
Mid-Tier Compiler
Investigation
Attention: Externally visible, non-confidential
Author: rmcilroy@chromium.org, mythria@chromium.org
Status: Draft | Final
Created: 2019-08-19 / Last updated: 2019-08-23

Background

TLDR;

Analysis

Prototype Implementations
SparkPlug
SparkPlugOpt
TurboFan-Lite
TurboProp

Results
v8.browsing_mobile
Speedometer

Conclusion

Appendix
v8.browsing_mobile Graphs
Speedometer Graphs

Background
As part of the V8 Mobile London hackathon, we experimented with the idea of adding a middle
tier compiler between Ignition and TurboFan. This document outlines the findings from this
analysis and follow-up prototyping. The intention is to investigate the potential benefits of a
middle-tier JS compiler and evaluate a number of different options design decisions, particularly
focusing on the performance of web content on low-mid end mobile devices.

mailto:rmcilroy@chromium.org
mailto:mythria@chromium.org
https://docs.google.com/document/d/1EW0VuAsCWriu5_2l8x-mbk4DSth7BHFl3p8O5YXoja8/edit


TLDR;
There is an opportunity to improve JavaScript performance for certain web pages and
benchmarks by introducing a new middle tier compiler between Ignition and TurboFan. The
current optimization tick threshold means that on typical web page interactions (e.g.,
v8.browsing_mobile stories) only between 10-30% of bytecode execution is eligible for
optimization by TurboFan (in practice less is optimized due to IC updates and deoptimizations).
A reasonable mid-tier tick-threshold would open an additional 35-55% of bytecode execution to
be eligible for executed in a faster mid-tier.

Four different prototype mid-tier implementations were developed to evaluate the potential
performance benefits of different mid-tier compiler designs:

● SparkPlug: a single-pass non-optimizing baseline compiler
● SparkPlugOpt: a single-pass baseline compiler with speculative optimization of certain

monomorphic operations
● TurboFan-Lite: Turbofan with inlining disabled
● TurboProp: an optimizing compiler that uses a cut-down variant of the TurboFan

pipeline with an attempt to approximate the impact of a different backend for TurboFan

Evaluation of these prototypes for real world webpage interactions suggests that the most
promising approach would be a TurboProp-like pipeline. While a baseline compiler like
SparkPlug provides some potential benefits, with relatively small total CPU time impact, the
savings on JavaScript execution are limited to likely less than 5%. TurboProp, on the other
hand, provides most of the JavaScript execution improvements of TurboFan-Lite (between
5-20% on a number of pages), while alleviating the high total cpu regressions that would result
from running the full TurboFan pipeline with a more aggressive tiering-up tick thresholds for a
mid-tier compiler.

As a result of this investigation, we propose a follow-up plan to further develop this TurboProp
prototype and evaluate its impact.

Analysis
In order to estimate the effectiveness of a mid-tier compiler, we first need to determine whether
there is a substantial amount of JavaScript execution which is hot enough to be tiered up to this
middle tier, but not hot enough to be optimized by TurboFan.

In regular V8 we trigger a profiler tick after 144KB of bytecode has been executed by a function
(e.g after a function of 1024 bytes is called 144 times, or a 1024 byte loop iterates 144 times).
We will typically optimize a function after 2 profiler ticks, although we wait more ticks if a function
is larger than 1200 bytes. We also reset the profiler tick count any time an IC records new type

https://docs.google.com/document/d/1NeOsqjPPAcDWbuHxW5MobzVQgj9qZd6NqKUnz0h-fOw/edit#


feedback in order to avoid optimizing code that has unstable type feedback (which would likely
deopt).

For the purposes of this analysis (and the rest of the investigation in this document) we reduced
the bytecode execution budget necessary to cause a profiler tick to 1KB of bytecode execution
(i.e., 144 times less than regular V8), and increased the profiling ticks necessary to cause
optimization accordingly. We also removed the logic to reset ticks on IC updates in order to
make tick counts a stable measure of the amount of JS code being executed (irrespective of
optimization level).

In order to determine how much time might be spent in a middle tier compiler, we profiled the
number of ticks spent executing each function on three pages of the v8.browsing_mobile
stories. The graphs below show the proportion of time spent executing in each tier as a
percentage of total ticks. This analysis is based entirely on the tick thresholds for tiering up a
function to the next optimization level, namely 288 ticks to tier up to TurboFan and the value in
the x-axis as the threshold to tier-up to the mid-tier compiler. This is an optimistic view, both due
to the fact that in V8 we reset tick counts on IC updates, but also because it doesn’t take
deoptimization (i.e., tiering-down) into account.

