
Tab Freezing + BFCache 
Tracking IPCs 

This Document is Public 

Authors: chrisha@chromium.org​
Last Update: August 2019 

Status: Final | Draft 

Status 
Work finished, results of analysis available here (discussion here). 
 

●​ Add IPC handler program counter to PendingTask and TaskAnnotator. (Landed) 
●​ Integrate PendingTask::ipc_program_counter into logging messages. (Landed) 
●​ Add IPC program counter decoration to all IPC handlers. (Landed) 
●​ TaskAnnotator: Remove use of ThreadLocalOwnedPointer. (Landed) 
●​ Integrate IPC decoration into tracing. (Landed) 
●​ Add trace event when IPC-caused task is posted to a frozen task queue. (Landed) 
●​ Add lifecycles tracing category to BENCHMARK_RENDERERS. (Landed) 

One-page overview 
BFCache (in progress) and tab freezing (shipping) are both efforts that revolve around freezing a 
tab for considerable periods of time. They both suffer from a similar problem: an accumulation of 
tasks caused by inbound IPCs. The reasons are many, but the symptoms are typically the same: an 
inbound IPC gets processed and indirectly results in a task being posted to a task queue that is 
associated with a frozen frame. The tasks continue to accumulate, resulting in a kind of memory 
leak. In the case of BFCache there are also privacy considerations related to this problem. Imagine 
a tab that has access to the geolocation API, but this tab has been navigated away from and 
inserted into the BFCache. While in the BFCache position updates continue to be delivered to the 
frame, accumulating in a task queue. If the user navigates back to the page that task queue will 
start processing events again, and it will have access to all of the position information of the 
device covering the period when the page was in the cache. This goes against user expectations, 
as from their point of view the site was unloaded during this time period. 
 
We would like to identify the set of IPCs that lead to tasks being posted to frozen task queues. 
Once identified the long term plan is to endow the remote endpoints with knowledge of lifecycle 
states, and to avoid dispatching the IPCs in the first place. 

mailto:chrisha@chromium.org
https://docs.google.com/spreadsheets/d/1Ns-cAv-q9q8guf5VaroCKNJKuFBCWL42ilzLjHVsW8E/edit#gid=0
https://groups.google.com/a/google.com/forum/#!msg/chrome-bfcache/3h21nqUdbUc/VIq7PMzAAgAJ
https://chromium.googlesource.com/chromium/src/+/60dcc26b91b1d20e5bacc738db0ee60922024a8e
https://chromium.googlesource.com/chromium/src/+/306740d353a504ac480547d30515f11533b5df49
https://chromium.googlesource.com/chromium/src/+/7a9cb369cd1ad628a8e7d05e3c2611b1fc2e076f
https://chromium-review.googlesource.com/c/chromium/src/+/1590247
https://chromium-review.googlesource.com/c/chromium/src/+/1600449
https://chromium.googlesource.com/chromium/src/+/a48b29ecc5209ce8f7b33d196d88e1ae04a9006c
https://chromium-review.googlesource.com/c/chromium/src/+/1756251
http://go/bfcache
https://docs.google.com/document/d/1EaSJ7I1oWOvisCESTJ2uikQ_OIQVjkymhp98Zi2cMmc/edit


Summary 
We will be adding tracking of inbound IPCs by message type, and tagging any tasks posted during 
the context of handling the message. These tags will similarly be applied to any downstream tasks 
posted from the original labeled task. The tracking will involve a small amount of instrumentation 
in IPC message processing code, a TLS entry for tracking the active IPC message context, storage 
in PendingTask, plus a small amount of code for propagating message contexts in TaskAnnotator. 
Additional logic will be added to the renderer scheduler to detect when a task is being posted to a 
frozen task queue, and to log the IPC message that caused the task to be posted. This will be 
integrated into tracing, allowing this data to be collected in the wild from the canary channel. 
Similarly, it will be integrated into various pieces of logging to surface this additional context to 
developers where it is generally useful. 
 
See a related discussion and design by eseckler@ here. 

Platforms 
All (some portions will not be realized on iOS) 

Teams 
chrome-catan@google.com, chrome-bfcache@google.com 

Bug 
950668 

Code affected 
base/logging.cc 
base/pending_task.(cc|h) 
base/task/common/task_annotator.(cc|h) 
base/task/sequence_manager/task_queue_impl.cc 
ipc/ipc_message_macros.h 
mojo/public/tools/bindings/generators/cpp_templates/interface_definitions.tmpl 
mojo/public/tools/bindings/generators/cpp_templates/module.cc.tmpl 

https://docs.google.com/document/d/1i-zEWcA9DlBTmFmvvyKa2dgyDh4euA0-HZpOSoNtIm4/edit#
mailto:chrome-catan@google.com
mailto:chrome-bfcache@google.com
https://bugs.chromium.org/p/chromium/issues/detail?id=950668


Design 
Storing The Data 
We propose adding a single new pointer field to PendingTask. Additionally, we propose augmenting 
TaskAnnotator to allow setting and clearing a current IPC message context. The TaskAnnotator 
implementation will be responsible for decorating a task with the current context via 
TaskAnnotator::WillQueueTask. Similarly, decorated tasks will set the context (causing other 
posted tasks to be decorated) in TaskAnnotator::RunTask. 
 

