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入口文件index.php流程 

//用于调试的配置常量： 
define('YII_DEBUG',true);​ //启用调试，默认为false 
define('YII_TRACE_LEVEL',3);​ //出错时错误信息显示的调用堆栈深度，默认为0 
//以上选项必须在require yii.php之前定义 
//加载Yii框架启动文件 
require_once(‘Yii/framework/yii.php’); 
 
$config=”protected/config/main.php”;//既可以为配置文件路径，也可以为包含配置选项的数组 
//即,也可以 
$config=(require ”protected/config/main.php”;); 
 
$app=Yii::createWebApplication($config);//创建WebApplication实例 
//$app=new CWebApplication($config); 
 
$app->run(); //运行Controller 
 

 
 

CApplication构造流程 
1.​ 设置Yii::app()为当前运行实例 



2.​ BasePath及PathAlias设置 
3.​ preinit()（未实现） 
4.​ 注册ErrorHandler和ExceptionHandler 
5.​ 注册系统核心组件 
6.​ 应用配置（main.php中的配置将对核心组件起作用） 
7.​ 加载Behaviors（main.php中的配置对此处加载的扩展—— behaviors配置项,不起作用） 
8.​ 加载Components（main.php中的配置对此处加载的组件不起作用） 
9.​ init() ——初始化request组件 

Request组件初始化 
CApplication实例->init() ->getRequest()    ->   Yii::createComponent(‘request’); 
request组件为系统核心组件 

1.​ $c=Yii::createComponent(array(‘class’=>’CHttpRequest’))   //new CHttpRequest 
2.​ $c->init() //Normalize Request,如果开启CSRF校验，则注册beginRequest事件的

回调函数$c->validateCsrfToken 
 

 

Run 方法流程 
1.​ 触发onBeginRequest事件,(如果开启CSRF校验，则运行Handler validateCsrfToken) 
2.​ processRequest,运行Controller，流程请参见Controller 
3.​ 触发onEndRequest事件，正常结束请求返回 

 
 
 

Yii核心参考 

Yii extends YiiBase 

import($alias,$forceInclude=false)： 
$alias为path.to.class形式，将被转换为类文件的路径 path/to/class.php 
可以预先使用setPathOfAlias设置path别名，如:
Yii::setPathOfAlias('ext',$this->getBasePath().'/extensions'); 
import方法只是将此路径添加到include_path中，当真正用到此类时才include这个文件

将$forceInclude设为true可以立即include类文件 
$alias解释： 

○​ system：Yii框架命名空间，如import(‘system.utils.CFormatter’)表示

Yii/framework/utils/CFormatter.php 
○​ zii：表示Zii目录 

以下为CApplication::__construct中设置的alias 

http://www.yiiframework.com/doc/guide/1.1/zh_cn/topics.security#sec-3


○​ application：一般为配置中所设置的basePath，即应用程序下的protected目录 
○​ webroot：请求的PHP脚本文件所在的目录 
○​ ext：表示application目录下的extensions目录 

createComponent($config): 
createComponent接受的参数形式 

1.​ Component类名称(或alias,@see import) 
2.​ 含有class键的关联数组，如：

array(“class”=>”ComponentClassName”,”property1’=>”value1”,”property2”=>”value2”) 
class键表示要创建的组件的名称(同第一条)，其它键将在组件对象创建完成后，赋值为
组件对象的属性（即返回的组件对象将具有属性property1，且值为value1等等） 

3.​ $config参数及更多的参数，更多的参数将作为创建组件对象时的构造参数 
 
方法返回被创建的组件对象 

trace($msg): 
 
输入LEVEL_TRACE的Log 

log($msg,$level=CLogger::LEVEL_INFO,$category='application'): 
 
记录日志，可通过CLogger::getLogs()获得已经记录的日志 

app(): 
返回当前运行的CApplication实例 

 

CWebApplication继承树 



 
 
 

Abstract CApplication 

CApplication支持四个自定义事件 
1.​ onBeginRequest 
2.​ onEndRequest 
3.​ onException 
4.​ onError 

Contructor参数$config 
1.​ basePath,程序根目录 
2.​ 其它属性分别交由CModule::configure方法处理 

a.​ $config为关联数组，则进行批量属性赋值 

 