On Google Maps, a good proportion of code is already potentially executable by TurboFan
(around 32% of ticks). However there is still scope for executing more code in a middle tier, with
around 40-50% of execution being possible in a mid-tier compiler if we would tier-up at between



20-50 profiler ticks.

YouTube spends much less time in TurboFan (around 9% of ticks), with a middle tier,
potentially having between 35-55% of execution if tiering-up at between 20-50 profiler ticks.



Times of India also spends less time in TurboFan (around 15% of ticks, although we know from
experience that in the real-world it is even less due to type feedback updates), with a middle tier,
potentially having between 45-55% of execution if tiering-up at between 20-50 profiler ticks.

Overall it seems like there is an opportunity for a mid-tier compiler to execute a reasonable
proportion of JavaScript code for web content, assuming we tier-up at around 50 profiler ticks or
lower.

As well as determining whether a reasonable proportion of execution would be spent in a
mid-tier, we also want to ensure that the code generated by a mid-tier compiler doesn’t take up
too much memory.

Looking at the size of the functions which get tiered-up, we see that between 10-15% of the
executed bytecode will be compiled by a mid-tier compiler if we tier-up at between 30-50 ticks.

We estimated the size of mid-tier machine code would be around 4x larger than the
corresponding bytecode. With this assumption, the code generated by a mid-tier compiler
would likely be between 30-60% the size of the bytecode generated by Ignition on the heap if
we tier-up between 30-50 ticks. The graphs below show this estimated size across the range of
tier-up thresholds.





Prototype Implementations
To evaluate the performance opportunities of various mid-tier compiler options, we implemented
a variety of prototype mid-tier compilers and evaluated their performance on various
benchmarks on a low-end Nokia 1 device.

All prototype implementations were based on V8 version 6.8.158, Chrome revision r555955.

The following prototypes were implemented:

SparkPlug
SparkPlug is intended to model a fast single-pass compiler (although given its use of CSA, it is
actually multi-pass). It iterates through the bytecode, generating code for each bytecode
directly (with potential deferred code for slow-paths).

Simple bytecodes (e.g., Ldar, Star, LdaContextSlot, etc.) are directly compiled into inline code,
while more complex bytecodes (Add, LdaNamedProperty, Call, etc.) are compiled into calls to
builtins which performs exactly the same operations as the equivalent bytecode handler, but
avoid the bytecode decoding and bytecode dispatch logic. These builtins collect exactly the
same type feedback as would be collected by Ignition (unlike the equivalent builtins used by
TurboFan for generic lowering), therefore optimized code generated by TurboFan is equivalent
whether it was executed by Ignition or SparkPlug beforehand.

https://chromium-review.googlesource.com/1042889
https://chromium-review.googlesource.com/1042889


SparkPlug supports tier-up to optimized code. SparkPlug code updates the interrupt budget on
Jump and Return bytecodes, and will call into the runtime profiler if the interrupt budget is
exhausted, which can trigger optimization of the current function by Turbofan. SparkPlug also
emits prologue code that checks the OptimizedCode field of the feedback vector on function
entry, and tail-calls a builtin that will tail-call the optimized code (if it exists) or the runtime (if the
field has an optimization marker set).

More details of the implementation of SparkPlug are available in the previous analysis, with the
code being available here.

SparkPlugOpt
SparkPlugOpt is intended to model a fast single-pass compiler that does speculative
optimizations based on type feedback. It is a variant of SparkPlug which performs two
optimizations based on the type-feedback in the FeedbackVector at the time of baselining:

● Inlining of Smi binary and unary ops
● Inlining of named property loads in the case of Monomorphic ICs

If the type feedback assumptions made by SparkPlugOpt are violated, the code will jump to a
deferred code which calls a BailoutFromBaselineCode, to return execution to Ignition. Since
SparkPlug’s stackframe is laid out the same as an interpreter stack frame, all
BailoutFromBaselineCode needs to do is drop any additional spill slots inserted, then re-enter
Ignition using Generate_InterpreterEnterBytecode in the same way as exception catching or
deoptimization re-enters Ignition.

