, each search
can be saved either as a cohort or as a definition. There are 4 fields under this component,
namely

1. Query: This is where the name or description of the query is displayed
2. Query Definition Options

a. Save: This saves a definition to the database
b. Delete: This removes a definition from the search history

3. Results: This contains a list of all the patients contained in the search result
4. Query Definition Options

a. Save: This saves a cohort to the database
b. Delete: This removes a definition from the search history

This history is preserved until you choose to clear it or the web application is restarted.

Figure 2.2.8.1. Wireframe of the search history view

2.2.9. Saved Definitions Search
Saved definitions search gives the user the option to search for a saved cohort or definition, it
has two fields,

1. Search Saved Definitions allows the user to search for a saved definition by its name
2. Search Saved Cohort allows the user to search for a saved cohort by its name

Figure 2.2.8.1. Wireframe of the default view

2.2.10. Cohort Run Scheduler
With the cohort run scheduler the user can configure the cohort runner which will run the saved
cohorts at the scheduled time. The user can schedule, reschedule and stop running the saved
cohort definitions.

Figure 2.2.10.1. Wireframe of the default view

2.2.11. Cohort Results
This is where the results of the cohort will be shown. This list downs the patient on a table to
give more readability and show more details about the patient. This component includes
pagination to handle long lists of patients in order to improve the user experience.

Figure 2.2.11.1. Wireframe of the results table

Clicking on a patient name will redirect to the patient summary view where the patient data is
shown.

2.2.12. Chapter Summary
In this chapter the proposed design was described. Each wireframe clarified consistent ways for
displaying particular types of information on the user interface.

2.3. Implementation
In this chapter implementation will be presented based on the above-discussed design. This
includes the selection of the tools, and implementation of the views and the chapter will be
ended with the testing section.

2.3.1. Selection of tools and technologies
OpenMRS Frontend 3.0. uses a microfrontends-based architecture. Micro frontends are
in-browser javascript modules (ESMs) that provide application UI. For the Cohort Builder ESM
module following technologies will be used.

Languages and libraries
TypeScript provides highly productive development tools for JavaScript IDEs and practices, like
static checking. TypeScript simplifies JavaScript code, making it easier to read and debug.

OpenMRS is pretty much established with React and all the micro frontend modules are built
with React.

UI Components
Carbon Design System is a free and open-source design system and library created by IBM.
Following a design system helps to maintain consistency throughout the system. OpenMRS
style Guide will be used for the customised components.

https://www.typescriptlang.org/
https://reactjs.org/

Testing
Jest is a JavaScript testing framework designed to ensure the correctness of any JavaScript
codebase. Testing enables you to see what the software does and how well it does it so that the
organisation can measure the quality of the software before it goes live.

Bundling
Webpack is a module bundler. Its main purpose is to bundle JavaScript files for usage in a
browser. Webpack is one of the most popular build tools out there.

OpenMRS ESM Template App
This repository provides a starting point for creating a new OpenMRS Microfrontend. ESM
template comes with everything configured with the above technologies.

The following modules give the required APIs,
1. OpenMRS Web services Rest
2. OpenMRS Reporting Module Rest

For the creation of new REST APIs reporting compatible module will be referred to.

2.3.2. Implementation of views
In this section the implementation will be discussed based on each view.

2.3.2.1. Navigation Tabs
Navigation Tabs contain the links required to switch between the different cohort building
methods. namely,

1. Concepts/Observations
2. Demographics
3. Encounters
4. Program enrollments
5. Drug Order
6. SQL
7. Composition
8. Saved
9. Search History
10. Cohort Results

With the navigation tabs user should be able to navigate through the different views easily. The
following mockups show the final look of the navigation tabs.

https://jestjs.io/
https://webpack.js.org/
https://github.com/openmrs/openmrs-esm-template-app
https://github.com/openmrs/openmrs-module-webservices.rest
https://github.com/openmrs/openmrs-module-reportingrest
https://github.com/openmrs/openmrs-module-reportingcompatibility

Figure 2.3.2.1. Proposed UI of the Navigation Tab

For the navigation tabs, Tabs carbon component will be used and the line variant matches the
OpenMRS design.

