Topic 1.2 Ultrastructure of Cells

1.2.U1: Prokaryotes have a simple cell structure without compartmentalization

- Outline the major differences between prokaryotic and eukaryotic cells.
 - Prokaryotic Cells
 - Smaller (about 0.2 2 um)
 - DNA in nucleoid region (no nuclear membrane)
 - No membrane bound organelles
 - Cell wall of peptidoglycan
 - Smaller ribosomes (70s) in cytoplasm
 - DNA is circular and without histone proteins
 - Has plasmid DNA
 - Asexual cell division
 - Eukaryotic Cells
 - Bigger (10-100 um)
 - DNA in a true nucleus
 - Membrane bound organelles present
 - Cell wall of cellulose (plants) or chitin (fungus)
 - Larger ribosomes (80s) in cytoplasm and on ER
 - //also has 70s ribosomes within mitochondria and chloroplasts//
 - DNA is linear with histone proteins
 - Do not have plasmid DNA
 - Asexual or sexual cell division
- List the functions of the following structures of a prokaryotic cell: cell membrane, nucleoid,
 plasmids, cytoplasm, ribosomes, cell wall, pili, capsule, and flagella.
 - Cell membrane
 - Forms the boundary of the cell
 - acts as a selective barrier, allowing certain materials to pass into and out of the cell, but not others
 - Nucleoid
 - Location of the genetic material for inheritance and protein coding;

- circular DNA
- not associated with histone proteins

Plasmid

- Smaller, circular DNA not associated with DNA in the nucleoid
- Often contains genes for antibiotic resistance

Cytoplasm

- Primarily water and dissolved molecules
- the location of many metabolic reactions

Ribosome

- Responsible for catalyzing the formation of polypeptides during protein synthesis.
- Size is 70s

Cell wall

- Found in most prokaryotic cells
- Provides shape and protection to the cell
- Composed of peptidoglycan

o Pilus (singular)

- Found in some (not all) prokaryotic cells
- Hair-like structures t
- Help the cell attach to surfaces

Capsule

- Found in some (not all) prokaryotic cells
- Helps the cell maintain moisture and adhere to surfaces.
- Protects the cells from other organisms

Flagella

- Found in some (not all) prokaryotic cells
- Long extension used for cell locomotion

Contrast the size of eukaryotic and prokaryotic ribosomes.

- Prokaryotes have a smaller, 70s ribosome.
- Eukaryotes have a larger, 80s ribosome.
- The mitochondria and chloroplasts within eukaryotic cells have 70s ribosomes.
- (The "s" stands for Svedberg unit, a measure of particle sedimentation rate)

1.2.U2: Eukaryotes have a compartmentalized cell structure

- State the meaning and advantages of eukaryotic cells being "compartmentalized."
 - Compartmentalization is the presence of membrane bound partitions (organelles) within the eukaryotic cell. The compartments allow for:
 - Specialization of regions within the cell for specific functions.
 - Molecules needed for a specific function to be concentrated in a region within the cell.
- State structural differences between plant and animal cells.
 - Animal Cells
 - No cell wall
 - No chloroplasts
 - No large vacuole
 - Not a fixed shape
 - Stores carbohydrates as glycogen
 - Plant Cells
 - Cell wall
 - Chloroplasts
 - Large vacuole
 - Fixed shape
 - Stores carbohydrates as starch

1.2.U3: Prokaryotes divide by binary fission

- Define asexual reproduction.
 - Asexual reproduction creates offspring from a single parent organism.
 - The offspring are genetic clones of that parent.
- Outline the four steps of binary fission.
 - 1. The nucleoid DNA replicates to create an exact duplicate copy.
 - o 2. The nucleoid DNAs attach to the cell membrane.
 - 3. The cell membrane (and wall, if present) grow, causing the cell to elongate and the DNA molecules to move apart from each other.
 - 4. The cell membrane pinches inward, creating two genetically identical cells.

1.2.U4: Electron microscopes have a much higher resolution than light microscopes

• Define resolution.

 The smallest interval distinguishable by the microscope, which then corresponds to the degree of detail visible in an image created by the instrument.

Compare the functionality of light and electron microscopes.

- *LIGHT MICROSCOPES*
 - Use lenses to bend light and magnify images.
 - Used to study dead or living cells in color.
 - Cell movement can be studied.
 - Larger field of view.
 - Objects can be magnified up to 2000X.
 - Can resolve objects 200 nm apart.