Unlike the previous analysis, in this investigation SparkPlugOpt was modified to de-baseline the
function when it bails out, after which Ignition will continue to collect type feedback and the
function can re-tier-up to SparkPlugOpt when it reaches the profiler tick threshold again.

More details of the implementation of SparkPlugOpt are available in the previous analysis, with
the code being available here.

TurboFan-Lite
The inspiration for TurboFan-Lite came from investigations by the compiler team during the V8
Mobile London Hackathon that turning off TurboFan function inlining caused a significant
(~45%) reduction in the time TurboFan spent optimizing, and didn’t seem to have much impact
on JavaScript execution performance for the web page benchmarks.

TurboFan-Lite in this analysis is simply Turbofan with inlining disabled (--no-turbo-inlining). As
such, it is not a mid-tier (we don’t later tier-up to full TurboFan), but a variant of TurboFan to see

https://docs.google.com/document/d/1wC35ev-dG1c8VFNfELQEAq1MdGSnjKUwmCGszStvfwg/edit#heading=h.bvzud2ld9l3r
https://chromium-review.googlesource.com/c/v8/v8/+/1110128
https://docs.google.com/document/d/1wC35ev-dG1c8VFNfELQEAq1MdGSnjKUwmCGszStvfwg/edit#heading=h.lgldm27l4fty
https://docs.google.com/document/d/1wC35ev-dG1c8VFNfELQEAq1MdGSnjKUwmCGszStvfwg/edit#heading=h.bvzud2ld9l3r
https://chromium-review.googlesource.com/c/v8/v8/+/1110128
https://docs.google.com/document/d/1xV8OrDIqAOJpTft7QlnMYg1idJ0aFRCG4U2pl6-eXcs/edit


the performance impact of a fully multi-pass optimizing compiler when used for earlier
optimization (e.g., as a mid-tier).

In this analysis we also disabled concurrent optimization because we are specifically interested
in the impact of optimization on JavaScript execution time, and by optimizing on the main thread
we remove the variable of optimization time impacting JavaScript execution time due to the
function continuing to be interpreted until optimization completes. This gives an optimistic
picture of how much JavaScript execution time might be reduced, since we in-effect pause
execution until the function has been fully optimized. In the analysis we estimate the proportion
of optimization time which would likely be spent on the main thread and on a background worker
thread.

TurboProp
TurboProp is intended to model a mid-tier compiler that uses TurboFan’s machinery, but has a
much reduced optimization pipeline and a significantly cheaper back-end. The inspiration came
from looking at the time spent in each phase of the TurboFan-Lite prototype and determining
that many of the expensive phases were optional, and the majority of the remaining optimization
time was spent in the backend after effect-control-linearization (namely the schedule, instruction
selection and register allocation phases).

The TurboProp prototype disables the following optimization passes entirely:
● LoopVariableInduction
● LoopPeelingPhase
● LoadEliminationPhase
● EscapeAnalysisPhase
● EarlyOptimizationPhase
● StoreStoreEliminationPhase
● ControlFlowOptimizationPhase
● MemoryOptimizationPhase (the memory operations are lowered during

effect-control-linearization instead)
● LateOptimizationPhase
● JumpThreadingPhase

In addition, the InliningPhase has the following reducers disabled
(JSNativeContextSpecialization, JSIntrinsicLowering and DeadCodeElimination are retained):

● JSInliningHeuristic
● CheckpointElimination
● CommonOperatorReducer
● JSCallReducer
● JSContextSpecialization



And finally, the time spent in the following phases is attributed to a different RuntimeCallStats
bucket (and so not counted as part of the optimization time) on the assumption that they could
be eliminated or made significantly cheaper by developing a new backend for a TurboProp-like
compiler (they contribute more than 50% of the remaining optimization time spent in
TurboProp):

● ComputeScheduledGraph
● InstructionSelectionPhase
● RegisterAllocationPhase

The ComputeScheduledGraph is actually the second schedule of the TurboFan graph (the first
is done just before EffectControlLinearlization and is thrown away). There has been a previous
attempt to avoid this second schedule, and much of the infrastructure necessary to avoid it (e.g.,
rewriting EffectControlLinearization to use the GraphAssembler) has already landed in V8. It
would be easier to finish this work for a TurboProp-like pipeline since the later passes after
EffectControlLinearization are almost all removed and so don’t need to be ported to
GraphAssembler.