2.3.2.2. Concepts/Observations
Concepts/Observations has two search types that take different inputs from the user. Based on
that there are two main subcomponents in this view.

1. Concept Component
2. Observation Component

Concept Component
This includes the search input to get the concepts. When the user types concepts it will return
the concepts that match the user input. For the search component, OMRS Search bar will be
used because it helps to keep the whole platform consistent.

The following APIs will be used to implement the search by concepts function.

Concept {
uuid : String,
display: String,
name: {},
datatype: {},
conceptClass: {},
descriptions: [],
answers: [],

}

Get all the concepts
GET {baseUrl}/concept?v=full
Request Body: N/A
Response:

On Success: 200 OK List<Concept>
On Failure: 401 Unauthorized (When the user is not logged in)

https://www.carbondesignsystem.com/components/tabs/usage/
https://zpl.io/a3rEkJ8

Get a specific concept
GET {baseUrl}/concept?v=full&q={conceptName}
Request Body: N/A
Response:

On Success: 200 OK Concept
On Failure: 401 Unauthorized (When the user is not logged in)

Observation Component
This component includes the following,
Dropdown to select whether the cohort is for patients who have these observations or not
Date range selector to get the obsDateTime
Two inputs to get the last months or dates

“What values” dropdown contains the following values,
Less Than <
Less Equal <=
Equal =
Greater Than >
Greater Equal >=

Enter value input will be used to get the concept value in relevant units (ex: kg, cm).

The following components will be used for this view:
OMRS Primary Button
Input
Date Picker
Dropdown

The following APIs will be used to implement the search by concepts function.
Hl7 abbreviations are required to run the search.

hl7AbbrevTypes {

CWE: 'codedObsSearchAdvanced',

NM: 'numericObsSearchAdvanced',

DT: 'dateObsSearchAdvanced',

ST: 'dateObsSearchAdvanced',

TS: 'textObsSearchAdvanced',

ZZ: 'codedObsSearchAdvanced',

BIT: 'codedObsSearchAdvanced'

}

https://zpl.io/aw53GLn
https://www.carbondesignsystem.com/components/text-input/style/
https://www.carbondesignsystem.com/components/date-picker/usage/
https://www.carbondesignsystem.com/components/dropdown/usage/

parameters {

hl7AbbrevType: [{

name: String,

value: String

}]

]

Run the concept query
POST {baseUrl}/reportingrest/adhocquery?v=full
Request Body: parameters
Response:

On Success: 201 Created List<Patient>
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.3.1. Proposed UI of Concept/Observation component

2.3.2.3. Demographics
Demographics component contains two search methods. For these two methods, the following
components will be created.

Search by Demographics

https://pastebin.pl/view/dfa00b31

This component contains the following components,
● A dropdown to get the gender with (Male and Female values)
● Two numerical inputs for getting the age range
● Birthdate range date picker
● Date of death range date picker
● A radio button to select alive or not alive

Search by Person Attributes
To get the person attributes a dropdown will be used and an input to get the value for the
relevant attribute.

PatientAttributeTypes {

uuid: String,

display: String,

links: [

{

rel: String,

uri: String

}

]

}

Get the patient attributes
GET {baseUrl}/personattributetype
Request Body: N/A
Response:

On Success: 200 OK List<PatientAttributeTypes>
On Failure: 401 Unauthorized (When the user is not logged in)

searchParameters {

gender: String,

ageRangeOnDate: [

{ name: 'minAge', value: Number },

{ name: 'maxAge', value: Number}

],

atLeastAgeOnDate: [

{ name: 'minAge', value: Number }

],

upToAgeOnDate: [

{ name: 'maxAge', value: Number }

].

