KS4 CORE LEARNING VISION | Develop fluency | Reason mathematically | Solve problems | |---|--|--| | Consolidate their numerical and mathematical capability from key stage 3 and extend their understanding of the number system to include powers, roots {and fractional indices}. Select and use appropriate calculation strategies to solve increasingly complex problems, including exact calculations involving multiples of | Extend and formalise their knowledge of ratio and proportion, including trigonometric ratios, in working with measures and geometry, and in working with proportional relations algebraically and graphically. Extend their ability to identify variables and express relations between variables algebraically and graphically. Make and test conjectures about the generalisations that underlie patterns and relationships; look for proofs or counter-examples; begin to use algebra to support and construct arguments {and proofs}. Reason deductively in geometry, number and algebra, including using geometrical constructions. Interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning. Explore what can and cannot be inferred in statistical and probabilistic settings, and express their arguments formally. Assess the validity of an argument and the accuracy of a given way of presenting information. | Develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems. Develop their use of formal mathematical knowledge to interpret and solve problems, including in financial contexts. Make and use connections between different parts of mathematics to solve problems. Model situations mathematically and express the results using a range of formal mathematical representations, reflecting on how their solutions may have been affected by any modelling assumptions. Select appropriate concepts, methods and techniques to apply to unfamiliar and non-routine problems; interpret their solution in the context of the given problem. | | HIGHER TIER | | | | |-----------------------|---|--|--| | | Learning Outcomes | National Curriculum Links | Key Words | | Module 1
(2 Weeks) | Simplifying Algebraic Expressions Expanding and Simplifying Double Brackets Finding the Product of Three Binomials Factorising Common Factors Factorising Simple Quadratics Transformation of Polynomial Functions Transformation of Trigonometric Functions Composite and Inverse Functions | Simplify and manipulate algebraic expressions (including those involving surds {and algebraic fractions} by: factorising quadratic expressions of the form x² + bx + c , including the difference of two squares; {factorising quadratic expressions of the form ax² + bx + c }. Where appropriate, interpret simple expressions as functions with inputs and outputs; {interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function'}. | Expressions Factorise Bracket Common Factor Binomial Polynomial | | Module 2
(2 Weeks) | Indices (Including fractional & negative) Algebraic Indices Writing Numbers in Standard Form Multiplying Numbers Expressed in Standard Form Dividing Numbers Expressed in Standard Form Manipulating Surds | Simplify expressions involving sums, products and powers, including the laws of indices Estimate powers and roots of any given positive number. Calculate with roots, and with integer {and fractional} indices. Calculate with numbers in standard form A × 10n, where 1 ≤ A < 10 and n is an integer. calculate exactly with fractions, {surds} and multiples of π; {simplify surd expressions involving squares [for example = rationalise denominators} = x = 2 3] and | Indices Root Square Cube Indices Standard Form Surds | | Module 3
(2 Weeks) | Extracting Information from Tables and Graphs Two-Way Tables Interpreting Composite Bar Charts Cumulative Frequency Box Plots Histograms Comparing Sets of Data | Interpret and construct tables and line graphs for time series data. Interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: appropriate graphical representation involving discrete, continuous and grouped data, {including box plots}. Appropriate graphical representation involving discrete, continuous and grouped data, {including box plots} Apply statistics to describe a population. | CumulativeFrequencyCompositeCompareTable | #### **AUTUMN HALF TERM BREAK** | | | | HIGHER TIER | | |----------|-----------------------|--|---|---| | | | Learning Outcomes | National Curriculum Links | Key Words | | | Module 4