CModule 

CModule实现功能： 
1.​ Component预加载和管理 
2.​ 模块配置，configure方法对实例属性进行批量赋值 
3.​ 子模块管理 



public $preload=array(‘name1’,’name2’);  
预加载的组件 

getComponent($id,$createIfNull=true) 
根据组件名称获取组件对象，也可以直接通过 $m->componentName获取组件对象 
 
getComponent($config); 
$config=array(‘class’=>’className’,’property1’=>’value1’...); 
 
Yii::app()->log ;//获取log组件 

 

CComponent 

CComponent 
CComponent实现了以下三个功能： 

1.​ getter和setter自动化处理 
2.​ 类似于多重继承的Behavior扩展机制 
3.​ 事实注册及调用 

getter与setter 
 

class ComponentDemo extends CComponent { 
private $_age=12; 
public function getAge() {return $this->_age;} 
public function setAge($value) {$this->_age=$value;} 

} 
$a=new ComponentDemo(); 
echo $a->age;//将自动调用getAge方法并返回值（getAge方法不是必须返回值） 
$a->age=123;//自动调用setAge方法并将设置的值作为其参数 

 

Behavior扩展（多重继承） 
 



$c=new CComponent(); 
 
//$behavior必须实现IBehavior接口 
//IBehavior接口是实现attach($component)，dettach($component) 
//及setEnabled,getEnabled方法(设置是否启用) 
//$name用于移除及获取对应behavior 
 
$c->attachBehavior($name,$behavior); 
$c->dettachBehavior($name);//移除behavior 
 
//$c将具有$behavior的所有方法及属性($behavior->setEnabled(false)禁用此扩展) 
 
//获取之前绑定的$behavior两种方法 
$c->behaviorName; 
$c->asa($behaviorName); 
 
 

 

事件注册与调用 
 

事件属性必须以on前缀开头,小写 
 
CComponent的事件机制功能仅为了方便对象实现自定义事件 
 
$c=new CComponent(); 
$c->onclick=create_function(‘’,’return;’); 
$c->attachEventHandler(‘onclick’,array(‘ClassName’,’methodName’));//绑定多个事件监听器 
$e=new CEvent($c); 
$c->raiseEvent(‘onclick’,$e);//触发事件，逐个调用注册到它上面的监听函数 
//在执行中可将$e->handled设为true，停止继续调用其它的函数 

 

属性读取将先尝试Compoent公共属性,setter与getter，再尝试Component的事件属性 
最后尝试$behavior的属性方法及事件 

 

相关参考： 

CEvent extends CComponent 



CComponent::raiseEvent($name,$event);第二个参数必须为CEvent类型 
 
$event=new CEvent($sender); //$sender可以为任何对象，之后可通过$event->sender读取 
$event->handled=true;/*设置一个bool值，默认false,设为true之后可阻止此事件相关的 
                                其它handler被调用(类似于JS Event的stopPropagation)*/ 

 

CEnumerable 

枚举类型，没有任何方法及属性，仅用作被所有只包含const的枚举类所继承 

 
 
 
 

CWebApplication配置项 
按Yii规约，Web程序配置文件为protected/config/main.php中，测试用配置文件为

protected/config/test.php 
 

配置文件必须返回一个关联数组，关联数组$config将作为构造参数传递给CApplication构造函
数，$config[‘basePath’]将被设置为命名空间别名”application”的值(即应用程序protected目录) 
所有其它的键-值将被批量赋值为CWebApplication的属性-值 

CWebApplication继承树中的所有公共属性 
 

CWebApplication 

defaultController=’site’; 
默认调用的控制器 
默认为SiteControlller，即protected/controllers/SiteController/php 

$layout='main'; 
应用程序范围的默认布局 
默认为main，即protected/views/layouts/main.php 

$controllerMap=array(); 
一个包含“控制器ID=>控制器配置 ”的关联数组 
当接收到一个请求时，Yii将首先读取此Map 
控制器配置为Yii::createComponent所能接受的参数(@see createComponent),但此配置必
须为一个Controller的配置（继承自CController） 
控制器ID为在URL中显示的路径名 



示例: 
 
“controllerMap”=>array( 

“goodname”=>”application.controllers.BadnameController”, 
“article”=>array( 

“class”=>”application.controllers.PostController”, 
“layout”=>”article” 

) 
) 
 