bornDuringPeriod: [

{ name: 'startDate', dataType: 'date', value: Date },

{ name: 'endDate', dataType: 'date', value: Date }

]

}

Run the demographics query
POST {baseUrl}/reportingrest/adhocquery?v=full
Request Body: searchParams
Response:

On Success: 201 Created List<Patient>
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.4.1. Proposed UI of Search by Demographics view

2.3.2.4. Encounters
Since there are two ways to search in the encounter view there will be two subcomponents as
well.

1. Search by encounter component
2. Search by location component

Search by encounter
There are three dropdowns for selecting the encounter type, forms and locations. The carbon
Dropdown component will be used for this and the following APIs will be used to get the data.

The encounter methods dropdown will have the following values,
Any Encounter
Most Recent Encounter
Earliest Encounter

EncounterType {

uuid: String,

display: String,

links: [

https://www.carbondesignsystem.com/components/dropdown/usage/

{

rel: String,

uri: String

}

]

}

Get the encounters
GET {baseUrl}/encountertype
Request Body: N/A
Response:

On Success: 200 OK List<EncounterType>
On Failure: 401 Unauthorized (When the user is not logged in)

Form {

uuid: String,

display: String,

links: [

{

rel: String,

uri: String

}

]

}

Get the forms
GET {baseUrl}/form
Request Body: N/A
Response:

On Success: 200 OK List<Form>
On Failure: 401 Unauthorized (When the user is not logged in)

Locations {

uuid: String,

display: String,

links: [

{

rel: String,

uri: String

}

]

}

Get the locations
GET {baseUrl}/locations
Request Body: N/A
Response:

On Success: 200 OK List<Locations>
On Failure: 401 Unauthorized (When the user is not logged in)

searchParams = { encounterSearchAdvanced: [

{ name: onOrAfter, value: Date },

{ name: onOrBefore, value: Date },

{ name: atLeastCount, value: Number },

{ name: atMostCount, value: Number },

{ name: formList, value: String[] },

{ name: locationList, value: String[] },

{ name: encounterTypeList, value: String[] },

] }

Run the encounter query
POST {baseUrl}/reportingrest/adhocquery?v=full
Request Body: searchParams
Response:

On Success: 201 Created List<Patient>
On Failure: 401 Unauthorized (When the user is not logged in)

Search by location
This has the locations dropdown and the encounter methods dropdown.

Get the locations
GET {baseUrl}/locations
Request Body: N/A
Response:

On Success: 200 OK List<Locations>
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.4.1. Proposed UI of Search by Encounters view

2.3.2.5. Program enrollments
Programs dropdown contains all the available programs that come from the following API. For
selecting the date range there will be a carbon datepicker.

Program {

uuid: String,

name: String,

allWorkflows: [],

links: [

{

rel: String,

uri: String

}

]

}

Get the programs

https://www.carbondesignsystem.com/components/date-picker/usage/

GET {baseUrl}/program
Request Body: N/A
Response:

On Success: 200 OK List<Program>
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.5.1. Proposed UI of Search by Program Enrollments

2.3.2.6. Drug Order
Drug Order components have two main subcomponents that serve the two search types.

1. Drug Order
2. Drug Usage

Drug Order
Drug Order component has a date range selector to get the observation date with time and two
inputs to get the last months or dates values.

Drug {

uuid: String,

display: String,

links: [

{

rel: String,

uri: String

}

]

}

Get the drugs
GET {baseUrl}/drugs
Request Body: N/A
Response:

On Success: 200 OK List<Drug>
On Failure: 401 Unauthorized (When the user is not logged in)

Drug Usage
Drug Usage component has the same component as the DrugUsage component but has two
other dropdowns with the drug generics and drug order stop reasons.

This requires two new REST APIs to get the reasons for stopping the drugs and to get drug
generics.