ELECTRON MICROSCOPES

- Uses electron beams focused by electromagnets to magnify and resolve.
- Requires cells to be killed and chemically treated before viewing.
- No movement can be seen.
- Without stain or dye, no color can be seen.
- Smaller field of view.
- Can magnify objects up to 250,000 times.
- Can resolve objects that are 0.2 nm apart.

1.2.A1: Structure and function of organelles within exocrine gland cells of the pancreas

• State the function of an exocrine gland cell.

- Exocrine gland cells synthesize molecules (often proteins) for secretion from the cell into an external space.
- Exocrine gland cells of the pancreas secrete enzymes that function in digestion in the small intestine.
- Describe the function of the following structures in an exocrine gland cell: plasma membrane,
 nucleus, mitochondria, Golgi apparatus, lysosomes, vesicles and endoplasmic reticulum.
 - Plasma membrane: Forms the boundary of the cell, acts as a selective barrier allowing certain materials to pass into and out of the cell.

- Nucleus: contains most of the genes that control the eukaryotic cell, contains the nucleolus and chromatin.
- Mitochondria: The location of aerobic cellular respiration used to make ATP.
- Golgi apparatus: Consists of flattened membranous sacs; receives transport vesicles from the
 ER, modifies proteins produced in the ER, produces secretory vesicles
- Lysosome: Contains digestive enzymes that are used to break apart cellular debris and waste.
- Vesicles: Transport materials within the cell and out of the cell via exocytosis.
- Endoplasmic reticulum: Ribosomes on the ER synthesize proteins which are then moved through the ER and packaged into vesicles for transport.

1.2.A2: Structure and function of organelles within palisade mesophyll cells of the leaf

- State the function of a palisade mesophyll cell.
 - Palisade mesophyll cells are found on the upper surface of a leaf and have the primary job of performing photosynthesis.
- Draw a labeled diagram of a palisade cell from the leaf mesophyll.
 - Cell wall shown with two continuous lines to indicate the thickness.
 - Plasma membrane/cell membrane shown as a single continuous line (can be shown as the inner line of the cell wall if clearly labelled).
 - Nucleus shown with double membrane and nuclear pores.
 - Vacuole(s) drawn with a single continuous line.
 - Chloroplast shown with a double line to indicate the envelope and thylakoids.
 - Mitochondrion shown with double membrane and cristae.
- Describe the function of the following structures in a palisade mesophyll cell: cell wall, plasma membrane, chloroplasts, vacuole, nucleus, and mitochondria.
 - Cell wall: Provides structural rigidity and support.
 - Plasma membrane: Forms the boundary of the cell, acts as a selective barrier allowing certain materials to pass into and out of the cell.
 - Chloroplasts: Location of photosynthesis reactions. Produce carbohydrates using light energy,
 CO2 and H2O

- Vacuole: Membrane bound sacs, larger than vesicles, stores water and dissolved nutrients and helps maintain cell turgidity.
- Nucleus: Contains most of the genes that control the eukaryotic cell, contains the nucleolus and chromatin.
- Mitochondria: The location of aerobic cellular respiration used to make ATP.

1.2.S1: Drawings of the ultrastructure of prokaryotic cells based on electron micrographs

- Explain why the ultrastructure of prokaryotic cells must be based on electron micrographs.
 - "Ultrastructures" are small structures of/in a biological specimen that are too little to see with a light microscope.
- Draw the ultrastructure of E.coli as seen in an electron micrograph.
 - Cell wall drawn uniformly thick and outside the cell membrane
 - Capsule drawn outside the cell wall
 - o Pili drawn as hair-like structures connected to cell wall
 - Flagellum drawn at one end only and longer than pili
 - Cell membrane represented by a continuous single line
 - 70S ribosomes drawn as small discrete dots (not circles)
 - Nucleoid DNA shown as a tangled line not enclosed in membrane
 - Plasmid drawn as a small circular ring of DNA
 - Cytoplasm labeled within the cell

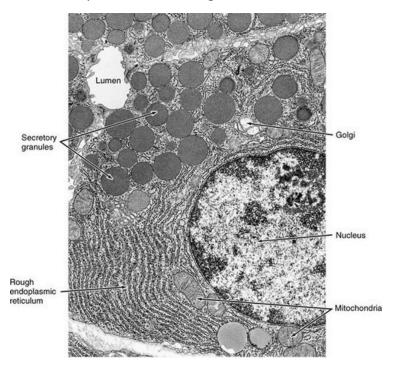
1.2.S2: Drawings of the ultrastructure of eukaryotic cells based on electron micrographs