Instrumenting IPC Entry Points 
The next step is to instrument the entry point. Both the legacy and Mojo IPC mechanisms have 
code generation choke points that are relatively easy to augment. Both of these mechanisms work 
via a switch statement which dispatches messages to the various registered message handlers. 
We propose augmenting the generated switch statements with code that wraps the message 
handling and sets/unsets a decoration using TaskAnnotator. To make this easier to manage we 
propose creating a ScopedIpcMessageTaskAnnotator helper that directly manages the 
TaskAnnotator TLS data. 
 
There are a few alternative data representations that can be considered: 
 

●​ Strings. Specifically, a pointer to a static string that uniquely identifies the interface name 
and the message name, or to the file and line number. This does not require symbolization 
but it does require that the strings be statically linked into the binary. There is a general 
desire to avoid introducing new strings into the binary, although this might be the simplest 
approach for debug builds. 

●​ Instruction pointer. This is easy to collect, and compact. Unfortunately, the information is 
opaque and requires symbolization in order to be actionable. Additionally, it is not directly 
aggregatable across Chrome versions, as the relative PC changes from one build to the 
next. The slow report, tracing and crash pipelines already have symbolization support , but 1

it will require a non-trivial amount of work to convert PCs to message names. 
●​ String hashes. It is possible to encode the context using a compile-time (constexpr) hash 

of the message name. This requires a custom symbolization step, but the raw data is 
trivially aggregatable across versions. It is also possible to provide a lightweight 
symbolization tool directly into the Chromium build for developers to use, and even to 
integrate the symbolization directly into debug build logging. 

1 The pipeline currently supports function-name / source file symbolization, but not line number 
information. Adding line number support is expensive in terms of resources consumed, and would require 
substantial work. An additional symbolization step is still required to convert the filename/line-number 
data to a message name, involving access to the exact source code used to build the binary plus some 
custom parsing. 



 
Impact on Binary Size 
The new instrumentation results in a size increase on most platforms of ~52kB. This is identical to 
the size increase associated with esecker@'s initial related proposal. The following numbers are 
for official Chrome branded builds, where the instrumentation uses instruction pointers. 
 

Platform Binary Before (bytes) After (bytes) Delta 

Android ARM libchrome.so 49,456,032 49,509,280 53,248 (0.10%) 

Win32 chrome.dll 54,123,520 54,168,064 44,544 (0.08%) 

Win32 chrome_child.dll 80,398,336 80,451,584 53,248 (0.06%) 

 
A new trace event will be added to log the IPC message associated with a posted task as it is run, 
by extending code in TaskAnnotator::RunTask. The information will also be integrated with logging, 
so that fatal errors will also include IPC message context on the console. 
 
It is expected that the proposed annotations will cover a majority of the code paths that lead to 
tasks being posted to a frozen task queue in a renderer. However, it is entirely possible that the IPC 
message being processed doesn't result in a PendingTask being posted, but rather it results in 
some other unit of work being posted (imagine a custom queue of unannotated callbacks, that is 
drained and processed periodically). The end result would be unannotated tasks being posted to a 
frozen task queue, for which no IPC message could directly be blamed. We propose to additionally 
introduce an UMA histogram which counts tasks posted to frozen task queues, counting those 
with and without annotations. If the relative number of undecorated callbacks is much higher than 
expected we could consider extending the decoration to base::Callback and base::Bind directly to 
increase coverage, rather than having it live in PendingTask. Note that this mechanism isn't perfect 
either, as pending work can be represented and queued using an unlimited number of 
mechanisms. We anticipate that the PendingTask decoration will cover the vast majority of 
common cases. 
 
Getting the Instruction Pointer 

We compared using base::GetProgramCounter() (calls a function which returns the return address 
via eax) and the GNU C++ extension that allows taking addresses of labels (ends up being "mov 
eax, CONSTANT"). In terms of binary size the two methods are effectively indistinguishable, with 
the label technique incurring relocation table entries. The label technique is marginally more 
efficient at runtime (avoids one call per IPC message handler), however given that it relies on a 
custom compiler extension it is less portable to use it. 