上面的配置（放在main.php配置文件中）将使访问URL /goodname/时调用
BadnameController，而在访问URL /article/时调用PostController并且将其实例的layout属性
设置为article 

$catchAllRequest; 
设置为一个数组array(“controller/action”)，用于处理所有的请求（用于当需要维护时关闭站
点） 
数组的第一个元素为一个表示请求控制器的路径字符串，其它的键值对将被设置到$_GET中 
示例： 
“catchAllRequest”=>array( 

'offline/notice', 
'param1'=>'value1', 
'param2'=>'value2', 

) 
 
所有的请求将被offline控制器的notice动作处理（或其它控制器），所有的请求等同于请求请
求URL   offline/notice?param1=value&param2=value2 

 

CApplication 

$name='My Application'; 
没有程序上的意义 

$charset='UTF-8'; 
没有程序上的意义 

$sourceLanguage='en_us'; 
语言配置，关联到所使用的语言包 

 

CModule 

$preload=array(); 
预加载的组件的组件ID（组件的类别名） 



预加载的组件将在程序开始时就创建实例 

$behaviors=array(); 
在对象实例创建且配置完成（$config的键值已经被拷贝到对象上时）时自动添加的扩展 
即这里列出的behaviors不和CApplication共享配置 
只能在behaviors项下进行配置！ 
（@see CComponent::behavior） 
 
$behaviors值形式为behavior名称与Yii::createComponent所能接受参数值的映射： 
array( 
‘behaviorName’=>array( 
    ‘class’=>’BehaviorClassName’ 
     ) 
) 
 

 

CWebApplication继承树上实现的setter 
 

CWebApplication 

systemViewPath:string 
系统使用的views文件的路径，默认为’protected/system/views’ 

theme:string 
当前使用的主题名称(读取时返回CTheme对象) 

homeUrl:string 
Home Page Url 

controller:CController 
当前运行的Controller对象 

controllerPath:string 
包含所有Controller的目录路径，默认为'protected/controllers' 

viewPath:string 
包含所有View文件的目录路径，默认为’protected/views’ 

layoutPath:string 
包含layout文件的目录路径，默认为'protected/views/layouts' 

 
 



CApplication 

localeDataPath:string 
包含系统使用的本地化文件的目录路径，默认为'framework/i18n/data' 

timeZone:string 
时区设置(用作date_default_timezone_set的设置) 

language:string 
当站点需要支持多语言时，设置此值为语言名称 ，如zh_CN 

extensionPath:string 
扩展文件路径，默认为’protected/extensions’ 

runtimePath:string 
runtime文件的路径，默认为'protected/runtime' 

basePath:string 
程序文件默认路径，默认为’protected’ 

id:string 
程序的ID，默认为程序路径的CRC32校验值 

 

CModule 

params:array 
对程序运行没有影响 

import:array(setter only) 
用于自动import的alias，数组内容为Yii::import(@see import)方法可接受参数的alias字符串 

aliases:array(setter only) 
alias别名映射，将一个alias(命名空间)映射到一个目录（或已存在的别名） 

modules:array 
启用的模块 
关联数组内容必须为Yii::createComponent(@see createComponent)可接受参数 
启用Gii模块的配置Code: 

'modules'=>array( 
​ ​ 'gii'=>array( 
​ ​ ​ 'class'=>'system.gii.GiiModule', 
​ ​ ​ 'password'=>'123456', 
​ ​ ), 
) 



components:array 
此CApplication需使用的Component，将在创建CApplication实例时预加载（并init） 
components值为一包含Yii::createComponent(@see createComponent)能接受参数值的关
联数组 
获取这些组件的方法，参见CModule::getComponent 

 

CWebApplication继承树上实现的事件 
 
参见CApplication事件 

 
 
 

配置URL为Path模式，去掉index.php 

//启用URLManager Component (main.php array(‘components’)) 
'urlManager'=>array( 
​  'urlFormat'=>'path', 
​  'rules'=>array( 
​  '<controller:\w+>/<id:\d+>'=>'<controller>/view', 
  ​  '<controller:\w+>/<action:\w+>/<id:\d+>'=>'<controller>/<action>', 
​  '<controller:\w+>/<action:\w+>'=>'<controller>/<action>', 
​  ), 
​  'showScriptName'=>false //去掉index.php 
) 
 