Get the drugs
GET {baseUrl}/drugs/generics
Request Body: N/A
Response:

On Success: 200 OK List<Drug>
On Failure: 401 Unauthorized (When the user is not logged in)

Reason {

conceptId: String,

name: String,

}

Get the drugs
GET {baseUrl}/drugs/order-stop-reasons
Request Body: N/A
Response:

On Success: 200 OK List<Reason>
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.8.1. Proposed UI of Search by Drug Order

2.3.2.7. SQL
The user needs to input the SQL query into the text box. In this implementation, there will be a
new REST API for running the query. Which takes the query in the body and returns the filtered
patients.

Query {

query: String

}

Run the SQL query
POST {baseUrl}/sql-patient-filter
Request Body: Query
Response:

On Success: 201 Created List<Patient>
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.7.1. Proposed UI of Search by SQL view

2.3.2.8. Composition
There’s an input for entering the operations.
Using the description input user enters a name or a description for the search composition that
is being created

For the input component carbon Input component will be used.
Regex will be used to validate user input and to avoid errors.

Columns: [

{

"name": "firstname",

"key":

"reporting.library.patientDataDefinition.builtIn.preferredName.givenName",

"type":

"org.openmrs.module.reporting.data.patient.definition.PatientDataDefinition

"

},

{

"name": "lastname",

https://www.carbondesignsystem.com/components/text-input/style/

"key":

"reporting.library.patientDataDefinition.builtIn.preferredName.familyName",

"type":

"org.openmrs.module.reporting.data.patient.definition.PatientDataDefinition

"

},

{

"name": "gender",

"key": "reporting.library.patientDataDefinition.builtIn.gender",

"type":

"org.openmrs.module.reporting.data.patient.definition.PatientDataDefinition

"

},

{

"name": "age",

"key":

"reporting.library.patientDataDefinition.builtIn.ageOnDate.fullYears",

"type":

"org.openmrs.module.reporting.data.patient.definition.PatientDataDefinition

"

},

{

"name": "patientId",

"key": "reporting.library.patientDataDefinition.builtIn.patientId",

"type":

"org.openmrs.module.reporting.data.patient.definition.PatientDataDefinition

"

}

]

AdhocDataset {

type:

"org.openmrs.module.reporting.dataset.definition.PatientDataSetDefinition",

customRowFilterCombination: String,

rowFilters: [{type: String, key: String}],

columns: Columns

}

Run the composition query
POST {baseUrl}/reportingrest/adhocquery?v=full
Request Body: AdhocDataset

Response:
On Success: 201 Created List<Patient>
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.9.1. Proposed UI of Composition component

2.3.2.9. Saved Definitions
Saved Definitions component includes two search inputs for search saved definitions and saved
cohorts. For the search inputs, the carbon Input component will be used. The following APIs will
be used to implement this component.

Get saved definitions
GET {baseUrl}/reportingrest/dataSetDefinition?v=full&q={definitionsQuery}
Request Body: N/A
Response:

On Success: 200 OK AdhocDataset
On Failure: 401 Unauthorized (When the user is not logged in)

Get saved cohort
GET {baseUrl}/cohort?v=full&q={cohortsQuery}
Request Body: N/A
Response:

https://www.carbondesignsystem.com/components/text-input/style/

On Success: 200 OK List<Cohort>
On Failure: 401 Unauthorized (When the user is not logged in)

Delete cohort
DELETE {baseUrl}/cohort/{cohortId}
Request Body: N/A
Response:

On Success: 200 OK
On Failure: 401 Unauthorized (When the user is not logged in)

Delete definition
DELETE {baseUrl}/reportingrest/adhocdataset/{uuid}?purge=true
Request Body: N/A
Response:

On Success: 200 OK
On Failure: 401 Unauthorized (When the user is not logged in)

Figure 2.3.2.9.1. Proposed UI of Search Definitions view

2.3.2.10. Search History
To preserve the user's search history, Session Storage will be used because unlike local storage,
session storage only keeps data for a particular session. Seach history will be an array of search
history objects. Which includes the description, the patients and the parameters.

