
文件结构、程序结构及配置

文件结构、程序结构及配置
入口文件index.php流程

CApplication构造流程
Request组件初始化

Run 方法流程
Yii核心参考

Yii extends YiiBase
CWebApplication继承树
Abstract CApplication
CModule
CComponent

getter与setter
Behavior扩展（多重继承）
事件注册与调用

相关参考：
CEvent extends CComponent
CEnumerable

CWebApplication配置项
CWebApplication继承树中的所有公共属性

CWebApplication
CApplication
CModule

CWebApplication继承树上实现的setter
CWebApplication
CApplication
CModule

CWebApplication继承树上实现的事件
配置URL为Path模式，去掉index.php

Controller与Action的执行
Controller的创建与执行

Controller实例创建流程
Controller run执行流程

Action的创建与执行
404错误处理

找不到Controller
ErrorHandler组件配置
找不到Action

Controller可被覆写的方法

Filter
InlineFilter：Controller::filterFilterName形式

实现自定义ClassFilter
Render输出

Auth Manager & Access Control
User

CWebUser（即核心组件user）配置项：
CWebUser主要方法
UserIdentity
AuthManager

Access Control
在Controller中配置Action Access规则

Controller中需实现的方法
Logging

入口文件index.php流程

//用于调试的配置常量：
define('YII_DEBUG',true);​ //启用调试，默认为false
define('YII_TRACE_LEVEL',3);​ //出错时错误信息显示的调用堆栈深度，默认为0
//以上选项必须在require yii.php之前定义
//加载Yii框架启动文件
require_once(‘Yii/framework/yii.php’);

$config=”protected/config/main.php”;//既可以为配置文件路径，也可以为包含配置选项的数组
//即,也可以
$config=(require ”protected/config/main.php”;);

$app=Yii::createWebApplication($config);//创建WebApplication实例
//$app=new CWebApplication($config);

$app->run(); //运行Controller

CApplication构造流程
1.​ 设置Yii::app()为当前运行实例

2.​ BasePath及PathAlias设置
3.​ preinit()（未实现）
4.​ 注册ErrorHandler和ExceptionHandler
5.​ 注册系统核心组件
6.​ 应用配置（main.php中的配置将对核心组件起作用）
7.​ 加载Behaviors（main.php中的配置对此处加载的扩展—— behaviors配置项,不起作用）
8.​ 加载Components（main.php中的配置对此处加载的组件不起作用）
9.​ init() ——初始化request组件

Request组件初始化
CApplication实例->init() ->getRequest() -> Yii::createComponent(‘request’);
request组件为系统核心组件

1.​ $c=Yii::createComponent(array(‘class’=>’CHttpRequest’)) //new CHttpRequest
2.​ $c->init() //Normalize Request,如果开启CSRF校验，则注册beginRequest事件的

回调函数$c->validateCsrfToken

Run 方法流程
1.​ 触发onBeginRequest事件,(如果开启CSRF校验，则运行Handler validateCsrfToken)
2.​ processRequest,运行Controller，流程请参见Controller
3.​ 触发onEndRequest事件，正常结束请求返回

Yii核心参考

Yii extends YiiBase

import($alias,$forceInclude=false)：
$alias为path.to.class形式，将被转换为类文件的路径 path/to/class.php
可以预先使用setPathOfAlias设置path别名，如:
Yii::setPathOfAlias('ext',$this->getBasePath().'/extensions');
import方法只是将此路径添加到include_path中，当真正用到此类时才include这个文件

将$forceInclude设为true可以立即include类文件
$alias解释：

○​ system：Yii框架命名空间，如import(‘system.utils.CFormatter’)表示

Yii/framework/utils/CFormatter.php
○​ zii：表示Zii目录

以下为CApplication::__construct中设置的alias

http://www.yiiframework.com/doc/guide/1.1/zh_cn/topics.security#sec-3

○​ application：一般为配置中所设置的basePath，即应用程序下的protected目录
○​ webroot：请求的PHP脚本文件所在的目录
○​ ext：表示application目录下的extensions目录

createComponent($config):
createComponent接受的参数形式

1.​ Component类名称(或alias,@see import)
2.​ 含有class键的关联数组，如：

array(“class”=>”ComponentClassName”,”property1’=>”value1”,”property2”=>”value2”)
class键表示要创建的组件的名称(同第一条)，其它键将在组件对象创建完成后，赋值为
组件对象的属性（即返回的组件对象将具有属性property1，且值为value1等等）

