
Netty replace Grpc Design

Summary

The purpose of this design is to reduce the serialization/deserialization time of Uniffle Client
and ShuffleServer, as well as the GC Time of ShuffleServer

Motivation

Benefits of using this restricted feature

1.​ reduce the serialization/deserialization time of Uniffle Client and ShuffleServer

2.​ Reduce the GC Time of ShuffleServer, especially the pause time caused by FullGC

Goals
I will implement the following functions:

1.​ Use Netty to replace Grpc to implement ShuffleServer

2.​ Use off-heap memory to manage shuffle data cached in ShuffleServer

Design Details

The main communication components are Client, Coordinator and ShuffleServer.

ShuffleServer

Serialization/deserialization protocol rewriting

After replacing Grpc with Netty, we need to rewrite the serialization/deserialization protocol

of each interface. After rewriting, theoretically the transmitted content will become less than

Grpc.

Taking a simple interface GetShuffleResultRequest as an example, the serialized content
will be as follows, there is only one redundant byte here to identify the request type.

https://github.com/apache/incubator-uniffle/issues/133

I will implement Decoder/Encoder and InboundHandler that handles the corresponding
interface processing. Decoder is used to deserialize the binary data sent by the client into a
message object, Encoder is used to serialize the response object, and InboundHandler
contains the interface processing logic of ShuffleServer

Use off-heap memory to manage shuffle data

Currently, the shuffle data cached in Shuffle Server is managed through on-heap memory,

and we will replace it with off-heap memory, which will greatly reduce GC Time and avoid

FullGC when ShuffleServer flushes data. This means that the data in

org.apache.uniffle.common.ShufflePartitionedBlock will be allocated through off-heap

memory.

Risk point

To use off-heap memory, we need to manage the allocation size of off-heap memory. When
the off-heap memory requested by the jvm process exceeds -XX:MaxDirectMemorySize, an
OOM exception will be thrown. Considering this problem, ShuffleServer mainly uses the
off-heap memory in two places, the first place is the buffer needed by the Netty server. The
size of off-memory used here will be related to the number of concurrent requests
processed and the content of the request. Here we expect to use a fixed configuration.
Reserve a part of the memory. In addition, we need to pass some pressure tests to prove
that the reserved memory is sufficient. The second place is the cache of shuffle data, which
is fixed here, as long as it matches rss.server.buffer.capacity +
rss.server.read.buffer.capacity is equal.

Assuming Xmx=80G, the memory allocation after design will be like this

Client
Serialization/deserialization protocol rewriting

Reuse the Encoder/Decoder logic in ShuffleServer.

Connection management

I would implement TransportClientFactory similar to TransportClientFactory in spark to
create and manage client connections.

https://github.com/apache/spark/blob/master/common/network-common/src/main/java/org/apache/spark/network/client/TransportClientFactory.java

Coordinator
The Coordinator is not important, because the load of the Coordinator is low. In the early
stage, we mainly realized the design of the above-mentioned Client and ShuffleServer, and
finally refactored the interface of the Coordinator

to do list
1.​ Implementation of basic framework is used for netty to replace grpc, mainly including

Encoder and Decoder
2.​ Rewrite the serialization/deserialization protocol of each interface in ShuffleServer
3.​ Implementation of client connection management
4.​ The startup script supports setting Xmx and MaxDirectMemory according to whether

netty is enabled
5.​ Support ShuffleServer to use off-heap memory to manage shuffle data
6.​ coordinator supports netty

Performance Test
Purpose
Test the processing performance of a single ShuffleServer by testing a production task with a
200G shuffle data, to compare the performance difference between different RSS.

Environment
hardware environment

CPU: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz * 2 , 48 processors
Memory: 128G
Disk: nvme ssd 8T * 1(max read 2.5g/s, max write 1.3g/s)
Bandwidth: 25G

Test task information

Stage number of tasks

shuffle read shuffle write output

Stage-1 394 \ 216G \

Stage-2 1000 216G \ 64G

spark conf: --conf spark.driver.memory=15g --conf spark.sql.adaptive.enabled=false --conf
spark.dynamicAllocation.enabled=false --conf spark.shuffle.service.enabled=false
--num-executors 200 --conf spark.executor.cores=2 --conf spark.executor.memory=4g

key configuration

Apache Uniffle
version: 0.6.0
conf:
​ rss.server.buffer.capacity 30gb

rss.server.read.buffer.capacity 15gb
rss.server.flush.thread.alive 2
rss.server.flush.threadPool.size 2
rss.storage.type MEMORY_LOCALFILE
rss.server.single.buffer.flush.enabled true
rss.server.single.buffer.flush.threshold 64mb
XMX_SIZE="60g"

Apache Celeborn
version: 0.2.0-SNAPSHOT
conf:
​ rss.rpc.io.serverThreads 16
​ rss.push.io.threads 80
​ rss.fetch.io.threads 80
​ celeborn.push.replicate.enabled false
​ celeborn.worker.storage.dirs /data/rssdata:disktype=SSD:flushthread=8

ByteDance CSS
version: 1.0.0
conf:
​ export WORKER_JAVA_OPTS="-Xmx8192m -XX:MaxDirectMemorySize=52g"
​ css.push.io.threads = 128
​ css.fetch.io.threads = 64

Uber RSS
version: 0.0.9
conf:
​ -Xmx40g -XX:MaxDirectMemorySize=20g

Test Results

I counted the time consumption of the app, the time consumption of the stage, the physical
usage rate of the machine where the worker process is located, and the gc statistics of the
worker process.

rss_n

ame

cost_t

ime

stage

1

stage

2

peek_

cpu_u

sage

peek_

io_util

peek_

in_byt

es

peek_

out_b

ytes

full_g

c_tim

es

young

_gc_ti

mes

gc_ti

me

internal

uniffle

7.4min 4.3min 3.1min 88.5% 61.1% 1.4g/s 1.6g/s 1 144 44.3s

celebor

n

4.5min 2.0min 2.5min 51.5% 98.2% 2.2g/s 2.0g/s 1 19 1.3s

css 4.7min 2.2min 2.5min 23.8% 100% 1.9g/s 2.1g/s 3 18 0.7s

uber 6.0min 3.5min 2.5min 29.2% 100% 1.5g/s 2.2/gs 0 382 1.0s

Conclusion
Apache Celeborn and ByteDance CSS perform best, they have similar designs, They design
off-heap memory as a cache for shuffle data, and the fetch/push server built on netty has
better throughput performance, come Uber CSS, and finally Apache Uniffle.

	Netty replace Grpc Design
	Summary
	Motivation
	Goals
	Design Details
	ShuffleServer
	Serialization/deserialization protocol rewriting
	Use off-heap memory to manage shuffle data
	Risk point

	Client
	Serialization/deserialization protocol rewriting
	Connection management

	Coordinator

	to do list
	Performance Test
	Purpose
	Environment
	hardware environment
	Test task information

	key configuration
	Apache Uniffle
	Apache Celeborn
	ByteDance CSS
	Uber RSS

	
	Test Results
	
	Conclusion