To show the search history Carbon Data Table will be used. The clear search history button will
clear out the session storage and will be visible only if there's a history to show. OMRS Danger
button will be used for the clear button. Before clearing out the history, a confirmation modal will
be shown. OMRS Modal will be used for this.

The download link will download the data in CSV format.
The following APIs will be used to implement this component.

Save cohort
POST {baseUrl}/cohort
Request Body: Cohort
Response:

On Success: 201 Created Cohort
On Failure: 401 Unauthorized (When the user is not logged in)

Save search
POST {baseUrl}/reportingrest/adhocdataset
Request Body: Query
Response:

On Success: 201 Created
On Failure: 401 Unauthorized (When the user is not logged in)

Delete cohort
DELETE {baseUrl}/cohort/{cohortId}
Request Body: N/A
Response:

On Success: 200 OK
On Failure: 401 Unauthorized (When the user is not logged in)

Get dataset
GET {baseUrl}/reportingrest/dataSet/{uuid}
Request Body: N/A
Response:

On Success: 200 OK AdhocDataset
On Failure: 401 Unauthorized (When the user is not logged in)

https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://www.carbondesignsystem.com/components/data-table/usage/
https://zpl.io/aNOxknZ
https://zpl.io/agm3M3D

Delete Adhoc dataset
DELETE {baseUrl}/reportingrest/adhocdataset/{uuid}?purge=true
Request Body: N/A
Response:

On Success: 200 OK
On Failure: 401 Unauthorized (When the user is not logged in)

The following figure shows the proposed UI for the search history component,

Figure 2.3.2.10.1. Proposed UI of Search History component

2.3.2.11. Cohort Results
Cohort results component list downs the cohort members in a carbon data table component
with pagination. This receives the patients as a prop. When the user clicks on a patient name it
redirects the user to the {baseURL}/patient/{uuid}/chart/Patient%20Summary which is the
patient summary page that already exists.
The following figure shows the proposed UI of the search result component.

Figure 2.3.2.11.1. Proposed UI of Search Results component

2.3.2.12. Cohort Scheduler
A new CohortScheduleTask will be created in the OMRS Task Scheduler and TaskResources in
the webservices rest will be used to implement this.

Task {

https://www.carbondesignsystem.com/components/data-table/usage/
https://github.com/openmrs/openmrs-core/tree/1.11.6/api/src/main/java/org/openmrs/scheduler

startTime: Date,

repeatInterval: Number;

startOnStartup: Boolean,

taskClass: String,

name: String,

description: String

}

Create the cohort schedule
POST {baseUrl}/taskdefinition
Request Body: Task
Response:

On Success: 201 Created
On Failure: 401 Unauthorized (When the user is not logged in)

Get the cohort schedule
PUT {baseUrl}/taskdefinition/{taskID}
Request Body: N/A
Response:

On Success: 200 OK
On Failure: 401 Unauthorized (When the user is not logged in)

Update the cohort schedule
PUT {baseUrl}/taskdefinition/{uuid}
Request Body: Task
Response:

On Success: 200 OK
On Failure: 401 Unauthorized (When the user is not logged in)

Delete the cohort schedule
DELETE {baseUrl}/taskdefinition/{uuid}?purge=true
Request Body: N/A
Response:

On Success: 200 OK
On Failure: 401 Unauthorized (When the user is not logged in)

The following figure shows the Cohort run scheduler default view.

Figure 2.3.2.12.1. Proposed UI of Cohort Run Scheduler

2.3.3. Testing
Unit and integration testing will be done using Jest. E2E tests will be written in the OpenMRS QA
framework.

2.3.4. Chapter Summary
In this chapter the implementation of the solution was described using the different views
alongside the inputs, data types and relevant APIs.