//在根目录下添加.htaccess文件，内容为 
RewriteEngine On 
 
RewriteCond %{REQUEST_FILENAME} -s [OR] 
RewriteCond %{REQUEST_FILENAME} -l [OR] 
RewriteCond %{REQUEST_FILENAME} -d 
 
RewriteRule ^.*$ - [NC,L] 
RewriteRule ^.*$ index.php [NC,L] 
 

 
 
 

Controller与Action的执行 
 



Controller的创建与执行 

Controller实例创建流程 
1.​ $app->processRequest,解析获取route(“controllerID/actionID”形式字符串) 

a.​ 开启catchAllRequest，则使用此此配置(@see catchAllRequest) 
b.​ UrlManager根据rules,urlFormat等(urlManager配置)解析返回route 

2.​ $app->runController($route),创建Controller实例，初始化:init()，调用:run($actionID) 
a.​ 构造，注册behaviors(@see Controller::behaviors()) 
b.​ init()方法由用户实现 
c.​ run($actionID) 

Controller run执行流程 
1.​ 创建CAction实例 
2.​ 运行Controller所属的Module（CWebApplication实例）的

beforeControllerAction($controller,$action)方法 
3.​ 应用filters（@see filters()）运行Action 
4.​ 运行Controller所属的Module（CWebApplication实例）的

afterControllerAction($controller,$action)方法 
 
 
 

Action的创建与执行 

 
 

404错误处理 

找不到Controller 
1.​ UrlManager找不到对应的Controller，则抛出CHttpException 404 异常 



2.​ CApplication::handleException处理异常 
3.​ 触发onException事件，如果Event没有被挂起（handled设为true），继续 
4.​ 查看是否加载了ErrorHandler组件，交由CErrorHandler处理 
5.​ 如果异常没被处理，则直接显示错误信息 

ErrorHandler组件配置 
‘components’=>array( 

‘errorHandler’=>array( 
‘errorAction’=>’site/error’   //用来处理404的Action 

) 
) 
 

找不到Action 
执行Controller::missingAction方法，此方法默认抛出一个CHttpException 404 异常 
可在子类中override missingAction方法 

 
 
 

Controller可被覆写的方法 

init(): 
用于初始化，在实例创建完成，run具体action之前执行 

behaviors():array 
在构造时给Controller添加扩展，返回包含behavior配置的关联数组 
值的形式同配置项::behaviors 

filters():array 
返回在action执行之前执行的filters列表,REF 

missingAction($actionID): 
创建Action失败时，则执行missingAction方法 

actions(): 
当action对应方法找不到时，在此方法返回的ActionMap中查找，REF 
自定义Action必须继承自CAction ，REF 

accessRules(): 
返回访问规则数组，REF 

 

Filter 

InlineFilter：Controller::filterFilterName形式 

http://www.yiiframework.com/doc/api/1.1/CController#filters-detail
http://www.yiiframework.com/doc/api/1.1/CController#actions-detail
http://www.yiiframework.com/doc/guide/1.1/zh_cn/basics.controller#sec-4
http://www.yiiframework.com/doc/api/1.1/CAccessControlFilter


​ InlineFilter配置 
​ return array( 
​ ​ ‘filterName [+|- action1,action2...]’, 

) 
实现InlineFilter的方法签名 
public function filterFilterName($chain)  {} 
验证通过时执行$chain->run()方法以继续执行下一个filter 
CController实现了 

a.​ filterPostOnly方法 
b.​ filterAjaxOnly方法 
c.​ filterAccessControl方法 

ClassFilter：继承自CFilter的类（@see CFilter） 
 

实现自定义ClassFilter 
推荐在实现自定义ClassFilter时，采用重写preFilter的方法，而不去重写filter方法 

CFilter 

filter($filterChain)： 
执行 filter操作，正常通过时执行$filterChain->run()以继续 

init()： 
构造完成后运行以初始化 

preFilter($filterChain)： 
在继承CFilter子类时不去override filter方法，而只覆盖preFilter方法，此方法返回true或false决
定filter是否正常通过 

postFilter($filterChain)： 
结合preFilter，只在子类没有覆盖filter方法，只实现preFilter方法时，preFilter正常通过后且执行
了$filterChain->run()之后执行 

 
  

Render输出 



 
 

 

 