3.​ $config参数及更多的参数，更多的参数将作为创建组件对象时的构造参数

方法返回被创建的组件对象

trace($msg):

输入LEVEL_TRACE的Log

log($msg,$level=CLogger::LEVEL_INFO,$category='application'):

记录日志，可通过CLogger::getLogs()获得已经记录的日志

app():
返回当前运行的CApplication实例

CWebApplication继承树

Abstract CApplication

CApplication支持四个自定义事件
1.​ onBeginRequest
2.​ onEndRequest
3.​ onException
4.​ onError

Contructor参数$config
1.​ basePath,程序根目录
2.​ 其它属性分别交由CModule::configure方法处理

a.​ $config为关联数组，则进行批量属性赋值

CModule

CModule实现功能：
1.​ Component预加载和管理
2.​ 模块配置，configure方法对实例属性进行批量赋值
3.​ 子模块管理

public $preload=array(‘name1’,’name2’);
预加载的组件

getComponent($id,$createIfNull=true)
根据组件名称获取组件对象，也可以直接通过 $m->componentName获取组件对象

getComponent($config);
$config=array(‘class’=>’className’,’property1’=>’value1’...);

Yii::app()->log ;//获取log组件

CComponent

CComponent
CComponent实现了以下三个功能：

1.​ getter和setter自动化处理
2.​ 类似于多重继承的Behavior扩展机制
3.​ 事实注册及调用

getter与setter

class ComponentDemo extends CComponent {
private $_age=12;
public function getAge() {return $this->_age;}
public function setAge($value) {$this->_age=$value;}

}
$a=new ComponentDemo();
echo $a->age;//将自动调用getAge方法并返回值（getAge方法不是必须返回值）
$a->age=123;//自动调用setAge方法并将设置的值作为其参数

Behavior扩展（多重继承）

$c=new CComponent();

//$behavior必须实现IBehavior接口
//IBehavior接口是实现attach($component)，dettach($component)
//及setEnabled,getEnabled方法(设置是否启用)
//$name用于移除及获取对应behavior

$c->attachBehavior($name,$behavior);
$c->dettachBehavior($name);//移除behavior

//$c将具有$behavior的所有方法及属性($behavior->setEnabled(false)禁用此扩展)

//获取之前绑定的$behavior两种方法
$c->behaviorName;
$c->asa($behaviorName);

事件注册与调用

事件属性必须以on前缀开头,小写

CComponent的事件机制功能仅为了方便对象实现自定义事件

$c=new CComponent();
$c->onclick=create_function(‘’,’return;’);
$c->attachEventHandler(‘onclick’,array(‘ClassName’,’methodName’));//绑定多个事件监听器
$e=new CEvent($c);
$c->raiseEvent(‘onclick’,$e);//触发事件，逐个调用注册到它上面的监听函数
//在执行中可将$e->handled设为true，停止继续调用其它的函数

属性读取将先尝试Compoent公共属性,setter与getter，再尝试Component的事件属性
最后尝试$behavior的属性方法及事件

相关参考：

CEvent extends CComponent

CComponent::raiseEvent($name,$event);第二个参数必须为CEvent类型

$event=new CEvent($sender); //$sender可以为任何对象，之后可通过$event->sender读取
$event->handled=true;/*设置一个bool值，默认false,设为true之后可阻止此事件相关的
 其它handler被调用(类似于JS Event的stopPropagation)*/

CEnumerable

枚举类型，没有任何方法及属性，仅用作被所有只包含const的枚举类所继承

CWebApplication配置项
按Yii规约，Web程序配置文件为protected/config/main.php中，测试用配置文件为

protected/config/test.php

配置文件必须返回一个关联数组，关联数组$config将作为构造参数传递给CApplication构造函
数，$config[‘basePath’]将被设置为命名空间别名”application”的值(即应用程序protected目录)
所有其它的键-值将被批量赋值为CWebApplication的属性-值

CWebApplication继承树中的所有公共属性

CWebApplication

defaultController=’site’;
默认调用的控制器
默认为SiteControlller，即protected/controllers/SiteController/php

$layout='main';
应用程序范围的默认布局
默认为main，即protected/views/layouts/main.php

$controllerMap=array();
一个包含“控制器ID=>控制器配置 ”的关联数组
当接收到一个请求时，Yii将首先读取此Map
控制器配置为Yii::createComponent所能接受的参数(@see createComponent),但此配置必
须为一个Controller的配置（继承自CController）
控制器ID为在URL中显示的路径名

示例:

“controllerMap”=>array(

“goodname”=>”application.controllers.BadnameController”,
“article”=>array(

“class”=>”application.controllers.PostController”,
“layout”=>”article”

)
)

上面的配置（放在main.php配置文件中）将使访问URL /goodname/时调用
BadnameController，而在访问URL /article/时调用PostController并且将其实例的layout属性
设置为article

$catchAllRequest;
设置为一个数组array(“controller/action”)，用于处理所有的请求（用于当需要维护时关闭站
点）
数组的第一个元素为一个表示请求控制器的路径字符串，其它的键值对将被设置到$_GET中
示例：
“catchAllRequest”=>array(

'offline/notice',
'param1'=>'value1',
'param2'=>'value2',

)

所有的请求将被offline控制器的notice动作处理（或其它控制器），所有的请求等同于请求请
求URL offline/notice?param1=value¶m2=value2

CApplication

$name='My Application';
没有程序上的意义

$charset='UTF-8';
没有程序上的意义

$sourceLanguage='en_us';
语言配置，关联到所使用的语言包

CModule

$preload=array();
预加载的组件的组件ID（组件的类别名）

预加载的组件将在程序开始时就创建实例

$behaviors=array();
在对象实例创建且配置完成（$config的键值已经被拷贝到对象上时）时自动添加的扩展
即这里列出的behaviors不和CApplication共享配置
只能在behaviors项下进行配置！
（@see CComponent::behavior）

$behaviors值形式为behavior名称与Yii::createComponent所能接受参数值的映射：
array(
‘behaviorName’=>array(
 ‘class’=>’BehaviorClassName’
)
)

CWebApplication继承树上实现的setter

CWebApplication

systemViewPath:string
系统使用的views文件的路径，默认为’protected/system/views’

theme:string
当前使用的主题名称(读取时返回CTheme对象)

homeUrl:string
Home Page Url

controller:CController
当前运行的Controller对象

controllerPath:string
包含所有Controller的目录路径，默认为'protected/controllers'

viewPath:string
包含所有View文件的目录路径，默认为’protected/views’

layoutPath:string
包含layout文件的目录路径，默认为'protected/views/layouts'

CApplication

localeDataPath:string
包含系统使用的本地化文件的目录路径，默认为'framework/i18n/data'

timeZone:string
时区设置(用作date_default_timezone_set的设置)

language:string
当站点需要支持多语言时，设置此值为语言名称 ，如zh_CN

extensionPath:string
扩展文件路径，默认为’protected/extensions’

runtimePath:string
runtime文件的路径，默认为'protected/runtime'

basePath:string
程序文件默认路径，默认为’protected’

id:string
程序的ID，默认为程序路径的CRC32校验值

CModule

params:array
对程序运行没有影响

import:array(setter only)
用于自动import的alias，数组内容为Yii::import(@see import)方法可接受参数的alias字符串

aliases:array(setter only)
alias别名映射，将一个alias(命名空间)映射到一个目录（或已存在的别名）

modules:array
启用的模块
关联数组内容必须为Yii::createComponent(@see createComponent)可接受参数
启用Gii模块的配置Code:

'modules'=>array(
​ ​ 'gii'=>array(
​ ​ ​ 'class'=>'system.gii.GiiModule',
​ ​ ​ 'password'=>'123456',
​ ​),
)

components:array
此CApplication需使用的Component，将在创建CApplication实例时预加载（并init）
components值为一包含Yii::createComponent(@see createComponent)能接受参数值的关
联数组
获取这些组件的方法，参见CModule::getComponent

CWebApplication继承树上实现的事件

参见CApplication事件

配置URL为Path模式，去掉index.php

//启用URLManager Component (main.php array(‘components’))
'urlManager'=>array(
​ 'urlFormat'=>'path',
​ 'rules'=>array(
​ '<controller:\w+>/<id:\d+>'=>'<controller>/view',
 ​ '<controller:\w+>/<action:\w+>/<id:\d+>'=>'<controller>/<action>',
​ '<controller:\w+>/<action:\w+>'=>'<controller>/<action>',
​),
​ 'showScriptName'=>false //去掉index.php
)

//在根目录下添加.htaccess文件，内容为
RewriteEngine On

RewriteCond %{REQUEST_FILENAME} -s [OR]
RewriteCond %{REQUEST_FILENAME} -l [OR]
RewriteCond %{REQUEST_FILENAME} -d

RewriteRule ^.*$ - [NC,L]
RewriteRule ^.*$ index.php [NC,L]