- Draw and label a diagram of the ultrastructure of a generic animal cell.
 - Cell membrane shown as a single continuous line
 - Nucleus drawn with double membrane and nuclear pores
 - Mitochondria with a double membrane, the inner one folded into internal projections, shown
 no larger than half the nucleus
 - Rough endoplasmic reticulum drawn as a multi-folded membrane with dots on surface
 - Golgi apparatus drawn as a series of enclosed sacs with evidence of vesicle formation
 - 80S ribosomes drawn as small discrete dots (not circles) in cytoplasm and on rER
 - lysosome and vesicles drawn as circles with single line

• Draw and label a diagram of the ultrastructure of a generic plant cell.

- Cell wall drawn on outside perimeter with two continuous lines to indicate the thickness
- Cell membrane shown as a single continuous line
- Nucleus drawn with double membrane and nuclear pores
- Vacuole drawn with a single continuous line
- Chloroplast drawn with a double line and internal stacks of thylakoid
- Mitochondria with a double membrane, the inner one folded into internal projections, shown
 no larger than half the nucleus
- 80S ribosomes drawn as small discrete dots (not circles) in the cytoplasm and on rER

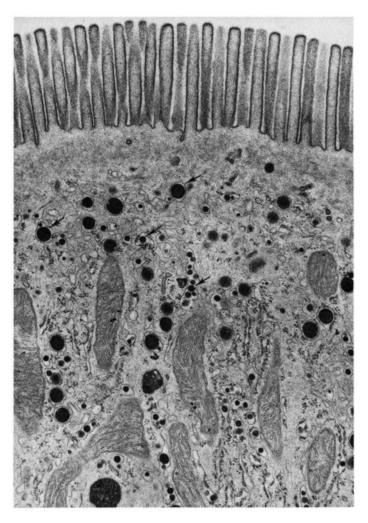
1.2.S3: Interpretations of electron micrographs to identify organelles and deduce the function of specialized cells


Explain why cells with different functions will have different structures.

- Cells will have different types and/or quantities of organelles depending on the primary function of the cell type.
- This allows for cells to specialize for a specific task.


Identify ultrastructures visible in a micrograph of a eukaryotic cell.

- Plasma membrane: Look for a thin line around the edge of the cell.
- Ribosomes: Tiny dark dots, can be "free" in the cytoplasm or "bound" to the rough ER.
- Nucleus: Often stained a darker color, look for a nuclear membrane and the nucleolus.
- Rough endoplasmic reticulum: Look for stacks of lines, often with visible little dark dots attached. Typically closer to the nucleus than Golgi.
- Golgi apparatus: Look for stacks of lines, without little dark dots attached. Typically further from the nucleus than ER.
- Lysosome: Little sacs, often a light grey color. Hard to distinguish from vesicles.
- Mitochondria: Often stain dark. Circular or kidney shapes with internal wavy lines.
- Chloroplast: Typically an oval shape with stacks visible on the inside. If image is in color, the chloroplasts will be green.
- Vacuole: Clear sac, typically larger in size than a vesicle or lysosome. More prevalent in plant cells than in animal cells.
- Vesicle: Little roundish sacs. Often stain dark. Can be hard to distinguish from lysosome.
- Flagella: Long tail-like structure emerging from the main cell body.


- Cell wall: Rigid outermost layer of a plant cell, external to the cell membrane. Thicker than the cell membrane.
- Given a micrograph of a cell, deduce the function of the cell based on the structures present.
 - This is a cell from a pancreas exocrine gland.

- It has a lot of rough endoplasmic reticulum, so it can be deduced that the cell secretes a protein.
- There are vesicles concentrated near one edge of the cell containing the protein that will be excreted.
- These are cells from an aquatic leaf.

- There are many chloroplast present, so it can be deduced that the cells do photosynthesis.
- This cell is from the small intestine. It is an epithelial cell of a villus.

- This cell has many microvilli which increase the surface area for nutrient absorption.
- There are many vesicles (dark stain) containing materials brought into the cell via endocytosis.

1.2.NOS: Developments in scientific research follows improvements in apparatus- the invention of the electron microscopes led to greater understanding of cell structure

- With reference to a specific example, explain how an improvement in apparatus allowed for greater understanding of cell structure.
 - *Technology* = machinery and equipment developed from the application of scientific knowledge.

- *Begets* = gives rise to; brings about.
- *Discovery* = the act of finding or learning something for the first time.