Auth Manager & Access Control  

User 

CWebUser（即核心组件user）配置项： 

1.​allowAutoLogin=false;//是否允许基于cookie的自动登录，如果设为false，所有用户数据将

保存到SESSION中 

2.​guestName=’Guest’;//没有登录的用户的name 

3.​ loginUrl=array(‘site/login’);//跳转到的登录页面URL 



4.​ identityCookie;//用于配置用于身份验证Cookie的其它属性，参见CHttpCookie属性,此选项
仅在allowAutoLogin设为true可用 

5.​autoRenewCookie=false;//设置是否每次访问都重新生成用于身份验证的Cookie,此选项
仅在allowAutoLogin设为true可用 

6.​ returnUrl;//用户登录后跳转到的URL 

CWebUser主要方法 
1.​ login(IUserIdentity $identity, integer $duration=0);参见UserIdentity 
2.​ logout(boolean $destroySession=true); 
3.​ checkAccess(string $operation, array $params=array ( ), boolean $allowCaching=true);//参见

Auth 
 

UserIdentity 
实现  

1.​ 继承自CUserIdentity 
2.​ 实现authenticate方法，通过$this->username和$this->password进行认证，方法返回true

表示认证成功 
 User State 

1.​ 在UserIdentity中重写getPersistenceStates方法，返回需要保存到Cookie中的用户数据

（这部分数据不能包含用来认证的数据-比如password）的关联数组 
2.​ 对于登录用户，可以通过Yii::app()->user->stateName获取保存的state值 

使用 
 

//登录 
$identity=new UserIdentity($username,$password); 
if ($identity->authenticate()) { 
        //Yii::app()->user对象为CWebUser实例 
         Yii::app()->user->login($identity,$expires);        
} 
 
 
//权限验证 
Yii::app()->user->checkAccess($operation); 

 
 
 
 
 
 

AuthManager 
 
 



 
 
 
相关参考 
CHttpCookie属性： 

1.​ name 
2.​ value=’’ 
3.​ domain=’’ 
4.​ expire=0 
5.​ path=’/’ 
6.​ secure=false 
7.​ httpOnly=false 

 

Access Control 

在Controller中配置Action Access规则 
1.​ 对需要AccessControl的action设置filters规则 
2.​ 覆写Controller::accessRules方法，返回权限验证规则 

Controller中需实现的方法 

//返回访问权限规则 
public function accessRules() { 
​ return array( 
​   'allow',  // or 'deny' 
​   // optional, list of action IDs (case insensitive) that this rule applies to 
​   'actions'=>array('edit', 'delete'), 
​   // optional, list of controller IDs (case insensitive) that this rule applies to 
​   // This option is available since version 1.0.3. 
​   'controllers'=>array('post', 'admin/user'), 
​   // optional, list of usernames (case insensitive) that this rule applies to 
​   // Use * to represent all users, ? guest users, and @ authenticated users 
​   'users'=>array('thomas', 'kevin'), 
​   // optional, list of roles (case sensitive!) that this rule applies to. 
​   'roles'=>array('admin', 'editor'), 
​   // optional, list of IP address/patterns that this rule applies to 
​   // e.g. 127.0.0.1, 127.0.0.* 
​   'ips'=>array('127.0.0.1'), 
​   // optional, list of request types (case insensitive) that this rule applies to 
​   'verbs'=>array('GET', 'POST'), 
​   // optional, a PHP expression whose value indicates whether this rule applies 
​   // This option is available since version 1.0.3. 
​   'expression'=>'!$user->isGuest && $user->level==2', 
​   // optional, the customized error message to be displayed 



​   // This option is available since version 1.1.1. 
​   'message'=>'Access Denied.', 
​ ); 
} 
 
//应用AccessControlFilter 
public function filters() { 
​ return array( 
​ ​ 'accessControl',//对所有action应用访问权限控制 
​ ​ 'accessControl + profile',//仅对profile一个action使用 
​ ​ 'accessControl - login,register',//对除login,register以外的action使用 
​ ); 
} 
 

 
 
 

Logging 
 
配置项 
 
return array( 
‘components’=>array( 

‘log’=>array( 
​ ‘class’=>’CLogRouter’, 
​ ‘routes’=>array( 
​ ​ ‘class’=>’CFileLogRoute’, //使用CWebLogRoute将Log显示是WebPage上 
​ ​ ‘levels’=>'error, warning',//为空则记录所有日志 

) 
) 

) 
); 
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