Controller与Action的执行

Controller的创建与执行

Controller实例创建流程
1.​ $app->processRequest,解析获取route(“controllerID/actionID”形式字符串)

a.​ 开启catchAllRequest，则使用此此配置(@see catchAllRequest)
b.​ UrlManager根据rules,urlFormat等(urlManager配置)解析返回route

2.​ $app->runController($route),创建Controller实例，初始化:init()，调用:run($actionID)
a.​ 构造，注册behaviors(@see Controller::behaviors())
b.​ init()方法由用户实现
c.​ run($actionID)

Controller run执行流程
1.​ 创建CAction实例
2.​ 运行Controller所属的Module（CWebApplication实例）的

beforeControllerAction($controller,$action)方法
3.​ 应用filters（@see filters()）运行Action
4.​ 运行Controller所属的Module（CWebApplication实例）的

afterControllerAction($controller,$action)方法

Action的创建与执行

404错误处理

找不到Controller
1.​ UrlManager找不到对应的Controller，则抛出CHttpException 404 异常

2.​ CApplication::handleException处理异常
3.​ 触发onException事件，如果Event没有被挂起（handled设为true），继续
4.​ 查看是否加载了ErrorHandler组件，交由CErrorHandler处理
5.​ 如果异常没被处理，则直接显示错误信息

ErrorHandler组件配置
‘components’=>array(

‘errorHandler’=>array(
‘errorAction’=>’site/error’ //用来处理404的Action

)
)

找不到Action
执行Controller::missingAction方法，此方法默认抛出一个CHttpException 404 异常
可在子类中override missingAction方法

Controller可被覆写的方法

init():
用于初始化，在实例创建完成，run具体action之前执行

behaviors():array
在构造时给Controller添加扩展，返回包含behavior配置的关联数组
值的形式同配置项::behaviors

filters():array
返回在action执行之前执行的filters列表,REF

missingAction($actionID):
创建Action失败时，则执行missingAction方法

actions():
当action对应方法找不到时，在此方法返回的ActionMap中查找，REF
自定义Action必须继承自CAction ，REF

accessRules():
返回访问规则数组，REF

Filter

InlineFilter：Controller::filterFilterName形式

http://www.yiiframework.com/doc/api/1.1/CController#filters-detail
http://www.yiiframework.com/doc/api/1.1/CController#actions-detail
http://www.yiiframework.com/doc/guide/1.1/zh_cn/basics.controller#sec-4
http://www.yiiframework.com/doc/api/1.1/CAccessControlFilter

​ InlineFilter配置
​ return array(
​ ​ ‘filterName [+|- action1,action2...]’,

)
实现InlineFilter的方法签名
public function filterFilterName($chain) {}
验证通过时执行$chain->run()方法以继续执行下一个filter
CController实现了

a.​ filterPostOnly方法
b.​ filterAjaxOnly方法
c.​ filterAccessControl方法

ClassFilter：继承自CFilter的类（@see CFilter）

实现自定义ClassFilter
推荐在实现自定义ClassFilter时，采用重写preFilter的方法，而不去重写filter方法

CFilter

filter($filterChain)：
执行 filter操作，正常通过时执行$filterChain->run()以继续

init()：
构造完成后运行以初始化

preFilter($filterChain)：
在继承CFilter子类时不去override filter方法，而只覆盖preFilter方法，此方法返回true或false决
定filter是否正常通过

postFilter($filterChain)：
结合preFilter，只在子类没有覆盖filter方法，只实现preFilter方法时，preFilter正常通过后且执行
了$filterChain->run()之后执行

Render输出

Auth Manager & Access Control

User

CWebUser（即核心组件user）配置项：

1.​allowAutoLogin=false;//是否允许基于cookie的自动登录，如果设为false，所有用户数据将

保存到SESSION中

2.​guestName=’Guest’;//没有登录的用户的name

3.​ loginUrl=array(‘site/login’);//跳转到的登录页面URL

4.​ identityCookie;//用于配置用于身份验证Cookie的其它属性，参见CHttpCookie属性,此选项
仅在allowAutoLogin设为true可用

5.​autoRenewCookie=false;//设置是否每次访问都重新生成用于身份验证的Cookie,此选项
仅在allowAutoLogin设为true可用

6.​ returnUrl;//用户登录后跳转到的URL

CWebUser主要方法
1.​ login(IUserIdentity $identity, integer $duration=0);参见UserIdentity
2.​ logout(boolean $destroySession=true);
3.​ checkAccess(string $operation, array $params=array (), boolean $allowCaching=true);//参见