(2 Weeks) | Angle Facts and Reasoning Names and Properties of Triangles and Quadrilaterals Sum of the Interior Angles of a Polygon Properties of a Circle Manipulating Angles in Parallel Lines Interior and Exterior Angles of a Polygon | Calculate arc lengths, angles and areas of sectors of circles. Identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, tangent, arc, sector and segment. | PolygonInteriorExteriorCircular | | GEOMETRY | Module 5
(2 Weeks) | Area of Triangles Perimeter and Area of other 2D Shapes Perimeter and Area of Compound Shapes Circular Mensuration (Circumference and Area) Perimeter and Area of Semicircles | Calculate arc lengths, angles and areas of sectors of circles. Calculate surface areas and volumes of spheres, pyramids, cones and composite solids. | Perimeter Area Compound Shape Mensuration Circumference Semicircle | | | Module 6
(2 Weeks) | Pythagoras' Theorem Pythagoras' Theorem in 3D Exact Trigonometric Values Trigonometry (SOH CAH TOA) Area of a Triangle using Trigonometry (0.5abSinC) Cosine Rule Sine Rule Trigonometry in 3D | Estimate powers and roots of any given positive number. Apply Pythagoras' Theorem and trigonometric ratios to find angles and lengths in right-angled triangles {and, where possible, general triangles} in two {and three} dimensional figures. Know and apply the sine rule, a = sin A b sinB = c sinC, and cosine rule, a ² = b² + c² - 2bc cos A, to find unknown lengths and angles. Know the exact values of sinθ and cosθ for θ = 0 0, 30°, 45°, 60° and 90°; know the exact value of tanθ for θ = 0°, 30°, 45° and 60° | Square Square root 3D Trigonometry Sine Cosine Tangent Exact Estimate | | | | | CHRISTMAS BREAK | | | | | Learning Outcomes | National Curriculum Links | Key Words | |---------|-----------------------|--|---|--| | | Module 7
(2 Weeks) | Writing Formulae Substituting into Formulae Rearranging Formulae Solving and Writing Equations Solving Quadratics by Factorisation and by Formula | Simplify and manipulate algebraic expressions (including those involving surds {and algebraic fractions}) by: Where appropriate, interpret simple expressions as functions with inputs and outputs; {interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function'}. | ExpressionFormulaSubstituteRearrangeApproximate | | ALGEBRA | Module 8
(2 Weeks) | Midpoint of a Line Segment Drawing Straight Line Graphs Gradient of a Straight Line Equation of a Straight-Line Parallel and Perpendicular Lines Equation of a Circle | Use the form y = mx + c to identify parallel {and perpendicular} lines; find the equation of the line through two given points, or through one point with a given gradient. Recognise and use the equation of a circle with centre at the origin; find the equation of a tangent to a circle at a given point} solve quadratic equations {including those that require rearrangement} algebraically by factorising, {by completing the square and by using the quadratic formula}; find approximate solutions using a graph solve two simultaneous equations in two variables (linear/linear {or linear/quadratic}) algebraically; find approximate solutions using a graph. | Coordinate Midpoint Straight Line Gradient Parallel Line Perpendicular | | | Module 9
(1 Week) | Interpreting the Solutions to a Quadratic Graph Drawing Conclusions from Real-Life Graphs Completing a Table of Values for Quadratic Graphs Drawing Quadratic Graphs Using Quadratic Graphs Turning points and Sketching Quadratic Graphs | Recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions, the reciprocal function y = 1 with x ≠ 0, {the exponential function x y = k x for positive values of k, and the trigonometric functions (with arguments in degrees) y = sin x, y = cos x and y = tan x for angles of any size}. Plot and interpret graphs (including reciprocal graphs {and exponential graphs}) and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration. | Interpret Plot Conclusion Approximate Table of Values Turning Point Sketch | #### **SPRING HALF TERM BREAK** | | HIGHER TIER | | | | |------------------|------------------------|---|--|---| | | | Learning Outcomes | National Curriculum Links | Key Words | | EBRAAND GEOMETRY | Module 10