As with TurboFan-Lite, TurboProp is not a mid-tier (we don’t later tier-up to full TurboFan), but it
does give a sense of the difference in performance that might be seen for a more lightweight
optimizing compiler.

The code changes made to the pipeline for TurboProp can be seen here.

Results
All results were measured on a low-end Nokia 1 device. Each benchmark configuration was run
10 times and the average taken. Full traces from all the results are available at:
https://rmcilroy.users.x20web.corp.google.com/www/mid-tier-investigation/

v8.browsing_mobile
We concentrated on 5 browsing stories from v8.browsing_mobile which had quite different
execution characteristics: Google Maps, YouTube, Amazon, Washington Post and Twitter. This
section will show more detailed graphs for Maps and Amazon and summaries for the other
pages, but all graphs are available in the Appendix.

We ran the benchmarks with different tick-thresholds before tiering-up to the given prototype
mid-tier compiler to evaluate the potential JavaScript execution opportunities. Looking at the
time spent in the JavaScript RCS bucket for Maps we see that a mid-tier could provide
substantial savings (lower is better):

https://codereview.chromium.org/2620683002/
https://chromium-review.googlesource.com/c/v8/v8/+/1760816
https://www.nokia.com/phones/en_gb/nokia-1
https://rmcilroy.users.x20web.corp.google.com/www/mid-tier-investigation/


In general the Maps page performs well with optimization. It already gets a 17.7% reduction in
JavaScript execution time with TurboFan (No Opt compared to Default). At the most aggressive
tick-thresholds, TurboFan-Lite can provide an additional 37.4% reduction, with TurboProp not far
off at 31% reduction (both compared to Default). It is clear that most of this benefit is coming
from speculative optimization when we compare SparkPlug (6.7% reduction) and SparkPlugOpt
(14.9% reduction).

Looking at Amazon’s JavaScript execution, we see a slightly different behaviour:



Amazon currently doesn’t see any improvement from enabling TurboFan (No Opt compared to
Default). However at the most aggressive tick thresholds, a mid-tier could provide some benefit,
with again TurboFan-Lite and TurboProp (20% reduction and 12% reduction respectively at
most aggressive tick-threshold) doing better than SparkPlug and SparkPlugOpt (3.1% and 3.2%
reduction respectively). Notably, the optimizations in SparkPlugOpt don’t seem to make much
impact compared to SparkPlug, while those in TurboFan provide a decent improvement.

Of course, we also need to consider the time taken to compile the mid-tier code. For these
graphs we looked at the Optimization RCS bucket for TurboFan-Lite and TurboProp, but for
SparkPlug we needed to do some estimation since it is currently using CSA and is not a
single-pass compiler. As such we scaled down the SparkPlug and SparkPlugOpt compile times
to be 1/5th of what was reported - we estimated this scaling factor based on the amount of time
spent by SparkPlug reading the bytecode and doing the final code-generation, thus eliminating
the middle passes of CSA that wouldn’t be part of a production SparkPlug-like mid-tier compiler.

For Maps we see the following time spent compiling by each mid-tier compiler:



As expected, at aggressive tick-thresholds the amount of time spent in compilation can be very
high, particularly TurboFan-Lite which spends 5x more time compiling mid-tier code than
executing JavaScript. In general, compared to TurboFan-Lite, TurboProp takes around 1/3rd of
the compile time, SparkPlugOpt reduces this to 1/7th and SparkPlug is faster still at 1/16th of
the compile time.



Looking at Amazon the overheads are even larger, with TurboFan-Lite spending more than 7x
the time to compile mid-tier code compared to executing JavaScript. The relative time
differences between TurboFan-Lite, TurboProp, SparkPlugOpt and SparkPlug are similar.

It should be noted that all but SparkPlug will deoptimize code if speculative optimisations are
invalidated. For aggressive tick thresholds the depot rate seen was quite high on all of these
pages (perhaps ⅛ to ¼ of the number of optimizations), so if we add back tick resetting on IC
updates and tune tier-up better, this mid-tier compilation might be reduced by a similar
magnitude.

Much of this compilation time will be on a background worker thread, therefore even a large
compilation time could result in a better user experience by freeing the main thread. However
too long will be detrimental for multiple reasons:

● It makes use of CPU cores which might be used for other work, e.g., parallel garbage
collection or script streaming.