Auth

UserIdentity
实现

1.​ 继承自CUserIdentity
2.​ 实现authenticate方法，通过$this->username和$this->password进行认证，方法返回true

表示认证成功
 User State

1.​ 在UserIdentity中重写getPersistenceStates方法，返回需要保存到Cookie中的用户数据

（这部分数据不能包含用来认证的数据-比如password）的关联数组
2.​ 对于登录用户，可以通过Yii::app()->user->stateName获取保存的state值

使用

//登录
$identity=new UserIdentity($username,$password);
if ($identity->authenticate()) {
 //Yii::app()->user对象为CWebUser实例
 Yii::app()->user->login($identity,$expires);
}

//权限验证
Yii::app()->user->checkAccess($operation);

AuthManager

相关参考
CHttpCookie属性：

1.​ name
2.​ value=’’
3.​ domain=’’
4.​ expire=0
5.​ path=’/’
6.​ secure=false
7.​ httpOnly=false

Access Control

在Controller中配置Action Access规则
1.​ 对需要AccessControl的action设置filters规则
2.​ 覆写Controller::accessRules方法，返回权限验证规则

Controller中需实现的方法

//返回访问权限规则
public function accessRules() {
​ return array(
​ 'allow', // or 'deny'
​ // optional, list of action IDs (case insensitive) that this rule applies to
​ 'actions'=>array('edit', 'delete'),
​ // optional, list of controller IDs (case insensitive) that this rule applies to
​ // This option is available since version 1.0.3.
​ 'controllers'=>array('post', 'admin/user'),
​ // optional, list of usernames (case insensitive) that this rule applies to
​ // Use * to represent all users, ? guest users, and @ authenticated users
​ 'users'=>array('thomas', 'kevin'),
​ // optional, list of roles (case sensitive!) that this rule applies to.
​ 'roles'=>array('admin', 'editor'),
​ // optional, list of IP address/patterns that this rule applies to
​ // e.g. 127.0.0.1, 127.0.0.*
​ 'ips'=>array('127.0.0.1'),
​ // optional, list of request types (case insensitive) that this rule applies to
​ 'verbs'=>array('GET', 'POST'),
​ // optional, a PHP expression whose value indicates whether this rule applies
​ // This option is available since version 1.0.3.
​ 'expression'=>'!$user->isGuest && $user->level==2',
​ // optional, the customized error message to be displayed

​ // This option is available since version 1.1.1.
​ 'message'=>'Access Denied.',
​);
}

//应用AccessControlFilter
public function filters() {
​ return array(
​ ​ 'accessControl',//对所有action应用访问权限控制
​ ​ 'accessControl + profile',//仅对profile一个action使用
​ ​ 'accessControl - login,register',//对除login,register以外的action使用
​);
}

Logging

配置项

return array(
‘components’=>array(

‘log’=>array(
​ ‘class’=>’CLogRouter’,
​ ‘routes’=>array(
​ ​ ‘class’=>’CFileLogRoute’, //使用CWebLogRoute将Log显示是WebPage上
​ ​ ‘levels’=>'error, warning',//为空则记录所有日志

)
)

)
);

	文件结构、程序结构及配置
	入口文件index.php流程
	CApplication构造流程
	Request组件初始化

	
	Run 方法流程

	Yii核心参考
	Yii extends YiiBase
	CWebApplication继承树
	Abstract CApplication
	CModule
	CComponent
	getter与setter
	Behavior扩展（多重继承）
	事件注册与调用

	相关参考：
	CEvent extends CComponent
	CEnumerable

	CWebApplication配置项
	CWebApplication继承树中的所有公共属性
	CWebApplication
	CApplication
	CModule

	CWebApplication继承树上实现的setter
	CWebApplication
	CApplication
	CModule

	CWebApplication继承树上实现的事件
	配置URL为Path模式，去掉index.php

	Controller与Action的执行
	Controller的创建与执行
	Controller实例创建流程
	Controller run执行流程

	Action的创建与执行
	404错误处理
	找不到Controller
	ErrorHandler组件配置
	找不到Action

	Controller可被覆写的方法
	Filter
	InlineFilter：Controller::filterFilterName形式
	实现自定义ClassFilter
	Render输出

	
	
	Auth Manager & Access Control
	User
	CWebUser（即核心组件user）配置项：
	CWebUser主要方法
	UserIdentity
	AuthManager

	Access Control
	在Controller中配置Action Access规则
	Controller中需实现的方法

	Logging