(2 Weeks) | Solving Simultaneous Equations Algebraically Solving Simultaneous Equations Graphically Solving Simultaneous Equations with one Quadratic Using Inequalities on a Number Line Solving Linear Inequalities Solving Quadratic Inequalities | Solve linear inequalities in one {or two} variable{s}, {and quadratic inequalities in one variable}; represent the solution set on a number line, {using set notation and on a graph}. Recognise and use the equation of a circle with centre at the origin; find the equation of a tangent to a circle at a given point} solve quadratic equations {including those that require rearrangement} algebraically by factorising, {by completing the square and by using the quadratic formula}; find approximate solutions using a graph solve two simultaneous equations in two variables (linear/linear {or linear/quadratic}) algebraically; find approximate solutions using a graph. | Simultaneous Inequality Number Line Variable Coefficient | | | Module 11
(1 Week) | Linear Sequences Term to Term Rules Using the nth Term Finding the nth Term Quadratic Sequences Fibonacci and other Non-Linear Sequences | Recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions (r n where n is an integer, and r is a positive rational number {or a surd}) {and other sequences}. Deduce expressions to calculate the n th term of linear {and quadratic} sequences. | Sequence Linear Sequence Rule Term Common Difference Geometric Progression | | ALG | Module 12
(2 Weeks) | Surface Area Plans and Elevations Volume of a Cylinder Volume of a Pyramid and Sphere Volume of a Prism Vector Arithmetic Vector Geometry | Construct and interpret plans and elevations of 3D shapes. Calculate surface areas and volumes of spheres, pyramids, cones and composite solids. Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors; {use vectors to construct geometric arguments and proofs}. Describe translations as 2D vectors. | Plan Elevation Prism Cube Cuboids Vector | #### **EASTER BREAK** | | | HIGHER TIER | | |--|-------------------|---------------------------|-----------| | | Learning Outcomes | National Curriculum Links | Key Words | | ND GEOMETRY | Module 13
(2 Weeks) | Writing Numbers as Simple Ratios Dividing in a Given Ratio Proportion and Recipe Direct Proportion Inverse Proportion Standard Ratio Problems Proportional Graphs and Rates of Change Ratio Problems with Overlap | Identify compare lengths, areas and volumes using ratio notation and/or scale factors; make links to similarity (including trigonometric ratios). Understand that X is inversely proportional to Y is equivalent to X is proportional to 1; Y {construct and} interpret equations that describe direct and inverse proportion. Interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion. Identify and work with fractions in ratio problems. | Ratio Proportion Recipe Direct Proportion Inverse Proportion Overlap | |------------------------|------------------------|--|--|---| | RATES OF CHANGE AN | Module 14
(2 Weeks) | Translations Reflections Reflections in Given Lines Rotations Enlargements (including fractional & negative) Describing Transformations Combination of Transformations | Describe the changes and invariance achieved by combinations of rotations, reflections and translations. Interpret and use fractional {and negative} scale factors for enlargements Describe translations as 2D vectors. | TranslateReflectRotateEnlargeVector | | RATIO. PROPORTION. RAT | Module 15
(2 Weeks) | Congruent Shapes Proof of Congruent Triangles Similarity Linear Scale Factor Scale Factor including Area and Volume Exploring Similar Shapes in Context | Apply the concepts of congruence and similarity, including the relationships between lengths, {areas and volumes} in similar figures. | Congruent Similar Shape Scale Factor Surface Area Corresponding Side | | | | | SUMMER HALF TERM BREAK | | | | | Learning Outcomes | National Curriculum Links | Key Words | |---------|------------------------|---|--|--| | MISTICS | Module 16
(2 Weeks) | Calculating Probabilities Probability from Experiments Drawing Tree Diagrams Sets and Subsets Completing Venn Diagrams AND/OR Rules Conditional Probability | Apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one. use a probability model to predict the outcomes of future experiments; understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size. {calculate and interpret conditional probabilities through representation using expected frequencies with two-way tables, tree diagrams and Venn diagrams}. | Probability Conditional Tree Diagram Set Complement Union Intersection Venn Diagram | | SES | | KS/ | LEARNING REVIEW AND SKILLS AUDIT | | #### **SUMMER BREAK**