On 64-bit a further alternative would be to use the rip-relative addressing mode of the "lea" 
instruction, but other than avoiding a call this incurs the same cost in code size. 

 

Instrumenting Task Queues 
It remains to detect when a task is posted to a frozen task queue. Ultimately, all tasks posted to the 
sequence manager end up in a TaskQueueImpl, which itself is enabled or disabled via various 
mechanisms. We proposed modifying TaskQueueImpl to emit a trace event if an IPC message 
decorated task is posted to a disabled task queue. This is known immediately after the call to 
TaskAnnotator::WillQueueTask. 
 
We similarly wish to generate a list of IPCs that cause messages to be posted to a 
non-frame-associated task queue. This will aid in refining renderer scheduler logic to ensure that all 
frame-associated IPCs end up in the appropriate frame-associated task queue. 

Crash Integration 

We propose to integrate with logging.cc to ensure that both stack and task traces emitted to stdio 
include IPC message information. Furthermore, we propose integrating with logic in 
task_annotator.cc to ensure that the IPC entry point is included as part of the task backtrace, 
ensuring it is on the stack in the scope of a running task and included in crash reports. 

Analysis 

The proposed design will result in trace events being emitted as tasks are posted to task queues, 
including necessary queue metadata (frozen state, for example). A random sampling of 
representative traces is currently gathered by the slow reports back-end. These traces can be 
symbolized and analyzed in aggregate, and lists of IPC messages compiled. 

Alternatives Considered 

Other than the alternatives discussed in this document, one additional alternative was explored in 
order to reduce binary size impact. Rather than adding a ScopedIpcMessageDecorator within the 
context of each message handler dispatch, a single point of instrumentation was added to each 
dispatch function (identifying the message class) which also stored the enum ID of the message 
being handled (identifying the message itself). This results in about 50% less generated code, 
meaning the impact to Chrome is about 25 kB rather than 50 kB. However, in order to symbolize 
this information it would require a custom build to aggregate all message IDs, an upload to a 
centralized server for all official builds, plus a custom symbolization code path. 

It is also conceivable to imagine generating the binary with a 4 GB virtual unmapped section where 
the IDs can be treated as offsets into that section, and IPC symbols generated for this binary as a 

https://cs.chromium.org/chromium/src/base/logging.cc?q=logging.cc&sq=package:chromium&g=0&l=587
https://cs.chromium.org/chromium/src/base/task/common/task_annotator.cc?q=task_annotator.cc&sq=package:chromium&g=0&l=103
https://docs.google.com/document/d/1i-zEWcA9DlBTmFmvvyKa2dgyDh4euA0-HZpOSoNtIm4/edit#


custom build step. This would allow the existing symbolization mechanism to work out of the box, 
but would still require custom build steps. 

Metrics 

Success metrics 

TODO 

Regression metrics 

TODO 

Experiments 
TODO 

Rollout plan 
TODO 

Core principle considerations 

Speed 
The proposed changes cause a small amount of additional state to be gathered and maintained on 
every task posting and every IPC message being processed. This amounts to adding an additional 
pointer to a data structure that is roughly 25 pointers in size. The expected overhead is very 
minimal, but profiling is required to ensure that performance is not impacted on what amounts to a 
critical code path. This will be validated via benchmarking, the performance waterfall, and finally 
monitoring of the feature in the wild. 

Security 
The proposed changes do not introduce any new attack surfaces, as they are all minor extension to 
existing code paths. 

Privacy considerations 



The suggested changes are causing a minor amount of additional information to be logged and 
reported in traces that are being collected from users in the wild. The state can typically be inferred 
via manual inspection by a developer, and messages with related strings already exist in traces. 

Testing plan 
The integration points of this code are mostly very thoroughly tested. However, additional testing 
will be necessary to ensure that the end-to-end pipeline works as expected, including surfacing the 
new trace events in the slow reports back-end. 

Followup work 
Once the logging infrastructure is in place to collect IPC message information there is work 
necessary to modify the remote endpoints, endowing call-sites with knowledge as to the lifecycle 
state of each frame, and to avoid sending the messages when the destination is frozen. 


	Tab Freezing + BFCache 
	Status 
	One-page overview 
	Summary 
	Platforms 
	Teams 
	Bug 
	Code affected 

	Design 
	Storing The Data 
	Instrumenting IPC Entry Points 
	 
	Impact on Binary Size 
	 
	Getting the Instruction Pointer 

	Instrumenting Task Queues 
	Crash Integration 
	Analysis 
	Alternatives Considered 

	Metrics 
	Success metrics 
	Regression metrics 
	Experiments 

	Rollout plan 
	Core principle considerations 
	Speed 
	Security 

	Privacy considerations 
	Testing plan 
	Followup work 