● It wastes power, particularly on mobile devices.
● It is likely to impact main-thread / JavaScript execution time since we will continue to

execute code in Ignition until the mid-tier compiler has finished compilation.
● Some proportion of the compilation will likely always remain on the main thread (e.g.,

reading the bytecode arrays and feedback vectors).

As a rough approximation of time spent on the main thread, I estimated that around 5% of
TurboFan-Lite and TurboProp might be spent on the main thread, and 10% of SparkPlug and



SparkPlugOpt would be spent on the main thread. With these estimates, the time spent on the
main thread looks as follows for Maps:

And for Amazon:



Here TurboProp is on-par with TurboFan-Lite in Maps, and generally better for Amazon. The
slope of the graphs also changes showing that, even when looking just at the main thread,
being too aggressive tiering up could cause a regression in main-thread time. Overall a
tick-threshold of between 30-50 seems the best suited to get the most benefits (similar to what
we saw in the Analysis section). For a tick-threshold of 30 ticks, we see the following reductions
in main-thread time:

SparkPlug SparkPlugOpt TurboFan-Lite TurboProp

Maps 3.1% 3.0% 18.0% 16.5%

Amazon 1.8% 1.6% 1.17% 5.4%

Looking at total CPU time across all threads for both JavaScript execution and mid-tier
compilation we see the following, for Maps:

and for Amazon:



Looking across all five pages, for a tick-threshold of 30 ticks, we see the following:



There are also some pages like Washington Post and Twitter which don’t see much
improvement from a mid-tier compiler, however they also don’t show regression in total CPU
time either, and so are simply don’t have hot enough functions to tier-up to the mid-tier.



For those that do show improvement, TurboProp and TurboFan-Lite have similar percentage
improvements in JavaScript execution time and main thread (between 5-15%). However,
TurboProp has substantially less total CPU usage (15-40% regression) compared to
TurboFan-Lite (60-130% regression).

Looking at SparkPlug and SparkPlugOpt we see that the improvements are much more limited,
typically between 1.5-4% reduction in main-thread time. The regressions in total CPU time are
also more limited at between 2-7% for SparkPlug and 9-14% for SparkPlugOpt.

Speedometer
We also ran Speedometer 1.0 with the prototype mid-tier compilers. One issue of these runs is1

that Ember crashed on SparkPlug and SparkPlugOpt, so there are no results included for it.

Looking at JavaScript execution time for Speedometer for a tick-threshold of 30 ticks shows
good improvements for three of the five tested benchmarks (JQuery and Vanilla don’t show
much improvement).

Ember, Angular and Backbone see the most significant improvements, between 5-15% for
TurboFan-Lite and 4-12% for TurboProp. There is a bit more of a gap between TurboProp and

1 SparkPlug doesn’t support all the ES6 features needed to run Speedometer 2.0



TurboFan-Lite than there was on the web browsing stories, which suggests that Speedometer
benefits more from some of the optimization phases which were removed for TurboProp.

Looking at SparkPlug and SparkPlugOpt, the savings for Angular aren’t far off those of
TurboFan-Lite (~4%), however the Backbone savings are much lower (0.8-1.2%) and it’s
unknown what savings might be achieved for Ember.

Conclusion
This investigation shows that there is an opportunity to improve JavaScript performance for
certain web pages and benchmarks by introducing a middle tier compiler.

A baseline compiler like Sparkplug provides some potential benefits, with relatively small total
CPU time impact. However the savings on JavaScript execution are limited to likely less than
5%.

A speculatively optimizing mid-tier compiler provides more benefit on the main-thread, with
TurboFan-Lite giving between 5-20% JavaScript execution improvements on some pages,
however running the full TurboFan pipeline for all functions that tier-up to the mid-tier tick
threshold has a prohibitive increase in total CPU time.

Evaluation of the TurboProp prototype shows that there is potential to achieve most of the
JavaScript execution time benefits of a mid-tier TurboFan with significantly less CPU intensive
pipeline. This seems like an avenue that is worth pursuing, and a plan to do so is described in
this design doc.

https://docs.google.com/document/d/1NeOsqjPPAcDWbuHxW5MobzVQgj9qZd6NqKUnz0h-fOw/edit#


Appendix

v8.browsing_mobile Graphs
Maps





YouTube





Amazon





Washington Post





Twitter







Speedometer Graphs
Ember

Angular



Backbone

JQuery



Vanilla