2.4. Risks associated with the project

The following table contains the identified risks, the likelihood and impact of each risk, and the
mitigation plans.

Risk Likelihood Impact Mitigation plan

Technical
Difficulties

Low Medium - Planned to get the help from the community
when the technical difficulties are met

https://github.com/openmrs/openmrs-contrib-qaframework
https://github.com/openmrs/openmrs-contrib-qaframework

Lack of time Medium High - Planned small sprints to deliver a working
product at the end of each sprint

- Improvements will be considered towards
the end of the project

2.5. Timeline
Period Duration Deliverable Description

21th May - 28th May 1 week Setting up the project Finalize the GUI Mockups,
APIs, Read documentation

29th May - 9th June 1.5 week FR-01 Initial cohort builder UI with
search by concept
component

10th June - 19th June 1 week FR-09 Creation of the Search
History component

20th June - 29th June 1 week FR-02 Implementation of the search
by demographics component

30th June - 8th July 1 week FR-03 Implementation of the search
by encounters component

9th July - 17th July 1 week FR-04 Implementation of the search
by program enrollments
component

18th July - 28th July 1.5 week FR-05 Implementation of the search
by drug order component

29th July - 6th August 1 week FR-06 Create the Search by SQL UI
and the REST API

7th August - 24th
August

2 week FR-08 Create the cohort run
scheduler and create the
required APIs

25rd August - 5th
August

1.5 week FR-10 Implementation of the saved
component

6th September - 12th
September

0.8 weeks Testing the
Implementation for the
maintenance

Test the UI implementation to
identify the bugs and fix them

Further Enhancements & Ideas
Create dedicated REST APIs for querying data that currently use the Ad Hoc because Adhoc API
is hard to maintain and not developer-friendly.

2.6. Summary
This proposal provided the overview of the GSoC project Redo Legacy UI Cohort Builder. It
began by describing the motivation behind selecting the project. Then the existing solutions
were described followed by the problems of the existing solutions. Thereafter it described the
functional and non-functional requirements of the project. After describing the design of the
proposed solution implementation was presented. In the end, the timeline and the further
enhancements were presented.

2.7. References
OpenMRS WIki.[2022] OWA User Guide [Online]. Available at:
https://wiki.openmrs.org/display/docs/Cohort+Builder+Open+Web+App+User+Guide
[Accessed 16 April 2022]

OpenMRS Guide.[2022] Cohort Builder [Online]. Available at:
https://guide.openmrs.org/en/Using%20Data/cohort-builder.html
[Accessed 16 April 2022]

https://wiki.openmrs.org/display/docs/Cohort+Builder+Open+Web+App+User+Guide
https://guide.openmrs.org/en/Using%20Data/cohort-builder.html

OpenMRS WIki.[2022] Cohort Builder Features [Online]. Available at:
https://wiki.openmrs.org/display/projects/Expanded+Cohort+Features
[Accessed 16 April 2022]

OpenMRS Rest API.[2022] API Doc [Online]. Available at:
https://rest.openmrs.org/
[Accessed 16 April 2022]

OpenMRS Github [2022] Reporting Compatibility Module [Online]. Available at:
https://github.com/openmrs/openmrs-module-reportingcompatibility
[Accessed 17 April 2022]

OpenMRS Github [2022] Reporting Rest [Online]. Available at:
https://github.com/openmrs/openmrs-module-reportingrest
[Accessed 17 April 2022]

OpenMRS Github [2022] Webservices Rest [Online]. Available at:
https://github.com/openmrs/openmrs-module-webservices.rest
[Accessed 18 April 2022]

https://wiki.openmrs.org/display/projects/Expanded+Cohort+Features
https://rest.openmrs.org/
https://github.com/openmrs/openmrs-module-reportingcompatibility
https://github.com/openmrs/openmrs-module-reportingrest
https://github.com/openmrs/openmrs-module-webservices.rest

